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NONLINEAR ERROR BOUNDS FOR MAPS
ON PREORDERED PSEUDOMETRIC SPACES*
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Abstract

We establish sufficient conditions for the existence of nonlinear er-
ror bounds for submonotone maps defined on a pseudometric space
endowed with a preorder. This covers the case of submonotone maps
(thus a fortiori of lower semicontinuous maps) on a metric space (en-
dowed with the trivial preorder). In particular our results generalize
the existing results for this case. Our arguments are based on an ap-
propriate version of Ekeland’s variational principle.
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1 Introduction

In [1] the next theorem is shown:

Theorem 1 ([1, Theorem 4.3]). Let (M,d) be a complete metric space
and let f: M — RU {400} be lower semicontinuous. Let a € R and
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b€ (a,+oo] with [f < a] # 0, and let B : (0,4+00) — (0,+00) be continuous
and nondecreasing. Assume that

a<flx)<b = |Vfl(z) 2 Bd(=,[f < a])).
Then,
d(z,[f<a])
a< flz)y<b = f(:L“)aZ/ B(s)ds.
0

In this theorem, d(z, [f < a]) := inf{d(z,y) : y € [f < a]) stands for the
distance from x to the sublevel set [f <a] := {x € M : f(z) < a} and
|V f]:dom(f) — [0, +0o0] is the strong slope of f defined by

0 if x is a local minimizer of f,

IVfl(z) = { lim sup % otherwise.
y—T ’

One says that f has a (global) nonlinear error bound between the levels a € R
and b € (a,+oo] if there is a nondecreasing function 7 : (0, 4+00) — (0, 4+00)
such that

a<flz)<b = f(x)—a=~(dx[f <a])).

Therefore, Theorem 1 provides a sufficient condition for the existence of a
global nonlinear error bound.

In the present paper, we obtain (in particular) the following generaliza-
tion of the above theorem:

Theorem 2. Let (P, <,d) be a preordered pseudometric space such that < is
self-closed and P is <-complete. Let f : P — RU{+00} be <-submonotone.
Let a € R and b € (a,+00]. Let B : [0,+00) — [0,+00) be nondecreasing
and set B(+00) = limg, 1o 3(8). Assume that

a<f@)<b = |Vfl@) > B 5 [f < a).
Then,
d(>w,[f<a])
a< f(z)<b = f(x)—aZ/ B(s)ds.
0
Moreover, if 8 # 0 and infp f < b, then [f < a] # 0.

See Theorem 6 (combined with Corollary 3) for an in fact more general
statement. The setting of preordered pseudometric space and the notions
involved in Theorem 2 are introduced in Section 2. In particular a metric
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space (M,d) endowed with the trivial preorder < (i.e., such that x < y
for all z,y € M) is an example of preordered pseudometric space, and in
this case the distance d(> z,[f < a]) and the slope |V<f| coincide with
d(z,[f < a]) and |V f]|, respectively. However, even in this case, the assump-
tion that f is <-submonotone is weaker than lower semicontinuity (see, e.g.,
Remark 3 (d)). Therefore, even for metric spaces endowed with trivial pre-
order, Theorem 2 generalizes Theorem 1. Note also that the condition on
B is weaker in Theorem 2 (where it may be discontinuous and may van-
ish) and the conclusion incorporates the fact that [f < a] # 0 while it is an
assumption in Theorem 1.

In [1], there are also local versions of Theorem 1 (namely, [1, Theorems
4.1 and 4.2]) and a linear version ([1, Theorem 2.2]) which are themselves
generalized in Theorems 4-5 and Corollary 4 below. The formulation of
Theorems 4-5 in fact incorporates both the local and global settings (the
global setting is recovered when the “radius” p in the statements is set
to +00).

Our arguments are also more elementary in the sense that we do not
rely on a change-of-metric principle (which is the basic tool in [1]). This is
precisely what allows us to go beyond the setting of metric spaces and the
case of a continuous, positive .

The paper is organized as follows. In Section 2, we present the setting of
preordered pseudometric spaces and the relevant notions involved in The-
orem 2 and needed throughout the paper. This setting has been mostly
introduced in [2], but Section 2 also provides further developments. A basic
result in our arguments is a version of Ekeland’s variational principle which
is given in Section 3 (Theorem 3). This result is already shown in [2] but
we provide a full proof for making this paper as self contained as possible.

In Section 4, by relying on Theorem 3, we obtain a key technical result
(Proposition 1) which yields a lower estimate of a <-submonotone map f
on a subset U by a quantity which combines the infimum of the map and of
its slope |V< f| on U. As a byproduct, we show that the slope is generically
finite on the domain of f (Corollaries 1-2).

The main results of this paper are shown in Section 5, and provide general
local and global criteria of existence of nonlinear or linear error bounds.

2 Preliminaries

Throughout this paper, we consider a (nonempty) set P and the following
structure on P:
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(a) We assume that P is endowed with a preorder, i.e., a binary relation <
which is reflexive and transitive (but not necessarily antisymmetric).

(b) We also assume that P is endowed with a pseudometric, i.e., a map
d: P x P — [0,+00) such that d(x,z) = 0 for all x € P. Moreover,
we assume that

e d is symmetric, i.e., d(z,y) = d(y,z) for all x,y € P;

e dis <-triangular, i.e., d(x,z) < d(z,y)+d(y,z) for all z,y,z € P
such that z <y < 2.

Then we say that (P, <,d) is a preordered pseudometric space.
We consider the following terminology related to sequences in P.

Definition 1. (a) A sequence (z,) C P is said to be <-ascending if x,, <
Ty for all n.

