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NONLINEAR ERROR BOUNDS FOR MAPS

ON PREORDERED PSEUDOMETRIC SPACES∗
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Abstract

We establish sufficient conditions for the existence of nonlinear er-
ror bounds for submonotone maps defined on a pseudometric space
endowed with a preorder. This covers the case of submonotone maps
(thus a fortiori of lower semicontinuous maps) on a metric space (en-
dowed with the trivial preorder). In particular our results generalize
the existing results for this case. Our arguments are based on an ap-
propriate version of Ekeland’s variational principle.
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1 Introduction

In [1] the next theorem is shown:

Theorem 1 ( [1, Theorem 4.3]). Let (M,d) be a complete metric space
and let f : M → R ∪ {+∞} be lower semicontinuous. Let a ∈ R and
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b ∈ (a,+∞] with [f ≤ a] 6= ∅, and let β : (0,+∞)→ (0,+∞) be continuous
and nondecreasing. Assume that

a < f(x) < b ⇒ |∇f |(x) ≥ β(d(x, [f ≤ a])).

Then,

a < f(x) < b ⇒ f(x)− a ≥
∫ d(x,[f≤a])

0
β(s) ds.

In this theorem, d(x, [f ≤ a]) := inf{d(x, y) : y ∈ [f ≤ a]) stands for the
distance from x to the sublevel set [f ≤ a] := {x ∈ M : f(x) ≤ a} and
|∇f | : dom(f)→ [0,+∞] is the strong slope of f defined by

|∇f |(x) =

{
0 if x is a local minimizer of f ,

lim sup
y→x

f(x)−f(y)
d(x,y) otherwise.

One says that f has a (global) nonlinear error bound between the levels a ∈ R
and b ∈ (a,+∞] if there is a nondecreasing function γ : (0,+∞)→ (0,+∞)
such that

a < f(x) < b ⇒ f(x)− a ≥ γ(d(x, [f ≤ a])).

Therefore, Theorem 1 provides a sufficient condition for the existence of a
global nonlinear error bound.

In the present paper, we obtain (in particular) the following generaliza-
tion of the above theorem:

Theorem 2. Let (P,≤, d) be a preordered pseudometric space such that ≤ is
self-closed and P is ≤-complete. Let f : P → R∪{+∞} be ≤-submonotone.
Let a ∈ R and b ∈ (a,+∞]. Let β : [0,+∞) → [0,+∞) be nondecreasing
and set β(+∞) = lims→+∞ β(s). Assume that

a < f(x) < b ⇒ |∇≤f |(x) ≥ β(d(≥ x, [f ≤ a])).

Then,

a < f(x) < b ⇒ f(x)− a ≥
∫ d(≥x,[f≤a])

0
β(s) ds.

Moreover, if β 6≡ 0 and infP f < b, then [f ≤ a] 6= ∅.

See Theorem 6 (combined with Corollary 3) for an in fact more general
statement. The setting of preordered pseudometric space and the notions
involved in Theorem 2 are introduced in Section 2. In particular a metric
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space (M,d) endowed with the trivial preorder ≤ (i.e., such that x ≤ y
for all x, y ∈ M) is an example of preordered pseudometric space, and in
this case the distance d(≥ x, [f ≤ a]) and the slope |∇≤f | coincide with
d(x, [f ≤ a]) and |∇f |, respectively. However, even in this case, the assump-
tion that f is ≤-submonotone is weaker than lower semicontinuity (see, e.g.,
Remark 3 (d)). Therefore, even for metric spaces endowed with trivial pre-
order, Theorem 2 generalizes Theorem 1. Note also that the condition on
β is weaker in Theorem 2 (where it may be discontinuous and may van-
ish) and the conclusion incorporates the fact that [f ≤ a] 6= ∅ while it is an
assumption in Theorem 1.

In [1], there are also local versions of Theorem 1 (namely, [1, Theorems
4.1 and 4.2]) and a linear version ([1, Theorem 2.2]) which are themselves
generalized in Theorems 4–5 and Corollary 4 below. The formulation of
Theorems 4–5 in fact incorporates both the local and global settings (the
global setting is recovered when the “radius” ρ in the statements is set
to +∞).

Our arguments are also more elementary in the sense that we do not
rely on a change-of-metric principle (which is the basic tool in [1]). This is
precisely what allows us to go beyond the setting of metric spaces and the
case of a continuous, positive β.

The paper is organized as follows. In Section 2, we present the setting of
preordered pseudometric spaces and the relevant notions involved in The-
orem 2 and needed throughout the paper. This setting has been mostly
introduced in [2], but Section 2 also provides further developments. A basic
result in our arguments is a version of Ekeland’s variational principle which
is given in Section 3 (Theorem 3). This result is already shown in [2] but
we provide a full proof for making this paper as self contained as possible.

In Section 4, by relying on Theorem 3, we obtain a key technical result
(Proposition 1) which yields a lower estimate of a ≤-submonotone map f
on a subset U by a quantity which combines the infimum of the map and of
its slope |∇≤f | on U . As a byproduct, we show that the slope is generically
finite on the domain of f (Corollaries 1–2).

The main results of this paper are shown in Section 5, and provide general
local and global criteria of existence of nonlinear or linear error bounds.

2 Preliminaries

Throughout this paper, we consider a (nonempty) set P and the following
structure on P :
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(a) We assume that P is endowed with a preorder, i.e., a binary relation ≤
which is reflexive and transitive (but not necessarily antisymmetric).

(b) We also assume that P is endowed with a pseudometric, i.e., a map
d : P × P → [0,+∞) such that d(x, x) = 0 for all x ∈ P . Moreover,
we assume that

• d is symmetric, i.e., d(x, y) = d(y, x) for all x, y ∈ P ;

• d is ≤-triangular, i.e., d(x, z) ≤ d(x, y) +d(y, z) for all x, y, z ∈ P
such that x ≤ y ≤ z.

Then we say that (P,≤, d) is a preordered pseudometric space.
We consider the following terminology related to sequences in P .

Definition 1. (a) A sequence (xn) ⊂ P is said to be ≤-ascending if xn ≤
xn+1 for all n.
(b) Given x ∈ P and a sequence (xn) ⊂ P , we say that (xn) converges to x
if limn→∞ d(xn, x) = 0. Then we write limn→∞ xn = x or xn → x. We say
that (xn) is a Cauchy sequence if for every ε > 0 there is a rank n0 such that
d(xn, xm) < ε whenever n0 ≤ n ≤ m. Then we say that P is ≤-complete if
every ≤-ascending Cauchy sequence in P is convergent in P .
(c) We say that the preorder ≤ is self-closed if, whenever (xn) ⊂ P is ≤-
ascending and such that xn → x, we have xn ≤ x for all n.

