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COMBINATORICS OF HANKEL
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Abstract

We investigate the problem to determine the defining equations of
the algebraic variety of Hankel two-planes in the projective space. We
compute the first and the second partial lifting of the Machado’s bino-
mial relations, by applying tecniques of Sagbi bases theory.
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1 Introduction

In the study of toric ideals and of canonical bases of subalgebras many
authors are interested on the problem to degenerate an arbitrary paramet-
rically presented variety X into a toric variety Y . The basic idea is to
degenerate the algebra generators into monomials and therefore the algebra
polynomial relations to binomials relations. We can see how this can be
accomplished if X is a Grassmann variety, since there is a beautiful link
between the toric ideal I of the toric degeneration of X and the Grassmann-
Plücker ideal of X, whose initial ideal, with respect to a fixed weighted term
order ([13]) on the monomials of the polynomial ring of the presentation of
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X, coincides with I. In general for subvarieties of X, the previous result is
not true. For the Hankel variety H(r, n), subvariety of G(r, n) (introduced
in [10] by Giuffrida and Maggioni and later studied in [9], [4] and [6]), the
result is true for r = 1, since we have the basic result of Conca, Herzog,
Valla ([2]). Some combinatorial results are given in [5] and [7]. Neverthe-
less, the toric deformation of H(r, n) is known, in the sense that Machado
([11]) established all binomial relations of the degenerate variety of H(r, n).
Then, an open problem is to find the relations of H(r, n), starting from
Machado relations and most proofs depend currently from Sagbi bases the-
ory. By employing this theory, in [8] we obtain an algorithm that permits
us to write all relations of H(2, 5). In the same paper we give the list of
partial liftings of the binomial relations of Machado, consisting of polyno-
mials pi =

∑
tmit , mit a term. In some cases they are effective relations for

H(2, n). It is not clear if it will be possible to obtain all effective relations.
For this proposal, we must work on the 4th term of the partial liftings and
to extend the procedure adopted in [8] by the algorithm, for obtaining terms
mit, t ≥ 5. In this paper we present in detail all developments of the results
that are built on the partial liftings for H(2, n)(only two cases are proved in
detail in [8]). Our results are the starting point for a systematic study of the
effective relations of H(2, n), for any n. More precisely, in the main theorem
of Section 2 we describe the basic techniques for all the steps occurring to
obtain the 5th monomial in the virtual relations and the next monomials.
Section 1 contains notations, some known results on Machado relations and
the partial liftings ([8],[11]). Some results of this note have been conjectured
by using the software CoCoA [1].

2 Preliminaries

A matrix of the form

Hr,n =


x1 x2 · · · · · · xn
x2 x3 · · · xn xn+1

· · · · · · · · · · · · · · ·
xr−1 xr · · · · · · xn+r−1

xr xr+1 · · · xn+r−1 xn+r


is called Hankel matrix, whose entries belong to a commutative ring R. We
consider generic Hankel matrices Hr,n, then the entries are indeterminates.
Let K be a field and S = K[x1, x2, . . . , xn+r] the polynomial ring over K in
n + r indeterminates. We denote by [i1i2 . . . ir] the r-minor with columns
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i1 < i2 < . . . ir. Let < be the lexicographical order induced by x1 > x2 >
. . . > xn+r. Then

in<[i1i2 . . . ir] = xi1xi2+1 . . . xir+r−1,

where the monomial xi1xi2+1 . . . xir+r−1 is the product of monomials corre-
sponding to the main diagonal of the minor [i1i2 . . . ir].

Denote by A2,n the K-algebra over K generated by the initial monomials
xi1xi2+1xi3+2 with 1 ≤ i1 < i2 < i3 ≤ n of the 3−minors of H3,n. Moreover,
let T = K[yi1i2i3 : 1 ≤ i1 < i2 < i3 ≤ n] be the polynomial ring in the
variables yi1i2i3 and let ψ : T → A2,n be the K-algebra homomorphism with
yi1i2i3 7→ xi1xi2+1xi3+2. Each monomial of degree d in T can be identified
with a d× 3 matrix 

i11 i12 i13
i21 i22 i23
...

...
...

id1 id2 id3


such that (i11i12i13) ≥ (i21i22i23) ≥ · · · ≥ (id1id2id3). In particular a mono-
mial of degree two in T corresponds to a matrix of the form(

a b c
d e f

)
with a < b < c, d < e < f and (a, b, c) ≥ (d, e, f).

Theorem 1. (Machado[11]) With the assumptions and notations intro-
duced, one has:

The kernel J = kerψ is generated by the following type of relations(
a b c
d e f

)
−
(
a e c
d b f

)
with e < b, c ≤ f,

(
a b c
d e f

)
−
(
a e f
d b c

)
with e < b, f < c,

(
a b c
d e f

)
−
(
a b f
d e c

)
with b ≤ e, f < c,

and assuming that a ≤ d, b ≤ e, c ≤ f one has
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(
a b c
d e f

)
−
(

a d− 1 c
b+ 1 e f

)
with b≪ d, e− c ≤ 1, d− 1 < c

(
a b c
d e f

)
−
(
a b e− 1
d c+ 1 f

)
with d− b ≤ 1, c≪ e, c+ 1 < f

(
a b c
d e f

)
−
(

a d− 1 e− 1
b+ 1 c+ 1 f

)
with b≪ d, c≪ e.

Here we set i≪ j if j − i ≥ 2.

The following theorem gives a criterion for the existence of a Sagbi basis
which is a variation of the known criterion by Robbiano and Sweedler given
in [12]. The proof is contained in [8].