(b) Given z € P and a sequence (z,,) C P, we say that (z,,) converges to
if limy, 00 d(2p,x) = 0. Then we write lim,,_, o x, = = or x, — x. We say
that (zy,) is a Cauchy sequence if for every € > 0 there is a rank ng such that
d(xpn, Tm) < € whenever ng < n < m. Then we say that P is <-complete if
every <-ascending Cauchy sequence in P is convergent in P.

(c) We say that the preorder < is self-closed if, whenever (x,) C P is <-
ascending and such that x, — x, we have x,, < x for all n.

Remark 1. (a) A sequence (x,) can have several limits. When there are
x,y € P with x # y such that d(x,y) = 0, the constant sequence defined by
Zp := x converges to both x and y. In fact, even if d is nondegenerate (i.e.,
d(xz,y) = 0= z = y), the limit is a priori not unique: let P = [0, 1]U{2} be
endowed with the standard order and the pseudometric d whose restriction
to [0,1] is the standard metric and such that d(1,2) = d(2,1) = 1 and
d(xz,2) = d(2,z) = 1 —x for all z € [0,1). With this definition, (P, <,d)
is a preordered pseudometric space, with nondegenerate pseudometric d,
note also that P is <-complete and < is self-closed. However, the sequence
(1-— %) has two limits: 1 and 2. In this example, d is not a metric as it is
not triangular: d(1,2) > d(1,3) + d(3,2).

Assuming that d is nondegenerate is nevertheless sufficient for guaran-
teeing that every constant sequence has a unique limit.
(b) In what follows, it will be often useful to consider also the reversed
preorder >. Note that (P,>,d) is also a preordered pseudometric space
(in particular the >-triangularity of d is deduced from the <-triangularity
thanks to the fact that d has been supposed symmetric). However, the
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properties of (P, <,d) are not necessarily preserved. For instance < may
be self-closed whereas > is not: take P = [0, 1] endowed with the standard
metric and with the order < whose restriction to (0, 1] is the standard order
and such that x < 0 for all z. Also P may be <-complete without being
>-complete: take for instance P = (0, 1] equipped with the standard metric
and order.

Our next task is to endow P with a topology. In fact we define various
topologies on P.

Definition 2. Let A C P be a subset.

(a) Let L<(A) = {z € P: 3(x,) C A <-ascending, =, — x}. We say that
A is <-closed if A= L<(A).

(b) Let S<(A) ={z € P:Ve >0, 32’ € A, 2/ <z and d(2/,z) < e}. We
say that A is <-saturated if A = S<(A).

(c) Givenz € P, weset d(< z, A) = inf{d(2',z) : 2’ € A, 2’ <z} € [0, +00].

Lemma 1. (a) <-closed subsets and <-saturated subsets are the respective
closed sets of two topologies on P, which we will respectively call <-topology
and S<-topology.

(b) For every subset A C P, letting A= be the closure of A in the <-topology,
we have the inclusions

ACL<(4)C A=

Moreover, A= L<(A) & A= as.
(c) For every subset A C P, we have that S<(A) is the closure of A in the
S<-topology. Moreover, for all x € P, we have d(< z,A) = d(< z,S<(A)),
and

S<(A)={zeP:d<x,A) =0}

(d) Assume that < is self-closed. Then for every A C P, we have the
inclusions .
AC L<(A) C A™ C S<(4).

In particular, if A is <-saturated then A is <-closed, so that the <-topology
is finer than the S<-topology.

Proof. (a) Evidently, 0 and P are both <-closed and <-saturated. Let A;,
i € I, be a collection of <-closed subsets. Since the map L< is clearly
nondecreasing with respect to inclusion, we get (,c; Ai C L<((;c; 4i) C
Micr L<(Ai) = (N;er Ai hence ;o7 A is <-closed. The argument for show-
ing that an intersection of <-saturated subsets is <-saturated is similar.
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Let A, B C P be <-closed subsets and let (x,) C AUB be a <-ascending
sequence such that z, — = with € P. The sequence (z,) has either
a subsequence in A or in B which implies that x € A or € B, hence
xz € AU B. This shows that AU B is <-closed.

Now assume that A, B are <-saturated and let z € S<(AUB). If x €
S<(A) = A then we get in particular z € AUB. So assume that « ¢ S<(A),
i.e., there is g > 0 such that {2/ € A : 2/ < z, d(a',z) < e} = 0. For
every € € (0,e9) there is ' € AU B with 2/ <z and d(2/,2) < €, and then
necessarily 2’ € B; hence x € S<(B) = B C AU B. Finally we get that
AU B is <-saturated.

(b) The inclusion A C L<(A) is immediate. As for the second inclusion,
we have L<(A) C LS(ZS) = A=, The equivalence A = L<(A) & A = A=
follows from the fact that each one of the two equalities means that A is
<-closed.

(c) The inequality d(< x, A) < € means that there is 2’ € A with 2’ <z
and d(2',z) < e, hence

S<(A)={zeP:Ve>0,d<z,A)<e}={xeP:d(<z,A) =0}

For every x € P, since A C S<(A), we have the inequality d(< z, S<(A)) <
d(< z,A). For every y € S<(A) with y < x, using that d is <-triangular, it
is easy to see that d(< z,A) < d(<y,A) +d(y,z) = d(y,z) (in view of the
above description of S<(A)); whence, finally, d(< z, A) = d(< z, S<(A4)).

The last equality, combined with the above description of S<(A), yields
S<(S<(A)) = S<(A), hence S<(A) is <-saturated. If A C B where B is
<-saturated, then we get S<(A) C S<(B) = B. Hence S<(A) is the closure
of A in the S<-topology.