Remark 1. (a) A sequence (xn) can have several limits. When there are
x, y ∈ P with x 6= y such that d(x, y) = 0, the constant sequence defined by
xn := x converges to both x and y. In fact, even if d is nondegenerate (i.e.,
d(x, y) = 0⇒ x = y), the limit is a priori not unique: let P = [0, 1]∪{2} be
endowed with the standard order and the pseudometric d whose restriction
to [0, 1] is the standard metric and such that d(1, 2) = d(2, 1) = 1 and
d(x, 2) = d(2, x) = 1 − x for all x ∈ [0, 1). With this definition, (P,≤, d)
is a preordered pseudometric space, with nondegenerate pseudometric d,
note also that P is ≤-complete and ≤ is self-closed. However, the sequence
(1 − 1

n) has two limits: 1 and 2. In this example, d is not a metric as it is
not triangular: d(1, 2) > d(1, 34) + d(34 , 2).

Assuming that d is nondegenerate is nevertheless sufficient for guaran-
teeing that every constant sequence has a unique limit.
(b) In what follows, it will be often useful to consider also the reversed
preorder ≥. Note that (P,≥, d) is also a preordered pseudometric space
(in particular the ≥-triangularity of d is deduced from the ≤-triangularity
thanks to the fact that d has been supposed symmetric). However, the



L. Fresse, V.V. Motreanu 173

properties of (P,≤, d) are not necessarily preserved. For instance ≤ may
be self-closed whereas ≥ is not: take P = [0, 1] endowed with the standard
metric and with the order ≤ whose restriction to (0, 1] is the standard order
and such that x ≤ 0 for all x. Also P may be ≤-complete without being
≥-complete: take for instance P = (0, 1] equipped with the standard metric
and order.

Our next task is to endow P with a topology. In fact we define various
topologies on P .

Definition 2. Let A ⊂ P be a subset.
(a) Let L≤(A) = {x ∈ P : ∃(xn) ⊂ A ≤-ascending, xn → x}. We say that
A is ≤-closed if A = L≤(A).
(b) Let S≤(A) = {x ∈ P : ∀ε > 0, ∃x′ ∈ A, x′ ≤ x and d(x′, x) < ε}. We
say that A is ≤-saturated if A = S≤(A).
(c) Given x ∈ P , we set d(≤ x,A) = inf{d(x′, x) : x′ ∈ A, x′ ≤ x} ∈ [0,+∞].

Lemma 1. (a) ≤-closed subsets and ≤-saturated subsets are the respective
closed sets of two topologies on P , which we will respectively call ≤-topology
and S≤-topology.

(b) For every subset A ⊂ P , letting A
≤

be the closure of A in the ≤-topology,
we have the inclusions

A ⊂ L≤(A) ⊂ A≤.

Moreover, A = L≤(A)⇔ A = A
≤

.
(c) For every subset A ⊂ P , we have that S≤(A) is the closure of A in the
S≤-topology. Moreover, for all x ∈ P , we have d(≤ x,A) = d(≤ x, S≤(A)),
and

S≤(A) = {x ∈ P : d(≤ x,A) = 0}.

(d) Assume that ≤ is self-closed. Then for every A ⊂ P , we have the
inclusions

A ⊂ L≤(A) ⊂ A≤ ⊂ S≤(A).

In particular, if A is ≤-saturated then A is ≤-closed, so that the ≤-topology
is finer than the S≤-topology.

Proof. (a) Evidently, ∅ and P are both ≤-closed and ≤-saturated. Let Ai,
i ∈ I, be a collection of ≤-closed subsets. Since the map L≤ is clearly
nondecreasing with respect to inclusion, we get

⋂
i∈I Ai ⊂ L≤(

⋂
i∈I Ai) ⊂⋂

i∈I L≤(Ai) =
⋂
i∈I Ai hence

⋂
i∈I Ai is ≤-closed. The argument for show-

ing that an intersection of ≤-saturated subsets is ≤-saturated is similar.
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Let A,B ⊂ P be ≤-closed subsets and let (xn) ⊂ A∪B be a ≤-ascending
sequence such that xn → x with x ∈ P . The sequence (xn) has either
a subsequence in A or in B which implies that x ∈ A or x ∈ B, hence
x ∈ A ∪B. This shows that A ∪B is ≤-closed.

Now assume that A,B are ≤-saturated and let x ∈ S≤(A ∪ B). If x ∈
S≤(A) = A then we get in particular x ∈ A∪B. So assume that x /∈ S≤(A),
i.e., there is ε0 > 0 such that {x′ ∈ A : x′ ≤ x, d(x′, x) < ε0} = ∅. For
every ε ∈ (0, ε0) there is x′ ∈ A ∪ B with x′ ≤ x and d(x′, x) < ε, and then
necessarily x′ ∈ B; hence x ∈ S≤(B) = B ⊂ A ∪ B. Finally we get that
A ∪B is ≤-saturated.

(b) The inclusion A ⊂ L≤(A) is immediate. As for the second inclusion,

we have L≤(A) ⊂ L≤(A
≤

) = A
≤

. The equivalence A = L≤(A) ⇔ A = A
≤

follows from the fact that each one of the two equalities means that A is
≤-closed.

(c) The inequality d(≤ x,A) < ε means that there is x′ ∈ A with x′ ≤ x
and d(x′, x) < ε, hence

S≤(A) = {x ∈ P : ∀ε > 0, d(≤ x,A) < ε} = {x ∈ P : d(≤ x,A) = 0}.

For every x ∈ P , since A ⊂ S≤(A), we have the inequality d(≤ x, S≤(A)) ≤
d(≤ x,A). For every y ∈ S≤(A) with y ≤ x, using that d is ≤-triangular, it
is easy to see that d(≤ x,A) ≤ d(≤ y,A) + d(y, x) = d(y, x) (in view of the
above description of S≤(A)); whence, finally, d(≤ x,A) = d(≤ x, S≤(A)).

The last equality, combined with the above description of S≤(A), yields
S≤(S≤(A)) = S≤(A), hence S≤(A) is ≤-saturated. If A ⊂ B where B is
≤-saturated, then we get S≤(A) ⊂ S≤(B) = B. Hence S≤(A) is the closure
of A in the S≤-topology.

(d) Assume that ≤ is self-closed. It remains to show the inclusion A
≤ ⊂

S≤(A). To do this, it suffices to check that S≤(A) is ≤-closed. So let
(xn) ⊂ S≤(A) be a ≤-ascending sequence such that xn → x with x ∈ P .
The fact that ≤ is self-closed yields xn ≤ x for all n. Let ε > 0. There is
n such that d(xn, x) < ε

2 . Moreover, since xn ∈ S≤(A), we can find x′ ∈ A
with x′ ≤ xn and d(x′, xn) < ε

2 . Whence x′ ≤ xn ≤ x and d(x′, x) < ε. This
shows that x ∈ S≤(A), and the proof of the lemma is complete.

