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Abstract. In this work we use nonlinear methods to study atrial fibrillations: we construct 

the 3D attractors, generate the 2D maps, and calculate the Hurst exponent and fractal 

dimension, respectively, for signals collected from a patient during an atrial fibrillation 

crisis. Our results show that the normal and pathological cardiac dynamics can be 

characterized through specific patterns (strange attractors). 
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Introduction 

 

Heart rate dynamics is a subject of great interest in the field of medicine. Various 

mathematical procedures were proposed and used for analyzing heart-rate time 

series, in order to evaluate the heart-rate variability: autocorrelation function, 

bifurcation analysis, Lyapunov exponents, reconstructed phase-space analysis, 

recurrence plot, Hurst exponent, entropy etc. Accurate and complete descriptions 

of these methods can be found in specialized literature [1-4].  

A crucial stage in the analysis of ECG signals involves extracting the clinically 

significant features that include all the pertinent information from the original ECG 

signal. These features serve as a representation of the signal for further analysis [5, 

6]. The ECG signals may be analyzed to extract features using various approaches, 

such as time-domain analysis, frequency-domain analysis, combined time-

frequency domain analysis, and nonlinear methods [7–9]. In recent years, 

researchers have shown particular interest in analyzing ECG data utilizing 

nonlinear signal processing approaches [7–9]. The ECG signal analysis techniques 

that are nonlinear in nature are inspired by the principles of nonlinear dynamics [10, 

11]. This may be explained by the fact that biological signals, such as ECG, can be 

produced by nonlinear dynamical systems [12]. Nonlinear signal analysis 

approaches that have been extensively studied include reconstructed phase space 

analysis, Lyapunov exponents, correlation dimension, detrended fluctuation 
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analysis (DFA), recurrence plot, Poincaré plot, approximation entropy, and sample 

entropy.  

Taking the above into consideration, it can be said that an analysis of the ECG time 

series using nonlinear dynamics can yield insights into physiological processes 

beyond those related to cardiology. Experimental findings demonstrated that the 

pulse rate signal exhibits a low-dimensional chaotic condition during an epileptic 

seizure, characterized by a complicated and irregular pattern before and after the 

event [13]. Young and Benton demonstrated a connection between heart rate 

complexity and several cognitive functions such as reaction times, inhibition, and 

decision time. Their findings highlight the potential of nonlinear approaches for 

analyzing heart rate time series data in understanding the relationship between brain 

functioning and specific behaviors [14]. 

Although, as we mentioned, the nonlinear dynamics and complex system theory 

provided important information on many complex aspects in cardiology, the 

application of nonlinear systems analysis in therapy predictions is currently 

restricted in clinical practice [15]. Efforts should be made to enhance the existing 

procedures and devise novel approaches to enhance the efficacy of clinical 

applications. 

This work presents a novel approach to assess atrial fibrillations, employing 

mathematical techniques tailored to nonlinear dynamics.  

 

Materials and methods 

 

We conducted an analysis on electrocardiograms obtained from the PhysioNet 

database. This database provides open access to a comprehensive collection of 

physiological signals [16] obtained from a diverse group of patients. It also offers 

specialized software for the visualization and analysis of these signals. It is freely 

accessible under the ODC Public Domain Dedication and License v1.0. Available 

resources are provided to encourage ongoing research in the field of analyzing 

intricate biomedical and physiological data. 

The signal we examined possesses the subsequent characteristics: the recording has 

a duration of approximately 3 hours, with a sampling interval of 4 milliseconds and 

a sampling rate of 250 recordings per second. It consists of a total of 9,205,760 data 

points, with amplitudes ranging from -0.6 millivolts to 0.9 millivolts. 

Figure 1 depicts the examination of the 1/R-R interval, which represents a single 

cardiac cycle. The analysis reveals three instances of crises, consisting of two atrial 

fibrillations and one flutter fibrillation. The analysis includes ECG fragments of 5 

seconds each, representing the pre-crisis, first AFIB, atrial flutter (AFL), second 

AFIB, and post-crisis periods. 
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Fig. 1. Pulse time variation (1/R-R interval) during fibrillation crises 

 

During both the pre-crisis and post-crisis periods, the signals remain within the 

expected range. During the initial episode of atrial fibrillation (AFIB), the heart rate 

gradually rises, followed by a sudden surge in atrial flutter (AFL), and then 

gradually decreases again in the subsequent episode of AFIB. 