(d) Assume that < is self-closed. It remains to show the inclusion A c
S<(A). To do this, it suffices to check that S<(A) is <-closed. So let
(xn) C S<(A) be a <-ascending sequence such that =, — z with z € P.
The fact that < is self-closed yields z,, < z for all n. Let € > 0. There is
n such that d(z,,z) < §. Moreover, since z,, € S<(A), we can find 2’ € A
with 2’ < x,, and d(2', 2,) < §. Whence 2’ < 2, < 2 and d(2,x) < e. This
shows that z € S<(A), and the proof of the lemma is complete. O

Remark 2. (a) In addition to the <- and S<-topologies on P, we get two
additional topologies simply by switching the preorder < to the opposite
preorder > (see Remark 1 (b)). Also we define

d(>z,A) =inf{d(z,y) :y € A, y > z}.
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Then, in view of Lemma 1 (c), the closure of A in the S>-topology is given
by S>(A) ={z € P:d(> z,A) = 0}.

Of course the <- and >-topologies (as well as the S<- and S>-topologies)

are different in general. For example, for P = [0, 1] equipped with its stan-
dard metric and order, the subset A := (0, 1] is <-closed and <-saturated
(since d(< 0,A) = +o0) but it is not >-closed and not >-saturated (since
d(>0,A) = 0). Symmetrically, B := [0,1) is closed in the >- and S>-
topologies but not in the <- and S<-topologies.
(b) The inclusion a° c S<(A) does not hold in general without the as-
sumption that < is self-closed: take for instance P = [0, 1] equipped with
its standard metric and with the order < whose restriction to [0,1) is the
standard order and such that 1 < s for all s (the so-obtained order on [0, 1]
is not self-closed). Then A :=[0,1) is <-saturated but as = [0, 1].

Also the reversed inclusion may not hold even when < is self-closed: take
P = [0,1] equipped with its standard metric and with the order < whose
restriction to (0, 1] is the standard order and such that s < 0 for all s. Then
< is self-closed, A := (0,1] is <-closed, but S<(A) = [0,1]. This example
also shows that, when < is self-closed, the <-topology is in general strictly
finer than the S<-topology.

(¢) The inclusions A C L<(A) C A= can be strict. Take for example P =
[0,1] x [0,1] equipped with its standard metric and with the (self-closed)
partial order defined by

(r,y) < (2',y) if (z=2"andy<y)or(y=9 =1and z <2z').

Then A :=[0,1) x [0,1) € L<(A4) =[0,1) x [0,1] C As = Lo(A)U{(1,1)}.
(d) Say that a subset A C P is closed if for every € P and (z,) C A with
Tn — x, we have x € A. It is straightforward to check that this defines a
topology on P, which we call d-topology, and which is coarser than both the
<-topology and the S<-topology. However, the d-topology is less relevant
and thus not involved in this paper.

In the case where we are given a map f : P — RU{+o0}, it is sometimes
useful to modify the preorder < to a new preorder < according to Lemma 2
below. First we present the following notions (already considered in [2]).

Definition 3. (a) The <-strong slope of f is the operator
V< fl - dom(f) := f~H(R) = [0, +o0]

defined as follows. For n > 0let Pg(q: )={yeP:x<y, 0<d(z,y) <n}.
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e If x is a global minimizer of f\pg(xg)u{x} for some n > 0, we set

V< fl(z) = 0.
e Otherwise, we set

f(z) = fy)

V< fl(z) = lim sup{ )

i, :yeP,?(:U g)}

(b) We say that f : P — R U {400} is <-lower semicontinuous if, for
every <-ascending sequence (x,) such that z, — = with z € P, we have
liminf, o f(zn) > f(2).

(c) We say that f : P — R U {400} is <-submonotone if, for every <-
ascending sequence (x,) such that (f(x,)) is nonincreasing and z,, — x
with € P, we have f(z,) > f(z) for all n.

Remark 3. (a) If z € P is maximal with respect to <, then |V< f|(z) = 0.
(b) In the case where P C R is an open interval endowed with its standard
metric and order and f : P — R is derivable on the right at € dom(f),
then |V< f|(x) = max{0, — f/(z)} where f/(x) stands for the right derivative
at x. Symmetrically, if f is derivable on the left at x with left derivative
f{(@), then V> f|(z) = max{0, f{(x)}.

In general, thanks to the preorder < and the strong slope |V<f]| (or
|V>f]), we get a notion of “right (or left) derivative” for functions on a
preordered pseudometric space P.

(c) Given f: P — RU{+o0}, it is easy to see that f is <-lower semicon-
tinuous if and only if, for every a € R, the sublevel set [f < a] is <-closed
(which equivalently means that f is lower semicontinuous with respect to
the <-topology).

(d) Also it is immediate that the following implication holds

f is <-lower semicontinuous = f is <-submonotone.

However, the converse is not true, even if < is the trivial preorder on P
(i.e., such that x <y for all z,y): take for example f : [0, 1] — R such that
f(z) = x for all x € [0,1) and f(1) = 2, and endow P := [0,1] with its
standard metric; then f is <-submonotone with respect to any preorder on
P, but f is not <-lower semicontinuous when < is such that 1 € L<([0,1)).
In a general preordered pseudometric space (P, <, d), the class of <-lower
semicontinuous functions of course includes the class of lower semicontinuous
functions (i.e., which are lower semicontinuous with respect to the trivial
preorder). It also includes the class of <-nonincreasing functions (i.e., such
that © <y = f(z) > f(y)) provided that the preorder < is self-closed.
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When d is nondegenerate (i.e., d(z,y) = 0 = = = y) the class of <-
submonotone maps includes in addition the class of <-increasing functions
(i.e., such that (x <y, x #y) = f(x) < f(y)). Indeed, for such an f, every
<-ascending sequence (z,,) such that (f(x,)) is nonincreasing is necessarily
constant; and if x,, — x, then the fact that d is nondegenerate forces x = x,,
for all n.

Lemma 2. Let f: P — RU {+oo}. We define

x=y if (x<y and f(x)> f(y)).