Remark 2. (a) In addition to the ≤- and S≤-topologies on P , we get two
additional topologies simply by switching the preorder ≤ to the opposite
preorder ≥ (see Remark 1 (b)). Also we define

d(≥ x,A) = inf{d(x, y) : y ∈ A, y ≥ x}.
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Then, in view of Lemma 1 (c), the closure of A in the S≥-topology is given
by S≥(A) = {x ∈ P : d(≥ x,A) = 0}.

Of course the ≤- and ≥-topologies (as well as the S≤- and S≥-topologies)
are different in general. For example, for P = [0, 1] equipped with its stan-
dard metric and order, the subset A := (0, 1] is ≤-closed and ≤-saturated
(since d(≤ 0, A) = +∞) but it is not ≥-closed and not ≥-saturated (since
d(≥ 0, A) = 0). Symmetrically, B := [0, 1) is closed in the ≥- and S≥-
topologies but not in the ≤- and S≤-topologies.

(b) The inclusion A
≤ ⊂ S≤(A) does not hold in general without the as-

sumption that ≤ is self-closed: take for instance P = [0, 1] equipped with
its standard metric and with the order ≤ whose restriction to [0, 1) is the
standard order and such that 1 ≤ s for all s (the so-obtained order on [0, 1]

is not self-closed). Then A := [0, 1) is ≤-saturated but A
≤

= [0, 1].
Also the reversed inclusion may not hold even when ≤ is self-closed: take

P = [0, 1] equipped with its standard metric and with the order ≤ whose
restriction to (0, 1] is the standard order and such that s ≤ 0 for all s. Then
≤ is self-closed, A := (0, 1] is ≤-closed, but S≤(A) = [0, 1]. This example
also shows that, when ≤ is self-closed, the ≤-topology is in general strictly
finer than the S≤-topology.

(c) The inclusions A ⊂ L≤(A) ⊂ A
≤

can be strict. Take for example P =
[0, 1] × [0, 1] equipped with its standard metric and with the (self-closed)
partial order defined by

(x, y) ≤ (x′, y′) if (x = x′ and y ≤ y′) or (y = y′ = 1 and x ≤ x′).

Then A := [0, 1)× [0, 1) ( L≤(A) = [0, 1)× [0, 1] ( A
≤

= L≤(A) ∪ {(1, 1)}.
(d) Say that a subset A ⊂ P is closed if for every x ∈ P and (xn) ⊂ A with
xn → x, we have x ∈ A. It is straightforward to check that this defines a
topology on P , which we call d-topology, and which is coarser than both the
≤-topology and the S≤-topology. However, the d-topology is less relevant
and thus not involved in this paper.

In the case where we are given a map f : P → R∪{+∞}, it is sometimes
useful to modify the preorder ≤ to a new preorder � according to Lemma 2
below. First we present the following notions (already considered in [2]).

Definition 3. (a) The ≤-strong slope of f is the operator

|∇≤f | : dom(f) := f−1(R)→ [0,+∞]

defined as follows. For η > 0 let P 0
η (x ≤) = {y ∈ P : x ≤ y, 0 < d(x, y) < η}.
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• If x is a global minimizer of f |P 0
η (x≤)∪{x} for some η > 0, we set

|∇≤f |(x) = 0.

• Otherwise, we set

|∇≤f |(x) = lim
η→0+

sup
{f(x)− f(y)

d(x, y)
: y ∈ P 0

η (x ≤)
}
.

(b) We say that f : P → R ∪ {+∞} is ≤-lower semicontinuous if, for
every ≤-ascending sequence (xn) such that xn → x with x ∈ P , we have
lim infn→∞ f(xn) ≥ f(x).
(c) We say that f : P → R ∪ {+∞} is ≤-submonotone if, for every ≤-
ascending sequence (xn) such that (f(xn)) is nonincreasing and xn → x
with x ∈ P , we have f(xn) ≥ f(x) for all n.

Remark 3. (a) If x ∈ P is maximal with respect to ≤, then |∇≤f |(x) = 0.
(b) In the case where P ⊂ R is an open interval endowed with its standard
metric and order and f : P → R is derivable on the right at x ∈ dom(f),
then |∇≤f |(x) = max{0,−f ′r(x)} where f ′r(x) stands for the right derivative
at x. Symmetrically, if f is derivable on the left at x with left derivative
f ′l (x), then |∇≥f |(x) = max{0, f ′l (x)}.

In general, thanks to the preorder ≤ and the strong slope |∇≤f | (or
|∇≥f |), we get a notion of “right (or left) derivative” for functions on a
preordered pseudometric space P .
(c) Given f : P → R ∪ {+∞}, it is easy to see that f is ≤-lower semicon-
tinuous if and only if, for every a ∈ R, the sublevel set [f ≤ a] is ≤-closed
(which equivalently means that f is lower semicontinuous with respect to
the ≤-topology).
(d) Also it is immediate that the following implication holds

f is ≤-lower semicontinuous ⇒ f is ≤-submonotone.

However, the converse is not true, even if ≤ is the trivial preorder on P
(i.e., such that x ≤ y for all x, y): take for example f : [0, 1]→ R such that
f(x) = x for all x ∈ [0, 1) and f(1) = 2, and endow P := [0, 1] with its
standard metric; then f is ≤-submonotone with respect to any preorder on
P , but f is not ≤-lower semicontinuous when ≤ is such that 1 ∈ L≤([0, 1)).

In a general preordered pseudometric space (P,≤, d), the class of ≤-lower
semicontinuous functions of course includes the class of lower semicontinuous
functions (i.e., which are lower semicontinuous with respect to the trivial
preorder). It also includes the class of ≤-nonincreasing functions (i.e., such
that x ≤ y ⇒ f(x) ≥ f(y)) provided that the preorder ≤ is self-closed.
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When d is nondegenerate (i.e., d(x, y) = 0 ⇒ x = y) the class of ≤-
submonotone maps includes in addition the class of ≤-increasing functions
(i.e., such that (x ≤ y, x 6= y)⇒ f(x) < f(y)). Indeed, for such an f , every
≤-ascending sequence (xn) such that (f(xn)) is nonincreasing is necessarily
constant; and if xn → x, then the fact that d is nondegenerate forces x = xn
for all n.

Lemma 2. Let f : P → R ∪ {+∞}. We define

x � y if (x ≤ y and f(x) ≥ f(y)).

Then:
(a) (P,�, d) is a preordered pseudometric space.
(b) If P is ≤-complete, then P is �-complete.
(c) |∇≤f |(x) = |∇�f |(x) for all x ∈ dom(f).
(d) The following conditions are equivalent:

(i) f is ≤-submonotone;
(ii) f is �-submonotone;
(iii) f is �-lower semicontinuous;
(iv) for all a ∈ R, [f ≤ a] is �-closed;
(v) for all a ∈ R ∪ {+∞}, [f < a] := {x ∈ P : f(x) < a} is �-closed.