 

Results 

 

The statistical analyses were performed using Origin Pro, version 9.6.5.169. 

Shapiro-Wilk test [17] was employed to assess the normality of the distribution of 

the measured data. 

The histogram analysis of the signals from Figure 1, as depicted in Figure 2, reveals 

that during the initial phase, specifically the pre-crisis period, the pulse remains 

consistently constant at approximately 60 beats per minute. The heart rate typically 

rises during the initial episode of atrial fibrillation, reaching a peak of 

approximately 110 beats per minute. During atrial fibrillation, the pulse typically 

ranges between 100 and 130 beats per minute (bpm). The histogram representing 

the second instance of atrial fibrillation exhibits a distribution that closely resembles 

a Gaussian curve, with the highest frequency occurring between 60 and 80 beats 

per minute. Following the crisis, the pulse becomes stable and reaches a rate of 60 

beats per minute.  
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Fig. 2. Histograms associated to periods of pre-crisis (a), first AFIB (b), AFL (c), second AFIB 

(d), and post-crisis (e) (1/R-R intervals) 

 

The Shapiro-Wilk test excluded the normal distribution for all five cases described 

in figure 2. Consequently, log-normal and gamma distributions were tested (see 

Figure 3). Anderson-Darling test rejected both distributions for all cases. According 

with the extensive analysis performed by Kula et al. [18], the median is more 

appropriate to be considered in data with unknown distribution to characterize the 

central tendency of data (real mean values). 
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Fig. 3. Fitting of the data with log-normal (black line) and gamma (blue line) distributions, 

corresponding to the five cases described in Figure 3 
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By employing the auto-correlation function, we developed specific attractors within 

the phase space (reconstructed using the delay time approach) for each stage of the 

heart dynamics: pre-crisis, AFIB crises 1 and 2, AFL crisis and post-crisis. These 

attractors and the corresponding 2D maps are shown in Figure 4. 
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(g) (h) 

 

 
(i) (j) 

 
Fig. 4. Attractors for Pre-crisis (a), AFIB 1 (c), AFL (e), AFIB 2 (g) and Post-crisis (i) and the 

corresponding 2D maps for Pre-crisis (b), AFIB 1 (d), AFL (f), AFIB 2 (h) and Post-crisis (j) 

 

 

AFTER we built the attractors and generated the corresponding 2D maps, we were 

able to calculate the Hurst exponents and fractal dimension for each stage. They are 

presented in Table 1. 

  
Table 1. The calculated Hurst exponents for each stage of the heart dynamics 

 

Stage Hurst exponent Fractal dimension 

Pre-crisis 0.7739 0.2261 

AFIB crisis 1 0.6772 0.3228 

AFL crisis 0.6680 0.332 

AFIB crisis 2 0.7871 0.2129 

Post-crisis 0.8390 0.161 
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Discussions 

 

As can be seen from Table 1, the Hurst exponent for all the stages is subunitary. 

Furthermore, we can observe, by means of the fractal dimension variation, that the 

physical processes (in our case, atrial fibrillations) that disrupt the normal 

functioning of the heart produce a fractal pattern in time. The largest fractal 

dimension is present in the AFL crisis, and the lowest obtained values are present 

in pre- and post-crisis, respectively. These facts show that the cardiac dynamics is 

strongly chaotic during the AFL crisis, while before and after the crisis, these 

dynamics tend to have a more regular behavior.  

We must mention that several recent works have simulated ECG signals, in order 

to analyze cardiac rhythms by employing reduced-order mathematical models 

composed of oscillators with time-delayed couplings. The models were able to 

accurately represent the key elements of the dynamic response of the heart, 

generating electrocardiograms for several scenarios of both normal and abnormal 

heart rhythms [19, 20]. 

Our approach was different, because we analyzed an actual ECG recording. 

However, our study has several limitations, including the fact that we only 

examined a solitary instance and relied on data sourced from an open-access 

database. To enhance the credibility of our results, it is necessary to acquire data 

gathered in a controlled clinical environment. 

 

Conclusions 

 

We proposed a new method for analyzing pathological cardiovascular dynamics, in 

particular atrial fibrillation, by using non-linear procedures: variance, geometric 

standard deviation, histograms, attractors, 2d maps etc. In such context, by using 

the self-similar correlations of the Hurst exponent and fractal dimension, we 

propose a first step toward developing a non-linear theory of the physiological 

mechanisms that generate these life-threatening cardiac events. 
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