(
(b) If P is <-complete, then P is <-complete.
(©) IV</1(z) = [V</|(z) for all z € dom(f).
(d) The following conditions are equivalent:

(i) [ is <-submonotone;

(ii)  f is <-submonotone;

(iii)  f is <-lower semicontinuous;

(iv)  for alla € R, [f < a] is <-closed;

(v) foralla e RU{+oo}, [f <a]:={x € P: f(x) <a} is <X-closed.
(e) If < is self-closed and f is <-submonotone, then =< is self-closed.
(f) Let A C P and let x € P. If f(z) < inf{f(y) : y € A, y < x}, then
JA) =d(2 x, A). Similarly, if f(x) >sup{f(y) :y € A, y >z}, then
JA) =d(= z, A).

Proof. (a) is straightforward.

(b) Let (z,) C P be a Cauchy sequence which is <-ascending. Then a
fortiori (x,,) is <-ascending, which implies that (x,) is convergent.

(c) Assume that x is a global minimizer of f|p79(x§)u{x} for some n > 0.
Since Pg(m <) C Pg (x <), this implies that z is also a global minimizer of
the restriction of f to P)(z <) U {z}. Whence |[V<f|(z) = [V<f|(z) =0 in
this case. Now assume that for every n > 0, x is not a global minimizer
of the restriction of f to P,g](x <)U{z}. This yields y, € P,?(ac <) with
f(x) > f(yy). Then x =< y,. Hence z is not a global minimizer of the
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restriction of f to P,,?(ZL‘ <) U {x}. In this case, we have

Verl) = tim s {HEI e o))
= nli\r(x){r sup {W ry € Pz <), f(x) > f(?/)}
- e { i v e e 9} =191

(d) By definition of the preorder <, a sequence (z,,) C P is <-ascending
if and only if (x,,) is <-ascending and (f(x,)) is nonincreasing. The equiva~
lence (1)< (ii) easily follows from this observation. By Remark 3 (¢)—(d), one
has (iv)<(iii)=-(ii). The implication (v)=-(iv) comes from the fact that we
can write [f < a] = (s, [f <b]. It remains to show that (i)=(v). To do
this, let (x,,) in [f < a] be a <-ascending sequence such that x,, — x with
x € P. Thus (z,) is <-ascending and (f(zy)) is nonincreasing. Since f is
<-submonotone, this implies that f(x) < f(x,) for all n, thus = € [f < a].

(e) Let (z,) C P be a <-ascending sequence such that z, — x. This
means that (z,) is <-ascending and (f(z,)) is nonincreasing. Since < is
self-closed, we deduce that x, < x for all n, and since f is <-submonotone,
we also deduce that f(z,) > f(x) for all n. Therefore, z,, < x for all n.

(f) The assumption implies that

{yeAd:y<a}={yeA:y<zand f(y) > f(x)} ={ye A:y 2 x}.

Whence d(< x,A) = d(=z,A). The proof of the second part of (f) is

similar. O

Lemma 3. Given a <-submonotone map f : P — R U {+o0}, we consider
the preorder =< defined in Lemma 2. We consider the map f+: P — [0, +00],
x> f(z)T :=max{0, f(z)}. Then:

(a) fT is <-submonotone.

(b) For all x € dom(f), we have

V(@) = (V<) @) = { CT TR A

Proof. (a) Let (z;,) be a =<-ascending sequence such that (f*(x,)) is nonin-
creasing and =, — x with z € P. Thus (z,) is <-ascending and (f(zy)) is
nonincreasing. Since f is <-submonotone, we deduce that f(z) < f(z,,) for
all n. Whence f*(z) < f*(z,) for all n. This shows (a).
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(b) Let z € dom(f) be such that f(z) < 0. Then f*(z) = 0 so that
x is a global minimizer of f* on P, thus a fortiori on Py(z <) U {z} and
Pf;(:p <) U {z} for all > 0, and this yields [V<(f)|(z) = |[V<(f1)|(z) = 0.
Next let € dom(f) be such that f(x) > 0. We distinguish two cases.

e First case: for every n > 0, P)(x <) N [f < 0] # 0. Then take z, €
PY(x <) such that f(z,;) < 0. In particular f(z,) < f(z) hence z < z,,
whence z, € P,? (x <). Also z is not a global minimizer of f neither of
ST on P)(x <)u{z} or on P)(z <) U {x}. We have

f@) = fz) o [T(@) = fT(z) _ f(2)

= >
d(z,zy) — d(z, zy) d(z, zy)

f(z)
( > .
Whence |V< f|(z) = |[V<(f)|(z) = |[V<(f)|(z) = +oo.

Ui

e Second case: PJ(x <) N [f < 0] = ) whenever 1 > 0 is small enough.
This implies that the restrictions of f and fT to P,?(a: <) thus a fortiori
to PY(x =) coincide. Whence |[V<(f1)[(z) = [V<fl(z) = V< f|(z) =
IV<(f")|(z), where we use also Lemma 2 (c).

The proof of the lemma is complete. ]

3 Ekeland’s variational principle

We will use the following version of Ekeland’s variational principle:

Theorem 3 ([2, §3]). Let (P, <,d) be a preordered pseudometric space such
that < is self-closed and P is <-complete. Let f : P — R U {+o0} be a <-
submonotone map such that infp f € R. Let x € dom(f) and n € (0, +00).
Then, there exists y € dom(f) satisfying the following conditions:

(a) = <y;

(b) nd(z,y) < f(x) — f(y);

(¢) for all (z,2") € dom(f) x P such that y < z < 2’ and d(z,2') # 0, we
have

nd(y,z) > f(y) = f(z) or nd(z,2") > f(2) = f(¢).