(e) If ≤ is self-closed and f is ≤-submonotone, then � is self-closed.
(f) Let A ⊂ P and let x ∈ P . If f(x) ≤ inf{f(y) : y ∈ A, y ≤ x}, then
d(≤ x,A) = d(� x,A). Similarly, if f(x) ≥ sup{f(y) : y ∈ A, y ≥ x}, then
d(≥ x,A) = d(� x,A).

Proof. (a) is straightforward.
(b) Let (xn) ⊂ P be a Cauchy sequence which is �-ascending. Then a

fortiori (xn) is ≤-ascending, which implies that (xn) is convergent.
(c) Assume that x is a global minimizer of f |P 0

η (x≤)∪{x} for some η > 0.

Since P 0
η (x �) ⊂ P 0

η (x ≤), this implies that x is also a global minimizer of
the restriction of f to P 0

η (x �) ∪ {x}. Whence |∇≤f |(x) = |∇�f |(x) = 0 in
this case. Now assume that for every η > 0, x is not a global minimizer
of the restriction of f to P 0

η (x ≤) ∪ {x}. This yields yη ∈ P 0
η (x ≤) with

f(x) > f(yη). Then x � yη. Hence x is not a global minimizer of the
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restriction of f to P 0
η (x �) ∪ {x}. In this case, we have

|∇≤f |(x) = lim
η→0+

sup
{f(x)− f(y)

d(x, y)
: y ∈ P 0

η (x ≤)
}

= lim
η→0+

sup
{f(x)− f(y)

d(x, y)
: y ∈ P 0

η (x ≤), f(x) ≥ f(y)
}

= lim
η→0+

sup
{f(x)− f(y)

d(x, y)
: y ∈ P 0

η (x �)
}

= |∇�f |(x).

(d) By definition of the preorder �, a sequence (xn) ⊂ P is �-ascending
if and only if (xn) is ≤-ascending and (f(xn)) is nonincreasing. The equiva-
lence (i)⇔(ii) easily follows from this observation. By Remark 3 (c)–(d), one
has (iv)⇔(iii)⇒(ii). The implication (v)⇒(iv) comes from the fact that we
can write [f ≤ a] =

⋂
b>a [f < b]. It remains to show that (i)⇒(v). To do

this, let (xn) in [f < a] be a �-ascending sequence such that xn → x with
x ∈ P . Thus (xn) is ≤-ascending and (f(xn)) is nonincreasing. Since f is
≤-submonotone, this implies that f(x) ≤ f(xn) for all n, thus x ∈ [f < a].

(e) Let (xn) ⊂ P be a �-ascending sequence such that xn → x. This
means that (xn) is ≤-ascending and (f(xn)) is nonincreasing. Since ≤ is
self-closed, we deduce that xn ≤ x for all n, and since f is ≤-submonotone,
we also deduce that f(xn) ≥ f(x) for all n. Therefore, xn � x for all n.

(f) The assumption implies that

{y ∈ A : y ≤ x} = {y ∈ A : y ≤ x and f(y) ≥ f(x)} = {y ∈ A : y � x}.

Whence d(≤ x,A) = d(� x,A). The proof of the second part of (f) is
similar.

Lemma 3. Given a ≤-submonotone map f : P → R ∪ {+∞}, we consider
the preorder � defined in Lemma 2. We consider the map f+ : P → [0,+∞],
x 7→ f(x)+ := max{0, f(x)}. Then:
(a) f+ is �-submonotone.
(b) For all x ∈ dom(f), we have

|∇�(f+)|(x) = |∇≤(f+)|(x) =

{
0 if f(x) ≤ 0,
|∇≤f |(x) if f(x) > 0.

Proof. (a) Let (xn) be a �-ascending sequence such that (f+(xn)) is nonin-
creasing and xn → x with x ∈ P . Thus (xn) is ≤-ascending and (f(xn)) is
nonincreasing. Since f is ≤-submonotone, we deduce that f(x) ≤ f(xn) for
all n. Whence f+(x) ≤ f+(xn) for all n. This shows (a).
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(b) Let x ∈ dom(f) be such that f(x) ≤ 0. Then f+(x) = 0 so that
x is a global minimizer of f+ on P , thus a fortiori on P 0

η (x �) ∪ {x} and
P 0
η (x ≤) ∪ {x} for all η > 0, and this yields |∇�(f+)|(x) = |∇≤(f+)|(x) = 0.

Next let x ∈ dom(f) be such that f(x) > 0. We distinguish two cases.

• First case: for every η > 0, P 0
η (x ≤) ∩ [f ≤ 0] 6= ∅. Then take zη ∈

P 0
η (x ≤) such that f(zη) ≤ 0. In particular f(zη) < f(x) hence x � zη,

whence zη ∈ P 0
η (x �). Also x is not a global minimizer of f neither of

f+ on P 0
η (x ≤) ∪ {x} or on P 0

η (x �) ∪ {x}. We have

f(x)− f(zη)

d(x, zη)
≥ f+(x)− f+(zη)

d(x, zη)
=

f(x)

d(x, zη)
≥ f(x)

η
.

Whence |∇≤f |(x) = |∇≤(f+)|(x) = |∇�(f+)|(x) = +∞.

• Second case: P 0
η (x ≤) ∩ [f ≤ 0] = ∅ whenever η > 0 is small enough.

This implies that the restrictions of f and f+ to P 0
η (x ≤) thus a fortiori

to P 0
η (x �) coincide. Whence |∇≤(f+)|(x) = |∇≤f |(x) = |∇�f |(x) =

|∇�(f+)|(x), where we use also Lemma 2 (c).

The proof of the lemma is complete.

3 Ekeland’s variational principle

We will use the following version of Ekeland’s variational principle:

Theorem 3 ([2, §3]). Let (P,≤, d) be a preordered pseudometric space such
that ≤ is self-closed and P is ≤-complete. Let f : P → R ∪ {+∞} be a ≤-
submonotone map such that infP f ∈ R. Let x ∈ dom(f) and η ∈ (0,+∞).
Then, there exists y ∈ dom(f) satisfying the following conditions:

(a) x ≤ y;

(b) ηd(x, y) ≤ f(x)− f(y);

(c) for all (z, z′) ∈ dom(f)× P such that y ≤ z ≤ z′ and d(z, z′) 6= 0, we
have

ηd(y, z) > f(y)− f(z) or ηd(z, z′) > f(z)− f(z′).

