NONLINEAR ERROR BOUNDS FOR MAPS ON PREORDERED PSEUDOMETRIC SPACES


Lucas Fresse, Viorica V. Motreanu2

Abstract. We establish sufficient conditions for the existence of nonlinear error bounds for submonotone maps defined on a pseudometric space endowed with a preorder. This covers the case of submonotone maps (thus a fortiori of lower semicontinuous maps) on a metric space (endowed with the trivial preorder). In particular our results generalize the existing results for this case. Our arguments are based on an appropriate version of Ekeland’s variational principle.

Keywords: nonlinear error bound, pseudometric space, preorder, submonotone map, variational principle.

MSC: 49J52, 58E30, 06A75.

More … 

DOI   10.56082/annalsarscimath.2025.1.169

 Universite de Lorraine, Institut Elie Cartan, 54506 Vandoeuvre-les-Nancy, France, lucas.fresse@univ-lorraine.fr

2  Lycee Varoquaux, 10 rue Jean Moulin, 54510 Tomblaine, France, vmotreanu@gmail.com


PUBLISHED in Annals Academy of Romanian Scientists Series on Mathematics and Its ApplicationVolume 17 no 1, 2025