Proof. The result is shown in [2, §3]. We give also a proof here for the
sake of completeness. We consider the subset P’ := {z € P : f(2) < f(2)}
equipped with the relation <’ defined by

z<"w if z<w and nd(z,w) < f(z) — f(w).
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It is easy to see that (P’, <’,d) is a preordered pseudometric space. When-
ever (z,) C P’ is <'-ascending, we claim that

(zn) is a Cauchy sequence (1)

and
there is 2 € P’ such that 2z, <’ z for all n. (2)

Based on (1) and (2), we can invoke [3, Theorem 2] which asserts that P’
contains an element y with <’ y and y is d-maximal in the sense that
whenever y <’ z <’ w for some z,w € P, we have d(z,w) = 0. It is
easy to check that y then fulfills conditions (a)—(c) of the present theorem.
Therefore, it remains to show (1) and (2).

The fact that (z,) is <’-ascending implies that

nd(zn, z2m) < f(zn) — f(zm) whenever n < m, (3)

so in particular (f(z,)) C R is nonincreasing. Since infp f € R, this implies
that (f(zy)) is convergent, thus a Cauchy sequence in R. Then (1) is implied
by (3).

Since (z,) is <’-ascending, it is a fortiori <-ascending. Since P is <-
complete, due to (1), there is an element z € P such that z, — z. Using
that f is <-submonotone, we get also f(z) < f(z,) for all n, thus f(z) < f(z)
and so z € P'.

Moreover, knowing that < is self-closed, we have z, < z for all n. Using
(3) and the fact that d is <-triangular, whenever n < m we see that

1d(2n, 2) = 1d(2m, 2) < Nd(2n, 2m) < f(zn) = f(2m) < f(z0) = f(2).

Letting m — oo, we derive nd(zy, 2) < f(2,) — f(2) and finally z, <’ z for
all n. This shows (2) and the proof of the theorem is complete. O

4 Density of points with finite strong slope

We start this section with a proposition which is a key result towards the
proof of our main theorems in Section 5. As a side consequence of the
proposition, in Corollaries 1-2 we show the density of points with finite
strong slope, for the S>-topology (thus a fortiori for the d-topology; see
Remark 2 (d)).
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Proposition 1. Let (P,<,d) be a preordered pseudometric space such that
P is <-complete and < is self-closed. Let f : P — R U {400} be <-
submonotone. Let U C P be a subset such that

Undom(f)#® and Vre Undom(f), d(>z,P\U)>0.

Then,

Vo€ Undom(f), f(z)—inff>( inf " V<fl)d(z 2, P\U)

with the convention that the right-hand side is zero if infyagom(s) IV<f| =0
and d(> z,P\ U) = +oo.

Proof. Let x € U Ndom(f). Set u = infy f. We can assume p > —oo.
Let r € (0,400) be such that r < d(> x, P\ U). Let 0 € R be such that
o> @(Z 0). Let g=pu+ (f —pu)" : P— RU{+o0} so that

() if2eU,
9(z) = { max{y, f(z)} ifz € P\U.

In this way
ir}gfg = . (4)

We consider the preorder < defined in Lemma 2. It follows from Lemma 3
that
g is <-submonotone (5)

and

0 if f(2) < p,

v € dom(g) = dom(). [V=12) = V<ol ={ {0_p) o 5

We apply Theorem 3 to the space (P, =,d) (which is possible due to
Lemma 2 (a), (b), (e)), the map g, and with n = o, and this yields y €
dom(g) = dom(f) such that

o x =y, ie,z<yand f(z)> f(y);
o od(z,y) < g(z)—g(y);

e for all z € P such that y < z and d(y,z) # 0, we have od(y,z) >
9(y) — 9(2).
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The last point implies

VzeP, (y<z and d(y,2)#0) = od(y,z)>g(y)—g(z) (6)

(noting that, if y < z but y A z then we have f(y) < f(z), in which case
the last inequality of (6) is immediate). Since z € U N dom(f), we have
g(x) = f(x), hence g(x) < p+ or due to the choice of 0. Hence

d(z,y) < 9(x) —gy) _ (utor)—p

g g

Since r < d(> x, P\ U) and x < y, we must have y € U, hence g(y) = f(y).
Next we claim that

Vefl) <. (7)

Indeed, if the restriction of f to P,? (y <)U{y} has its minimum at y for
some 7 > 0, then |V<f|(y) =0, and the inequality is clear. Now assume
that y is not a point of minimum of the restriction of f to Pg(y <) U{y}
for any n > 0, so that Pfl)(y <) is nonempty for all n > 0 and we have

Vofly) = tim sup LW TG

n—0t 2€P (y<) d(yv z)

By the assumption made in the proposition, we have § := d(>y, P\ U) > 0
Let n € (0,0). For every z € P)(y <), we have y < z and 0 < d(y, z) <
n < d(>y,P\U), which ensures that z € U and so g(z) = f(z). By (6),
we deduce that

Ve (0,5), VeePly<), I (?g(y— zf)(z) _ g(zg(y— zg)(z) Sa.

Whence |V<f|(y) < o. This establishes (7).
Using that y € U Ndom(f), we get infyrgom(s) IV<f| < o. Since o €

(M7 +00) is arbitrary, we conclude that

ot vog < @ T ity
Undom(f) r r

Since r € (0,d(> z, P\ U)) is arbitrary, we deduce the desired formula. [

Corollary 1. Assume that (P, <,d) is <-complete and < is self-closed. Let
f: P — RU{+00} be a <-submonotone map. For every subset U C P such
that

Undom(f)#0® and VreUndom(f), d(>z, P\U)>0, (8)
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we have
inf V< flelo,+00).
U (lio ) ‘ < ‘ [ ’ )

Proof. We claim that
daeR, {zxeUndom(f):d(>uz[f <a])>0}#0D. 9)
Arguing by contradiction, assume that (9) is not true. This implies that

Ve e UNndom(f), VaeR, Ve >0, Jz€[f <a], v <z and d(z,z) <e.
(10)
We construct a sequence (z,,) C U Ndom(f) by induction:

e Choose o € U Ndom(f) (see (8)).

e Assuming that x, has been defined, by applying (10), we obtain an
element z,41 such that

f(xn-i-l) < min{f(xn)7 _n}a Tp < Tpai,
d(xn, Tpt1) < min{d(> z,, P\ U),27"}.