Proof. The result is shown in [2, §3]. We give also a proof here for the
sake of completeness. We consider the subset P ′ := {z ∈ P : f(z) ≤ f(x)}
equipped with the relation ≤′ defined by

z ≤′ w if z ≤ w and ηd(z, w) ≤ f(z)− f(w).
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It is easy to see that (P ′,≤′, d) is a preordered pseudometric space. When-
ever (zn) ⊂ P ′ is ≤′-ascending, we claim that

(zn) is a Cauchy sequence (1)

and
there is z ∈ P ′ such that zn ≤′ z for all n. (2)

Based on (1) and (2), we can invoke [3, Theorem 2] which asserts that P ′

contains an element y with x ≤′ y and y is d-maximal in the sense that
whenever y ≤′ z ≤′ w for some z, w ∈ P ′, we have d(z, w) = 0. It is
easy to check that y then fulfills conditions (a)–(c) of the present theorem.
Therefore, it remains to show (1) and (2).

The fact that (zn) is ≤′-ascending implies that

ηd(zn, zm) ≤ f(zn)− f(zm) whenever n ≤ m, (3)

so in particular (f(zn)) ⊂ R is nonincreasing. Since infP f ∈ R, this implies
that (f(zn)) is convergent, thus a Cauchy sequence in R. Then (1) is implied
by (3).

Since (zn) is ≤′-ascending, it is a fortiori ≤-ascending. Since P is ≤-
complete, due to (1), there is an element z ∈ P such that zn → z. Using
that f is≤-submonotone, we get also f(z) ≤ f(zn) for all n, thus f(z) ≤ f(x)
and so z ∈ P ′.

Moreover, knowing that ≤ is self-closed, we have zn ≤ z for all n. Using
(3) and the fact that d is ≤-triangular, whenever n ≤ m we see that

ηd(zn, z)− ηd(zm, z) ≤ ηd(zn, zm) ≤ f(zn)− f(zm) ≤ f(zn)− f(z).

Letting m → ∞, we derive ηd(zn, z) ≤ f(zn) − f(z) and finally zn ≤′ z for
all n. This shows (2) and the proof of the theorem is complete.

4 Density of points with finite strong slope

We start this section with a proposition which is a key result towards the
proof of our main theorems in Section 5. As a side consequence of the
proposition, in Corollaries 1–2 we show the density of points with finite
strong slope, for the S≥-topology (thus a fortiori for the d-topology; see
Remark 2 (d)).
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Proposition 1. Let (P,≤, d) be a preordered pseudometric space such that
P is ≤-complete and ≤ is self-closed. Let f : P → R ∪ {+∞} be ≤-
submonotone. Let U ⊂ P be a subset such that

U ∩ dom(f) 6= ∅ and ∀x ∈ U ∩ dom(f), d(≥ x, P \ U) > 0.

Then,

∀x ∈ U ∩ dom(f), f(x)− inf
U
f ≥

(
inf

U∩dom(f)
|∇≤f |

)
d(≥ x, P \ U)

with the convention that the right-hand side is zero if infU∩dom(f) |∇≤f | = 0
and d(≥ x, P \ U) = +∞.

Proof. Let x ∈ U ∩ dom(f). Set µ = infU f . We can assume µ > −∞.
Let r ∈ (0,+∞) be such that r < d(≥ x, P \ U). Let σ ∈ R be such that

σ > f(x)−µ
r (≥ 0). Let g = µ+ (f − µ)+ : P → R ∪ {+∞} so that

g(z) =

{
f(z) if z ∈ U ,
max{µ, f(z)} if z ∈ P \ U .

In this way
inf
P
g = µ. (4)

We consider the preorder � defined in Lemma 2. It follows from Lemma 3
that

g is �-submonotone (5)

and

∀z ∈ dom(g) = dom(f), |∇�g|(z) = |∇≤g|(z) =

{
0 if f(z) ≤ µ,
|∇≤f |(z) if f(z) > µ.

We apply Theorem 3 to the space (P,�, d) (which is possible due to
Lemma 2 (a), (b), (e)), the map g, and with η = σ, and this yields y ∈
dom(g) = dom(f) such that

• x � y, i.e., x ≤ y and f(x) ≥ f(y);

• σd(x, y) ≤ g(x)− g(y);

• for all z ∈ P such that y � z and d(y, z) 6= 0, we have σd(y, z) >
g(y)− g(z).
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The last point implies

∀z ∈ P, (y ≤ z and d(y, z) 6= 0) ⇒ σd(y, z) > g(y)− g(z) (6)

(noting that, if y ≤ z but y 6� z then we have f(y) < f(z), in which case
the last inequality of (6) is immediate). Since x ∈ U ∩ dom(f), we have
g(x) = f(x), hence g(x) < µ+ σr due to the choice of σ. Hence

d(x, y) ≤ g(x)− g(y)

σ
<

(µ+ σr)− µ
σ

= r.

Since r < d(≥ x, P \ U) and x ≤ y, we must have y ∈ U , hence g(y) = f(y).
Next we claim that

|∇≤f |(y) ≤ σ. (7)

Indeed, if the restriction of f to P 0
η (y ≤) ∪ {y} has its minimum at y for

some η > 0, then |∇≤f |(y) = 0, and the inequality is clear. Now assume
that y is not a point of minimum of the restriction of f to P 0

η (y ≤) ∪ {y}
for any η > 0, so that P 0

η (y ≤) is nonempty for all η > 0 and we have

|∇≤f |(y) = lim
η→0+

sup
z∈P 0

η (y≤)

f(y)− f(z)

d(y, z)
.

By the assumption made in the proposition, we have δ := d(≥ y, P \ U) > 0.
Let η ∈ (0, δ). For every z ∈ P 0

η (y ≤), we have y ≤ z and 0 < d(y, z) <
η < d(≥ y, P \ U), which ensures that z ∈ U and so g(z) = f(z). By (6),
we deduce that

∀η ∈ (0, δ), ∀z ∈ P 0
η (y ≤),

f(y)− f(z)

d(y, z)
=
g(y)− g(z)

d(y, z)
≤ σ.

Whence |∇≤f |(y) ≤ σ. This establishes (7).
Using that y ∈ U ∩ dom(f), we get infU∩dom(f) |∇≤f | ≤ σ. Since σ ∈

(f(x)−µr ,+∞) is arbitrary, we conclude that

inf
U∩dom(f)

|∇≤f | ≤
f(x)− µ

r
=
f(x)− infU f

r
.

Since r ∈ (0, d(≥ x, P \ U)) is arbitrary, we deduce the desired formula.

Corollary 1. Assume that (P,≤, d) is ≤-complete and ≤ is self-closed. Let
f : P → R∪{+∞} be a ≤-submonotone map. For every subset U ⊂ P such
that

U ∩ dom(f) 6= ∅ and ∀x ∈ U ∩ dom(f), d(≥ x, P \ U) > 0, (8)
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we have
inf

U∩dom(f)
|∇≤f | ∈ [0,+∞).

Proof. We claim that

∃a ∈ R, {x ∈ U ∩ dom(f) : d(≥ x, [f < a]) > 0} 6= ∅. (9)

Arguing by contradiction, assume that (9) is not true. This implies that

∀x ∈ U ∩dom(f), ∀a ∈ R, ∀ε > 0, ∃z ∈ [f < a], x ≤ z and d(x, z) < ε.
(10)

We construct a sequence (xn) ⊂ U ∩ dom(f) by induction:

• Choose x0 ∈ U ∩ dom(f) (see (8)).

