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NUMERICAL COMPUTATIONS OF THE CAVITY FLOWS 
USING THE POTENTIAL FLOW THEORY 
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Rezumat. Metodele de calcul referitoare la dinamica fluidelor turbulente sunt 
costisitoare deoarece presupun folosirea unor calculatoare performante, care nu sunt 
totdeauna disponibile. De aceea, metode cum ar fi ecuaţiile Reynolds Navier-Stokes nu 
sunt practice pentru fluide cu un comportament variabil în timp; metoda simulărilor 
numerice directe (DNS) este ceea mai precisă însă nu este fezabilă pentru fluide cu 
numărul Reynolds mare. Metoda Large-Eddy Simulation (LES), de asemenea, nu este 
fezabilă datorită costului computaţional. De aceea, se caută metode computaţionale 
alternative. Această cercetare are ca scop dezvoltarea unei metode de calcul fezabilă 
pentru fluide incompresibile, în mod particular pentru fluide cavitaţionale, folosind 
metoda de potenţial al fluidelor. Metoda se bazează pe diferenţe finite. Discretizarea 
timpului şi spaţiului se face folosind scheme numerice de ordinul doi şi se poate realiza 
folosind un singur calculator. Analiza dinamicii fluidului identifică prezenţa vârtejului în 
centrul cavităţii şi la colţurile de jos. 

Abstract. Computational fluid dynamics of turbulent flows requires large computational 
resources or are not suitable for the computations of transient flows. Therefore methods 
such as Reynolds-averaged Navier-Stokes equations are not suitable for the computation 
of transient flows. The direct numerical simulation provides the most accurate solution, 
but it is not suitable for high-Reynolds number flows. Large-eddy simulation (LES) 
approach is computationally less demanding than the DNS but still computationally 
expensive. Therefore, alternative computational methods must be sought. This research 
concerns the modelling of inviscid incompressible cavity flow using the potential flow. 
The numerical methods employed the finite differences approach. The time and space 
discretization is achieved using second-order schemes. The studies reveal that the finite 
differences approach is a computationally efficient approach and large computations can 
be performed on a single computer. The analysis of the flow physics reveals the presence 
of the recirculation region inside the cavity as well at the corners of the cavity. 
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1. Introduction  

The cavity flows has been of interest for decades and particularly nowadays for its 
use in the supersonic propulsion [1-15]. Cavity flow exhibits complex fluid 
dynamics such vortex dynamics and turbulent mixing [2-5]. The fluid dynamics 
inside the cavity is defined by the step and length of the cavity, specifically the 
length-to-depth (L/D) [7, 9, 11-14]. Usually, cavity flow is dominated by a large 
recirculation region which is also defined by the flow speed [9, 13]. Generally, the 
cavity flows are preferred for turbulent mixing and thus, nowadays the cavity it is 
used for supersonic combustion to enhance the turbulent mixing and hold the 
flame inside the combustion region [1]. A schematic of cavity flow used in 
supersonic combustion is shown in Figure 1. 
 

 
Figure 1. Cavity flow for supersonic combustion [1] 

 
At moderate speeds the cavity flow exhibits a large recirculation region 
dominated by vortical flows [4-7]. Usually, at the boundary of the cavity a shear-
layer is formed [15]. At high-speed, shocks and acoustic waves are generated [1]. 
The shear-layer impinges on the leeward side wall of the cavity and acoustic noise 
is generated [1]. 

2. Background  

Generally, the numerical computations of cavity flows are challenging due to the 
high computational costs [5, 7]. Computational approaches such as Reynolds-
averaged Navier-Stokes (RANS) are not suitable for time-dependent flow 
dynamics such as the cavity flow [5]. Thus, time-dependent numerical approaches 
must be sought. Direct Numerical Simulation (DNS) pose significant challenges 
due to the fact that the computational cost is proportional to 25.2Re  and thus, it is 
not suitable for the computation of the high-Reynolds number flows. On the other 
hand, the Large-Eddy Simulation (LES) still poses high computational costs. 
Thus, computationally efficient numerical approaches are sought. Numerical 
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computations of incompressible, inviscid flows using the Laplace equations are a 
promising approach for the computation of cavity flows and it is employed in the 
present research.  