These inequalities imply in particular that x,1 € U N dom(f).

In this way, the sequence (x,,) satisfies that

(xy) is <-ascending, (f(zy)) is decreasing, li_)m f(zn) = —o0, (11)

and moreover d(xn,Tn41) < 27" for all n. The last inequality implies that
(x,) is a Cauchy sequence. Since P is <-complete (and (z,,) is <-ascending),
there is ¢ € P such that x,, — =. The first two assertions in (11) combined
with the assumption that f is <-submonotone imply that f(z) < f(z,) for
all n, but this is impossible in view of the last part of (11). We have shown
(9).

With a € R provided by (9), we consider the subset
Vi={zeU:d>z,[f <a]) >0} =U\ S>([f <a])

(see Lemma 1(c) or Remark 2(a)). By (9), we have in particular that
V Nndom(f) # (. Moreover, for every z € V N dom(f), using that P\ V =
(P\U)US>([f < a]), we have

d(>z,P\V)=min{d(> z, P\ U),d(> z,5>([f <a]))} >0
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since we know that d(> z, P\ U) > 0 (see (8)) and d(> z,S>([f < a])) =
d(> z,[f < a]) > 0 (where we use Lemma 1 (c), applied with the preorder >
instead of <, and the fact that = € V). Note that infy f > a. By applying
Proposition 1 to the subset V' (instead of U), for a chosen x € V N dom(f),
we obtain the inequalities

: : flx)—a
f |V < f |V <<
o)~ == vl VS G vy ST
which yield the conclusion. O

Corollary 2. Assume that (P, <,d) is <-complete and < is self-closed. Let
f: P — RU{+o00} be a <-submonotone map. Then

{z € dom(f) : |[V<fl(z) < +o0}
is a dense subset of dom(f) for the topology induced by the S>-topology on P.

Remark 4. (a) In the general setting considered in Corollaries 1-2, we
cannot guarantee that every z € dom(f) has a neighborhood V,, with respect
to S>-topology, such that infy, f € R. This is the reason why the particular
construction of the subset V' (which is not a priori a neighborhood of an x
fixed beforehand) made in the proof of Corollary 1 was needed.

Take for instance P = [0, 1] endowed with the standard metric and order

and let f : [0,1] — R be given by f(0) = 0 and f(z) = —1 if z € (0,1].
This map is <-submonotone (since every <-ascending sequence (x,) such
that (f(x,)) is nonincreasing must be stationary). If V is a neighborhood
of 0 with respect to S>-topology, then § := min{d(> 0,P \ V),1} € (0,1],
which implies that [0,5) C V hence infy f = infy 5 f = —o0c.
(b) In the case where < is the trivial preorder on P (i.e., x <y for all x,y),
the fact that f is submonotone guarantees that every z € dom(f) has an
open neighborhood V' with infy f € R. (For otherwise, there would be a
sequence (x,) C dom(f) such that x,, — = and (f(x,)) decreases to —oo,
but then the assumption that f is submonotone yields f(z) < f(x,) for all
n, which is impossible.) Thus in this case, Corollaries 1-2 become immediate
consequences of Proposition 1.

5 Existence of nonlinear error bounds

This section contains our main results. The first theorem can be viewed as a
general integration result which provides a lower estimate of the considered
map f as a nondecreasing function of the distance to some fixed subset C,
from an analogous lower estimate of the slope |V< f].
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Theorem 4. Let (P, <,d) be a preordered pseudometric space such that < is
self-closed and P is <-complete. Let f : P — RU{+00} be <-submonotone.
Let C C P be >-saturated. Let w: P — [0,+00]| be a map such that

Vee P, w(z)<d(>uzC), (12)
Ve,ye P, <y = w(y) <7(x)+d(z,vy). (13)

Let B : [0,400) — [0,+00) be a nondecreasing map and set B(+o00) =
limg 100 B(s). Let p € (0,400]. Assume that

Vo € dom(f), w(x)<2p = |V<fl(z)>pd>z,0C)).

Then, for every x € dom(f) Ndom(w) \ C with d(> z,C) < p, we have

d(>,0)
flz) —inf{f(y) :y € P\C, z <y, 7(y) <2p}2/0 B(s)ds.

Remark 5. (a) The map m = 0 clearly satisfies (12) and (13). When
m = 0 and p = +o00, the above theorem is a global result in the sense that
the assumption on the slope concerns all elements = in dom(f) and the
conclusion is valid for all elements x in dom(f) \ C.

Note also that, in that case, if we assume in addition that § #Z 0 and f
is bounded below on P\ C, then the theorem implies that every x € P such
that d(> z,C') = 400 must satisfy = ¢ dom(f), i.e., f(z) = +oo.

(b) Assume that the pseudometric d satisfies d(z, z) < d(z,y) + d(y, z) for
all z,y,z € Pwithy < z. Let 7 : z — d(z,C) := inf{d(z,y) : y € C}. Then
(12) is immediate. Moreover, letting y € P be such that z <y, we have

VzeC, d(y,C) <d(z,y) <d(z,z)+d(z,y)

whence (13). Applying the theorem with 7 (z) = d(z,C) and p € (0,+00),
the theorem becomes a local result, and it generalizes [1, Theorem 4.1].