• Assuming that xn has been defined, by applying (10), we obtain an
element xn+1 such that

f(xn+1) < min{f(xn),−n}, xn ≤ xn+1,

d(xn, xn+1) < min{d(≥ xn, P \ U), 2−n}.

These inequalities imply in particular that xn+1 ∈ U ∩ dom(f).

In this way, the sequence (xn) satisfies that

(xn) is ≤-ascending, (f(xn)) is decreasing, lim
n→∞

f(xn) = −∞, (11)

and moreover d(xn, xn+1) < 2−n for all n. The last inequality implies that
(xn) is a Cauchy sequence. Since P is ≤-complete (and (xn) is ≤-ascending),
there is x ∈ P such that xn → x. The first two assertions in (11) combined
with the assumption that f is ≤-submonotone imply that f(x) ≤ f(xn) for
all n, but this is impossible in view of the last part of (11). We have shown
(9).

With a ∈ R provided by (9), we consider the subset

V := {x ∈ U : d(≥ x, [f < a]) > 0} = U \ S≥([f < a])

(see Lemma 1 (c) or Remark 2 (a)). By (9), we have in particular that
V ∩ dom(f) 6= ∅. Moreover, for every x ∈ V ∩ dom(f), using that P \ V =
(P \ U) ∪ S≥([f < a]), we have

d(≥ x, P \ V ) = min{d(≥ x, P \ U), d(≥ x, S≥([f < a]))} > 0
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since we know that d(≥ x, P \ U) > 0 (see (8)) and d(≥ x, S≥([f < a])) =
d(≥ x, [f < a]) > 0 (where we use Lemma 1 (c), applied with the preorder ≥
instead of ≤, and the fact that x ∈ V ). Note that infV f ≥ a. By applying
Proposition 1 to the subset V (instead of U), for a chosen x ∈ V ∩ dom(f),
we obtain the inequalities

inf
U∩dom(f)

|∇≤f | ≤ inf
V ∩dom(f)

|∇≤f | ≤
f(x)− a

d(≥ x, P \ V )
< +∞

which yield the conclusion.

Corollary 2. Assume that (P,≤, d) is ≤-complete and ≤ is self-closed. Let
f : P → R ∪ {+∞} be a ≤-submonotone map. Then

{x ∈ dom(f) : |∇≤f |(x) < +∞}

is a dense subset of dom(f) for the topology induced by the S≥-topology on P .

Remark 4. (a) In the general setting considered in Corollaries 1–2, we
cannot guarantee that every x ∈ dom(f) has a neighborhood Vx with respect
to S≥-topology, such that infVx f ∈ R. This is the reason why the particular
construction of the subset V (which is not a priori a neighborhood of an x
fixed beforehand) made in the proof of Corollary 1 was needed.

Take for instance P = [0, 1] endowed with the standard metric and order
and let f : [0, 1] → R be given by f(0) = 0 and f(x) = − 1

x if x ∈ (0, 1].
This map is ≤-submonotone (since every ≤-ascending sequence (xn) such
that (f(xn)) is nonincreasing must be stationary). If V is a neighborhood
of 0 with respect to S≥-topology, then δ := min{d(≥ 0, P \ V ), 1} ∈ (0, 1],
which implies that [0, δ) ⊂ V hence infV f = inf [0,δ) f = −∞.
(b) In the case where ≤ is the trivial preorder on P (i.e., x ≤ y for all x, y),
the fact that f is submonotone guarantees that every x ∈ dom(f) has an
open neighborhood V with infV f ∈ R. (For otherwise, there would be a
sequence (xn) ⊂ dom(f) such that xn → x and (f(xn)) decreases to −∞,
but then the assumption that f is submonotone yields f(x) ≤ f(xn) for all
n, which is impossible.) Thus in this case, Corollaries 1–2 become immediate
consequences of Proposition 1.

5 Existence of nonlinear error bounds

This section contains our main results. The first theorem can be viewed as a
general integration result which provides a lower estimate of the considered
map f as a nondecreasing function of the distance to some fixed subset C,
from an analogous lower estimate of the slope |∇≤f |.
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Theorem 4. Let (P,≤, d) be a preordered pseudometric space such that ≤ is
self-closed and P is ≤-complete. Let f : P → R∪{+∞} be ≤-submonotone.
Let C ⊂ P be ≥-saturated. Let π : P → [0,+∞] be a map such that

∀x ∈ P, π(x) ≤ d(≥ x,C), (12)

∀x, y ∈ P, x ≤ y ⇒ π(y) ≤ π(x) + d(x, y). (13)

Let β : [0,+∞) → [0,+∞) be a nondecreasing map and set β(+∞) =
lims→+∞ β(s). Let ρ ∈ (0,+∞]. Assume that

∀x ∈ dom(f), π(x) < 2ρ ⇒ |∇≤f |(x) ≥ β(d(≥ x,C)).

Then, for every x ∈ dom(f) ∩ dom(π) \ C with d(≥ x,C) ≤ ρ, we have

f(x)− inf{f(y) : y ∈ P \ C, x ≤ y, π(y) < 2ρ} ≥
∫ d(≥x,C)

0
β(s) ds.

Remark 5. (a) The map π ≡ 0 clearly satisfies (12) and (13). When
π ≡ 0 and ρ = +∞, the above theorem is a global result in the sense that
the assumption on the slope concerns all elements x in dom(f) and the
conclusion is valid for all elements x in dom(f) \ C.

Note also that, in that case, if we assume in addition that β 6≡ 0 and f
is bounded below on P \C, then the theorem implies that every x ∈ P such
that d(≥ x,C) = +∞ must satisfy x /∈ dom(f), i.e., f(x) = +∞.
(b) Assume that the pseudometric d satisfies d(x, z) ≤ d(x, y) + d(y, z) for
all x, y, z ∈ P with y ≤ z. Let π : x 7→ d(x,C) := inf{d(x, y) : y ∈ C}. Then
(12) is immediate. Moreover, letting y ∈ P be such that x ≤ y, we have

∀z ∈ C, d(y, C) ≤ d(z, y) ≤ d(z, x) + d(x, y)

whence (13). Applying the theorem with π(x) = d(x,C) and ρ ∈ (0,+∞),
the theorem becomes a local result, and it generalizes [1, Theorem 4.1].

Proof. Let x ∈ dom(f)∩dom(π) \C be such that d(≥ x,C) ≤ ρ. Moreover,
we have d(≥ x,C) > 0 since x /∈ C and C is ≥-saturated. We define the sets

P ′ = {y ∈ P : x ≤ y} and C ′ = C ∩ P ′ = {y ∈ C : x ≤ y}.