3. Modeling and algorithms 

This research concerns two-dimensional modeling of the cavity flow for the case 
of incompressible fluid. The governing equations for the incompressible flow are 
the Laplace equations defined as: 
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The Laplace equation is solved using the finite-differences approach and thus, the 
space and time-derivatives will be discretized using the second-order central-
difference schemes. The space and time-discretization are presented in the 
following. Figure 2 shows the time and space-marching schemes with space on 
the horizontal and time on the vertical. For simplicity, an equally spaced 
computational domain will be used, with the space and time variables h and t . As 
shown in Figure 2, for the space marching of the solution, the time is fixed and 
solution is computed at the computational grid points ),( hxtf  , ),( xtf  and 

),( hxtf  . 

 
 

Figure 2. Space and time-discretization 
 
Figure 3 shows the time-discretization of the Laplace equation. For the time-
marching, the space is kept constant while the time increment is tt  . 

 
 

Figure 3. Time-discretization 
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The finite-difference approach makes use of the Taylor series. Thus, the Taylor 
series is sued for an arbitrary function f , where f can represent the flow variables 
such as pressure or velocity.  The Taylor series expanded about the grid point 
 hx   becomes 
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Subtracting equation 3 from equation 2 and truncating the high-order terms, the 
difference    hxfhxf   is obtained such that  
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Rearranging this equation to isolate the first derivative, we obtain the following 
equation: 
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Next, we need to find the second derivative of function f .  Making use again of 
the Taylor series  
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Adding equations, we obtain: 
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Rearranging this equation to isolate the second derivative, we obtain the second 
derivative of function f in the form: 
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Eliminating the high-order terms the second derivative becomes: 
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4. Results and discussion 

Figure 4 presents the streamlines of the cavity flow. From the analysis of the 
streamlines, it is observed that the flow impinges on the sides of the cavity. As the 
flow impinges on the leeward side of the cavity, the flow field inside the cavity is 
disturbed and thus, a recirculation region is generated. The recirculating flow, 
inside the cavity, is impinging on the step and bounces back into the cavity and 
thus, the recirculation region is maintained.  

 
Figure 4. Streamlines of the cavity flow 
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The recirculation region is better illustrated in Figure 5. As shown in Figure 5, the 
recirculation region exhibits a very low velocity at the core of the vortex while the 
velocity presents larger values closer to the boundaries. From the analysis of the 
streamline, two small recirculation regions are observed at the bottom corners of 
the cavity.  

 
Figure 5. Streamlines inside the cavity flow 

 
Figure 6. Velocity field and streamlines inside the cavity 
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Figure 6 presents the streamlines and superimposed velocity vector field. The 
analysis of the fluid flow in Figure 6 shows that the velocity reaches a zero value 
such that it satisfies the boundary conditions. The analysis also reveals that the 
velocity exhibits a minimum value at the core. 

Figure 7, a presents the velocity vector field from two-dimensional computations. 
The analysis of the vector field reveals the presence of the recirculation region at 
the center of the cavity. Also, it can be observed that the velocity is zero near the 
wall to satisfy the no-slip boundary conditions. The velocity exhibits a minimum 
at the core of the cavity. 

 
Figure 7, a. Velocity vector field 
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Figure 7, b. Velocity vector field 
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A grid convergence analysis was performed as well and the results are shown in 
Figures 7, a and 7, b. Therefore, increasing the number of grid points of the 
computational results in a more refined solution. However, it is worth mentioning 
that the increase of the computational grid points cause a negligible increase of 
the computational time, more specifically st 410 . The present research shows 
that the potential flow theory provides accurate solution of the cavity flow with a 
much lower computational cost compared with advanced CFD solutions such as 
LES or DNS. 

Conclusions 

A computational model for inviscid, incompressible flow was developed. The 
numerical algorithm is used for the computations of the cavity flow. The 
numerical algorithm uses the two-dimensional Laplace equations. The space and 
time-discretization of the computational domain is achieved using second-order 
numerical schemes. The analysis reveals that the computational domain capture 
very well the flow physics of the cavity flow, at a much lower computational cost 
when compared with direct numerical simulation (DNS) and large-eddy 
simulations (LES). The computations were carried out suing the MATLAB 
software.  
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