Proof. Let x € dom(f)Ndom(w)\ C be such that d(> z,C) < p. Moreover,
we have d(> x,C') > 0 since = ¢ C and C'is >-saturated. We define the sets

P={yecP:z2<y} and O'=CNP ={ycC:z<y}.

Equipped with the restrictions of the preorder < and the pseudometric d, we
get that (P’, <,d) is a preordered pseudometric space. Since, by assumption,
< is self-closed on P, it is also self-closed on P’, and P’ is <-closed in P
thus <-complete. Whenever y € P’ we get {z € P:y < z} C P’ hence

Vye P, dzyC)=d(zyC) and [V<f|(y) =[V<(flr)l(y).
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Based on these observations, up to considering P’, C’, f|p/ instead of P, C, f,
we can assume that x < y for all y € P, so that

inf ye P\C, x <y, w(y) < 2p} = inf . 14
{fy):ye P\ y, m(y) <2p} ﬂ_l([ogp))\cf (14)

Note that, if inf-1([g2,))\c / = —00, then the formula claimed in the the-
orem is immediate. Hence we can assume that f is bounded below on

71([0,2p)) \ C.
First we note that

for all 7 € (0,4+00], 7 1([r,+0o0]) is >-saturated. (15)

For showing this, let y € P be such that d(> y, 7 (7, +00])) = 0 and we
have to show that y € 771([r, +00]) (see Lemma 1 (c)). To do this, let € > 0.
There is z € 77 1([7,+00]) with y < 2z and d(y, z) < e. In view of (13) we
get 7 < 7(z) < 7w(y)+d(y,z) < m(y)+e, hence m(y) > 7 —e. Letting e — 0,
we deduce that y € 7= !([7, +00]). This shows (15).

Let o € (0,d(> z,C)). Let n > 1 be an integer and, for all i € {0,...,n},

we set t; = -0, so that
O=tog<t; <...<tp,=o0.
For every i € {0,...,n}, let
Ci={yeP:d(>y,C) <t}
and
U=n10,20—t:))\Cs ={y € P:d(>y,C) >t;, n(y) <2p—t;}.

Since C' is >-saturated, we get Cop = C and Uy = 7~ 1([0, 2p)) \ C. Moreover,
if p < 400 then by (12) we have 7(z) < d(> z,C) < p < 2p — t,, while if
p = 400 then the fact that z € dom(w) implies 7(z) < 2p — t,. In each
case, we get x € 7 1([0,2p — t,,)). Thus

C=ChcCiC...CCp, €U, C...CUL CUy=r1[0,2p))\C.
We claim that
for every i € {0,...,n}, C; is >-saturated. (16)

For showing this, in view of Lemma 1 (c) (or Remark 2 (a)), it suffices to
show that every y € P such that d(> y,C;) = 0 must belong to C;. Letting
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€ >0, there is 3 € C; with y < 3" and d(y,y’) < 5. Also since y’ € Cj, there
isy” € Cwithy <y” and d(y',y") < ti+5. We then have y <y’ < y” and,
using that d is <-triangular, we get d(y,y") < t; + €, whence d(> y,C) <
t; + . Since € > 0 is arbitrary, we conclude that d(>y,C) < t;, whence
y € C;, and the verification of (16) is complete.

Our next claim is:

Vi € {0,...,77,—1}, inf fzinff"i_ﬁ(ti)(ti—l-l _ti)~ (17)
Uit U;

For showing this, we aim to apply Proposition 1 with U = U;. Note
that U; N dom(f) # 0 since x € U; N dom(f). Also, since P\ U; =
C; U Y([2p — t;, +00]) is >-saturated (due to (15) and (16)), we have

VyeU;, d(>y,P\U)>0.

This allows us to apply the proposition, and we get

vy € Uindom(), f(y) ~inff > (| inf |V<fl)d(zy.P\U). (18)

The assumption made in the theorem combined with the definition of U;
and the fact that 8 is nondecreasing yields

inf |V > B(t;). 19
Umg;m(f)! <fl = B(t:) (19)

Moreover, we have
Yy € U1, d(Zy, P\U;) > tiy1 —t. (20)

Indeed, fix an element y € U; 41 and let z € P\ U; be such that y < z. Thus
d(> z,C) <t;or m(z) > 2p — t;. In the latter case, by (13), we get

2p —t; <m(2) <7(y) +d(y,z) <2p—tiv1 +d(y,2)

(note that we must have p < 400 in these circumstances), hence d(y, z) >
ti+1 —t;. In the former case, for every ¢ > 0, we find 2’ € C with z < 2’ and
d(z,2") <t;i+e. Thus y < z <27, and we have

tit1 < d(Z Y, C) < d(y7 Z,) < d(ya Z) + d(z’ Z/) < d(y7 Z) +1i+e.
Since ¢ is arbitrary, we get d(y, z) > t;+1 — t;. Finally we have shown

Ve P\U;, y<z = d(y,z)>ti+1—t;,
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whence (20).
Combining (18) with (19) and (20), for every y € Ujs1 N dom(f) (thus
y € U; ndom(f)) we get

fly) > illjl_ff + B(t:) (tiy1 — ti),

and the same formula is immediate if y € U;31 \ dom(f). This shows (17).
From (17), since = € U, and Uy = 7~ 1([0,2p)) \ C, we obtain

n—1
x) >inf f > inf + ti)(tie1 — t;).
f@)ziptfz  f  f ;m (tiss = t:)

Passing to the limit as n — +o00, we derive

flx) > inf f—i—/ﬁsds.
(=) 7 1([0,2p))\C 0 )

Finally, letting 0 — d(> x,C) and remembering (14), we get the formula
stated in the theorem. O

As an application of Theorem 4 to sublevel sets, we obtain a criterion
of existence of nonlinear error bounds, whose formulation unifies both local
and global situations.