Equipped with the restrictions of the preorder ≤ and the pseudometric d, we
get that (P ′,≤, d) is a preordered pseudometric space. Since, by assumption,
≤ is self-closed on P , it is also self-closed on P ′, and P ′ is ≤-closed in P
thus ≤-complete. Whenever y ∈ P ′, we get {z ∈ P : y ≤ z} ⊂ P ′ hence

∀y ∈ P ′, d(≥ y, C) = d(≥ y, C ′) and |∇≤f |(y) = |∇≤(f |P ′)|(y).
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Based on these observations, up to considering P ′, C ′, f |P ′ instead of P,C, f ,
we can assume that x ≤ y for all y ∈ P , so that

inf{f(y) : y ∈ P \ C, x ≤ y, π(y) < 2ρ} = inf
π−1([0,2ρ))\C

f. (14)

Note that, if infπ−1([0,2ρ))\C f = −∞, then the formula claimed in the the-
orem is immediate. Hence we can assume that f is bounded below on
π−1([0, 2ρ)) \ C.

First we note that

for all τ ∈ (0,+∞], π−1([τ,+∞]) is ≥-saturated. (15)

For showing this, let y ∈ P be such that d(≥ y, π−1([τ,+∞])) = 0 and we
have to show that y ∈ π−1([τ,+∞]) (see Lemma 1 (c)). To do this, let ε > 0.
There is z ∈ π−1([τ,+∞]) with y ≤ z and d(y, z) ≤ ε. In view of (13) we
get τ ≤ π(z) ≤ π(y) +d(y, z) ≤ π(y) + ε, hence π(y) ≥ τ − ε. Letting ε→ 0,
we deduce that y ∈ π−1([τ,+∞]). This shows (15).

Let σ ∈ (0, d(≥ x,C)). Let n ≥ 1 be an integer and, for all i ∈ {0, . . . , n},
we set ti = i

nσ, so that

0 = t0 < t1 < . . . < tn = σ.

For every i ∈ {0, . . . , n}, let

Ci = {y ∈ P : d(≥ y, C) ≤ ti}

and

Ui = π−1([0, 2ρ− ti)) \ Ci = {y ∈ P : d(≥ y, C) > ti, π(y) < 2ρ− ti}.

Since C is ≥-saturated, we get C0 = C and U0 = π−1([0, 2ρ))\C. Moreover,
if ρ < +∞ then by (12) we have π(x) ≤ d(≥ x,C) ≤ ρ < 2ρ − tn, while if
ρ = +∞ then the fact that x ∈ dom(π) implies π(x) < 2ρ − tn. In each
case, we get x ∈ π−1([0, 2ρ− tn)). Thus

C = C0 ⊂ C1 ⊂ . . . ⊂ Cn, x ∈ Un ⊂ . . . ⊂ U1 ⊂ U0 = π−1([0, 2ρ)) \ C.

We claim that

for every i ∈ {0, . . . , n}, Ci is ≥-saturated. (16)

For showing this, in view of Lemma 1 (c) (or Remark 2 (a)), it suffices to
show that every y ∈ P such that d(≥ y, Ci) = 0 must belong to Ci. Letting
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ε > 0, there is y′ ∈ Ci with y ≤ y′ and d(y, y′) ≤ ε
2 . Also since y′ ∈ Ci, there

is y′′ ∈ C with y′ ≤ y′′ and d(y′, y′′) ≤ ti+ ε
2 . We then have y ≤ y′ ≤ y′′ and,

using that d is ≤-triangular, we get d(y, y′′) ≤ ti + ε, whence d(≥ y, C) ≤
ti + ε. Since ε > 0 is arbitrary, we conclude that d(≥ y, C) ≤ ti, whence
y ∈ Ci, and the verification of (16) is complete.

Our next claim is:

∀i ∈ {0, . . . , n− 1}, inf
Ui+1

f ≥ inf
Ui
f + β(ti)(ti+1 − ti). (17)

For showing this, we aim to apply Proposition 1 with U = Ui. Note
that Ui ∩ dom(f) 6= ∅ since x ∈ Ui ∩ dom(f). Also, since P \ Ui =
Ci ∪ π−1([2ρ− ti,+∞]) is ≥-saturated (due to (15) and (16)), we have

∀y ∈ Ui, d(≥ y, P \ Ui) > 0.

This allows us to apply the proposition, and we get

∀y ∈ Ui ∩ dom(f), f(y)− inf
Ui
f ≥

(
inf

Ui∩dom(f)
|∇≤f |

)
d(≥ y, P \ Ui). (18)

The assumption made in the theorem combined with the definition of Ui
and the fact that β is nondecreasing yields

inf
Ui∩dom(f)

|∇≤f | ≥ β(ti). (19)

Moreover, we have

∀y ∈ Ui+1, d(≥ y, P \ Ui) ≥ ti+1 − ti. (20)

Indeed, fix an element y ∈ Ui+1 and let z ∈ P \Ui be such that y ≤ z. Thus
d(≥ z, C) ≤ ti or π(z) ≥ 2ρ− ti. In the latter case, by (13), we get

2ρ− ti ≤ π(z) ≤ π(y) + d(y, z) < 2ρ− ti+1 + d(y, z)

(note that we must have ρ < +∞ in these circumstances), hence d(y, z) ≥
ti+1− ti. In the former case, for every ε > 0, we find z′ ∈ C with z ≤ z′ and
d(z, z′) ≤ ti + ε. Thus y ≤ z ≤ z′, and we have

ti+1 < d(≥ y, C) ≤ d(y, z′) ≤ d(y, z) + d(z, z′) ≤ d(y, z) + ti + ε.

Since ε is arbitrary, we get d(y, z) ≥ ti+1 − ti. Finally we have shown

∀z ∈ P \ Ui, y ≤ z ⇒ d(y, z) ≥ ti+1 − ti,
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whence (20).
Combining (18) with (19) and (20), for every y ∈ Ui+1 ∩ dom(f) (thus

y ∈ Ui ∩ dom(f)) we get

f(y) ≥ inf
Ui
f + β(ti)(ti+1 − ti),

and the same formula is immediate if y ∈ Ui+1 \ dom(f). This shows (17).
From (17), since x ∈ Un and U0 = π−1([0, 2ρ)) \ C, we obtain

f(x) ≥ inf
Un
f ≥ inf

π−1([0,2ρ))\C
f +

n−1∑
i=0

β(ti)(ti+1 − ti).

Passing to the limit as n→ +∞, we derive

f(x) ≥ inf
π−1([0,2ρ))\C

f +

∫ σ

0
β(s) ds.

Finally, letting σ → d(≥ x,C) and remembering (14), we get the formula
stated in the theorem.

As an application of Theorem 4 to sublevel sets, we obtain a criterion
of existence of nonlinear error bounds, whose formulation unifies both local
and global situations.

Theorem 5. Let (P,≤, d) be a preordered pseudometric space such that ≤ is
self-closed and P is ≤-complete. Let f : P → R∪{+∞} be ≤-submonotone.
Let β : [0,+∞) → [0,+∞) be nondecreasing. Let a ∈ R and b ∈ (a,+∞].
Let A be a subset of [f ≤ a] and let B be either of the subsets [f < b] or
[f ≤ b]. Let π : P → [0,+∞] be a map satisfying (12) with C = A and (13).
Let ρ ∈ (0,+∞]. Assume that [f < a] ∩ π−1([0, 2ρ)) ⊂ A and

∀x ∈ B ∩ dom(f), π(x) < 2ρ ⇒ |∇≤f |(x) ≥ β(d(≥ x,A))

with β(+∞) := lims→+∞ β(s). Then,

∀x ∈ B ∩ dom(π) \A, d(≥ x,A) ≤ ρ ⇒ f(x)− a ≥
∫ d(≥x,A)

0
β(s) ds.

Proof. We consider the preorder � defined in Lemma 2. By Lemma 2,
(P,�, d) is a preordered pseudometric space such that � is self-closed and
P is �-complete; moreover, f is �-submonotone.

By Lemma 2 (d), B is a �-closed subset of P , hence it is �-complete.
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Let C = S�(A) ∩ B so that C is the closure of A with respect to the
S�-topology of B (see Lemma 1 (c)). We have

∀x ∈ P, d(≥ x,A) ≤ d(� x,A) = d(� x,C) = d(� x, S�(A)), (21)

where the last two equalities come from Lemma 1 (c). This guarantees that
the map π satisfies π(x) ≤ d(� x,C) for all x ∈ P , so that π satisfies
conditions (12) and (13) with respect to the preorder � and the subset C.

Let x ∈ P . We claim that

π(x) < 2ρ ⇒ d(≥ x,A) = d(� x,C), (22)

d(≥ x,A) ≤ ρ ⇔ d(� x,C) ≤ ρ ⇒ d(≥ x,A) = d(� x,C). (23)

First note that, in the case where x ∈ A, we have d(≥ x,A) = d(� x,C) = 0,
so that (22) and (23) are trivially true in this case. So assume that x /∈ A.
For showing (22), assume that π(x) < 2ρ. Since [f < a] ∩ π−1([0, 2ρ)) ⊂ A,
we get f(x) ≥ a ≥ supA f , whence d(≥ x,A) = d(� x,A) = d(� x,C)
in view of Lemma 2 (f) and (21). This establishes (22), and we turn our
attention to (23). The implication d(� x,C) ≤ ρ ⇒ d(≥ x,A) ≤ ρ fol-
lows from (21) and we focus on the other implications. In the case where
d(≥ x,A) = ρ = +∞ then (21) yields d(� x,C) = +∞ = d(≥ x,A). If
d(≥ x,A) < ρ or d(≥ x,A) ≤ ρ < +∞, then we get π(x) ≤ d(≥ x,A) < 2ρ
and the conclusion follows from (22). The verification of (23) is complete.

It easily follows from Definition 3 (a) that |∇�(f |B)|(x) = |∇�f |(x) for
all x ∈ B∩dom(f) = dom(f |B). Invoking also Lemma 2 (c), we then obtain

∀x ∈ B ∩ dom(f), |∇�(f |B)|(x) = |∇≤f |(x).

Finally, we observe that

{y ∈ B \ C : π(y) < 2ρ} ⊂ (B \A) ∩ π−1([0, 2ρ)) ⊂ [f ≥ a].

Based on all these observations, we can apply Theorem 4 to the pre-
ordered pseudometric space (B,�, d), the �-submonotone map f |B : B →
R ∪ {+∞}, and the �-saturated subset C ⊂ B, and this gives the formula

f(x)− a ≥
∫ d(≥x,A)

0
β(s) ds,

for all x ∈ B ∩ dom(f) ∩ dom(π) \ C such that d(≥ x,A) ≤ ρ. The
above formula remains valid for all x ∈ C \ A: indeed, we then have
π(x) = d(≥ x,A) = d(� x,C) = 0 (by (21)) and f(x) ≥ a (since [f < a] ∩
π−1([0, 2ρ)) ⊂ A by assumption). The formula is also valid, of course, if
x /∈ dom(f). This completes the proof of the theorem.
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By specializing Theorem 5 to the case where π ≡ 0 and ρ = +∞, we
obtain the following global result.

Theorem 6. Let (P,≤, d) be a preordered pseudometric space such that ≤ is
self-closed and P is ≤-complete. Let f : P → R∪{+∞} be ≤-submonotone.
Let β : [0,+∞) → [0,+∞) be nondecreasing. Let a ∈ R and b ∈ (a,+∞].
Let A be such that [f < a] ⊂ A ⊂ [f ≤ a] and let B be either of the subsets
[f < b] or [f ≤ b]. Assume that

∀x ∈ B ∩ dom(f), |∇≤f |(x) ≥ β(d(≥ x,A))

with β(+∞) := lims→+∞ β(s). Then,

∀x ∈ B \A, f(x)− a ≥
∫ d(≥x,A)

0
β(s) ds.

Corollary 3. Under the assumptions of Theorem 6, assuming in addition
that β 6≡ 0, we have

∀x ∈ B ∩ dom(f), d(≥ x,A) < +∞. (24)

Moreover,

B ∩ dom(f) 6= ∅ ⇔ A 6= ∅ ⇔ [f ≤ a] 6= ∅.

Proof. The assumption that β 6≡ 0 combined with the fact that β is nonde-
creasing yields

∫ +∞
0 β(s) ds = +∞. For all x ∈ B such that d(≥ x,A) = +∞

(in particular x /∈ A), we then have f(x) = +∞ by Theorem 6. This shows
(24).

Since A ⊂ [f ≤ a] ⊂ B ∩ dom(f), we have already the implications

A 6= ∅ ⇒ [f ≤ a] 6= ∅ ⇒ B ∩ dom(f) 6= ∅,

whereas (24) yields the remaining implication B∩dom(f) 6= ∅ ⇒ A 6= ∅.

As a byproduct of Theorem 6 and Corollary 3, we obtain the following
criterion of existence of linear error bound.

Corollary 4. Let (P,≤, d) be a preordered pseudometric space such that ≤ is
self-closed and P is ≤-complete. Let f : P → R∪{+∞} be ≤-submonotone.
Let a ∈ R and b ∈ (a,+∞]. Let A be such that [f < a] ⊂ A ⊂ [f ≤ a] and let
B be either of the subsets [f < b] or [f ≤ b]. Assume that B ∩ dom(f) 6= ∅
and

∀x ∈ B ∩ dom(f), d(≥ x,A) > 0 ⇒ |∇≤f |(x) ≥ σ
for some σ > 0. Then A 6= ∅ and

∀x ∈ B \A, f(x)− a ≥ σd(≥ x,A).
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