Theorem 5. Let (P, <,d) be a preordered pseudometric space such that < is
self-closed and P is <-complete. Let f : P — RU{+o0} be <-submonotone.
Let B : [0,400) — [0,400) be nondecreasing. Let a € R and b € (a,+00].
Let A be a subset of [f <a] and let B be either of the subsets [f < b] or
[f <b]. Let w: P — [0,+00] be a map satisfying (12) with C = A and (13).
Let p € (0,+00]. Assume that [f < a] N7 1([0,2p)) C A and

Ve € BNdom(f), w(x)<2p = |V<f|(z)>pd>z,A))

with B(400) := lims_ 40 5(s). Then,
d(>z,A)
Vr e BNdom(m)\ 4, d>=z,A)<p = f(x)—az/ B(s)ds.
0

Proof. We consider the preorder < defined in Lemma 2. By Lemma 2,
(P, =,d) is a preordered pseudometric space such that < is self-closed and
P is <-complete; moreover, f is <-submonotone.

By Lemma 2 (d), B is a =-closed subset of P, hence it is <-complete.
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Let C = S-(A) N B so that C is the closure of A with respect to the
S--topology of B (see Lemma 1 (c)). We have

Ve P, d(>w,A)<d(=x,A)=d(=z,C)=d(= z,5-(4), (21)

where the last two equalities come from Lemma 1 (c¢). This guarantees that

the map 7 satisfies w(z) < d(> z,C) for all z € P, so that 7 satisfies

conditions (12) and (13) with respect to the preorder < and the subset C.
Let z € P. We claim that

m(x)<2p = d(>=z,A)=d(>=zC), (22)
A>a,A)<p & d=2,0)<p = d(>o,A)=d(=,C). (23)

First note that, in the case where z € A, we have d(> z, A) = d(= z,C) =0,
so that (22) and (23) are trivially true in this case. So assume that = ¢ A.
For showing (22), assume that 7(z) < 2p. Since [f < a] N 7~1([0,2p)) C A,
we get f(z) > a > supy f, whence d(>x,A) = d(> z,A) = d(>= z,C)
in view of Lemma 2 (f) and (21). This establishes (22), and we turn our
attention to (23). The implication d(> z,C) < p = d(>z,A) < p fol-
lows from (21) and we focus on the other implications. In the case where
d(>x,A) = p = +oo then (21) yields d(> z,C) = 400 = d(> z,A). If
d(>xz,A) <pord(>x,A) <p< +oo, then we get w(z) < d(>x,A) < 2p
and the conclusion follows from (22). The verification of (23) is complete.
It easily follows from Definition 3 (a) that |V<(f|g)|(z) = |[V<f|(z) for
all z € BNndom(f) = dom(f|p). Invoking also Lemma 2 (c), we then obtain

Ve € Bndom(f), [V(fls)l(x) = [V<fl(a).
Finally, we observe that
fy€ B\C:nly) < 20} € (B\ A)na([0,20)) C [f = a].

Based on all these observations, we can apply Theorem 4 to the pre-
ordered pseudometric space (B, <,d), the <-submonotone map f|p : B —
R U {400}, and the =-saturated subset C' C B, and this gives the formula

d(>z,A)
f(x)—az/o B(s) ds,

for all x € B N dom(f) N dom(w) \ C such that d(>x,A) < p. The
above formula remains valid for all x € C \ A: indeed, we then have
m(x) =d(>z,A) =d(>z,C) =0 (by (21)) and f(x) > a (since [f < a] N
771([0,2p)) C A by assumption). The formula is also valid, of course, if
x ¢ dom(f). This completes the proof of the theorem. O
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By specializing Theorem 5 to the case where 7 = 0 and p = +o00, we
obtain the following global result.

Theorem 6. Let (P, <,d) be a preordered pseudometric space such that < is
self-closed and P is <-complete. Let f : P — RU{+o00} be <-submonotone.
Let 8 : [0,400) — [0,+00) be nondecreasing. Let a € R and b € (a,+o0].
Let A be such that [f < a] C A C [f <a] and let B be either of the subsets
[f <b] or [f <V]. Assume that

vre Bndom(f), |V<fl() > Bd(> v, 4))
with B(400) := lims_ 40 5(s). Then,

d(>z,4)
Ve € B\ A, f(x)—aZ/ B(s) ds.
0

Corollary 3. Under the assumptions of Theorem 6, assuming in addition

that B # 0, we have
Vz € BNdom(f), d(>=x,A) < +oc. (24)
Moreover,
Bndom(f)#0 < A#0 < [f<a#0.

Proof. The assumption that 8 # 0 combined with the fact that § is nonde-
creasing yields f0+oo B(s)ds = +o0. For all z € B such that d(> z, A) = 400
(in particular = ¢ A), we then have f(z) = +o00 by Theorem 6. This shows
(24).

Since A C [f < a] C BNdom(f), we have already the implications

A#£0) = [f<ad#0 = Bndom(f)#0,
whereas (24) yields the remaining implication BNdom(f) #0 = A # 0. O
As a byproduct of Theorem 6 and Corollary 3, we obtain the following
criterion of existence of linear error bound.

Corollary 4. Let (P, <,d) be a preordered pseudometric space such that < is
self-closed and P is <-complete. Let f : P — RU{+o0} be <-submonotone.
Leta € R and b € (a,+00]. Let A be such that [f < a] C AC [f <a] and let
B be either of the subsets [f < b] or [f <b]. Assume that B N dom(f) # ()
and

Ve € BNdom(f), d(>xz,A)>0 = |V<fl(zx)>0o

for some o > 0. Then A # 0 and
Vee B\ A, f(x)—a>od(>zx,A).
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