Theorem 2. Let T = K[y1, . . . , ym] be the polynomial ring over K in the
variables y1, . . . , ym, and let φ : T → A the K-algebra homomorphism with
yi 7→ ai and ψ : T → in<(A) the K-algebra homomorphism with yi 7→
in<(ai) for i = 1, . . . ,m. Let I = Kerφ and f1, . . . , fr be a set of binomial
generators of J = Kerψ. Then the following conditions are equivalent:

(a) a1, . . . , am is a Sagbi basis of A.

(b) For each j, there exist monomials m1, . . . ,ms ∈ T and c1, . . . , cs ∈ K
such that

(i) fj +
∑s

i cimi ∈ I.

(ii) in<(φ(mi+1)) = in<(φ(fj +
∑i

k=1 ckmk)) < in<(φ(mi)),
in<(φ(fj + c1m1)) < in<(φ(fj)).

If the equivalent conditions are satisfied, we call fj +
∑s

i cimi a lifting
of fj .

3 Computing the relations of H(2, n)

By Theorem 2, one deduced easily the following algorithm ([8]) that
permits to obtain polynomial relations from the binomial relations:

1. Choose one of the binomial relations of the initial terms of the minors
in the initial algebra listed in Theorem 1, replace in the relation the initial
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terms by the corresponding minors to obtain the element f1 ∈ A2,n, and
determine its initial term.

2. If in<f1 is not a product of the initial terms of two minors of H3,n,
then the relation f1 is not liftable. In this case the minors of Hankel matrix
do not form a Sagbi basis (in our case this never happened).

3. If in<f1 is a product of the initial terms of two minors m1,m2, then
we add a suitable multiple of m1m2 to f1 to obtain f2 with the property
that in<f2 < in<f1.

4. Proceed recursively by step 3.

The algorithm is applied to determine the expression of the first and
second lifting of the binomial relations of Machado.

By repeated applications of the algorithm, there is the researched list of
liftings.

For the following the employed monomial order is the lexicographic order
and the usual order of the variables is x1 > x2 > . . . > xn+2. Moreover,

we will identify the symbol

[
a d c
e b f

]
with the corresponding product of

minors ∣∣∣∣∣∣
xa xb xc
xa+1 xb+1 xc+1

xa+2 xb+2 xc+2

∣∣∣∣∣∣
∣∣∣∣∣∣
xd xe xc
xd+1 xe+1 xc+1

xd+2 xe+2 xc+2

∣∣∣∣∣∣
and the difference between two symbols by (i)− (j).

Theorem 3. The binomial relations of the K−algebra A2,n have the follow-
ing liftings and partial liftings:

(I) e < b, c ≤ f

(IA) c = f , a < d < e < b < c[
a b c
d e f

]
−

[
a e c
d b c

]
+

[
a d c
e b c

]

(IB) c < f , a < d < e < b < c < f[
a b c
d e f

]
−

[
a e c
d b f

]
+

[
a e b
d c f

]
+

[
a d c
e b f

]
+ · · ·
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(II) e < b, f < c, a < d < e < b ≤ f < c[
a b c
d e f

]
−
[

a e f
d b c

]
+

[
a d f
e b c

]
+

[
a d e
b f c

]
+· · ·

(III) b ≤ e, f < c

(IIIA) a = d, a < b < e < f < c[
a b c
a e f

]
−
[

a b f
a e c

]
+

[
a b e
a f c

]

(IIIB) b = e, a < d < b < f < c[
a b c
d b f

]
−
[

a b f
d b c

]
+

[
a d b
b f c

]

(IIIC) b ≤ d, a < b ≤ d < e < f < c[
a b c
d e f

]
−
[

a b f
d e c

]
+

[
a b e
d f c

]
+

[
a b f − 2

d+ 1 e+ 1 c

]
+· · ·

(IIID) b > d, a < d < b < e < f < c[
a b c
d e f

]
−
[

a b f
d e c

]
+

[
a b e
d f c

]
+

[
a d b
e f c

]
+· · ·

(IV) 2 ≤ d− b, e− c ≤ 1, d− 1 < c

(IVA) a < b ≪ d < e− 1 ≤ c < e < f[
a b c
d e f

]
−
[

a d− 1 c
b+ 1 e f

]
+

[
a d e− 1

b+ 1 c f

]
+

+

[
a d e

b+ 1 c f − 1

]
+ · · ·
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(IVB) d = c = e− 1, a < b ≪ e− 1 < e < f − 1 < f[
a b e− 1

e− 1 e f

]
−
[

a e− 2 e− 1
b+ 1 e f

]
+

[
a e− 1 e

b+ 1 e− 1 f − 1

]
+

+

[
a e− 2 e

b+ 2 e f − 1

]
+· · ·

(IVB1) d = c = e− 1, e = f − 1, a < b ≪ e− 1 < e < e+ 1

[
a b e− 1

e− 1 e e+ 1

]
−
[

a e− 2 e− 1
b+ 1 e e+ 1

]
+

[
a e− 1 e

b+ 1 e− 1 e

]
+

+

[
a+ 1 e− 2 e− 1
b e e+ 1

]
+· · ·

(IVC) d < e− 1, c = e, a < b ≪ d < e− 1 < e < f[
a b e
d e f

]
−
[

a d− 1 e
b+ 1 e f

]
+

[
a d e

b+ 1 e− 1 f

]
−
[

a d e− 1
b+ 1 e f

]
+· · ·

(IVD) d = e− 1, c = e, a < b ≪ e− 1 < e < f − 1 < f[
a b e

e− 1 e f

]
−
[

a e− 2 e
b+ 1 e f

]
+

[
a e− 1 e

b+ 1 e− 1 f

]
+

+

[
a e− 1 e

b+ 1 e f − 1

]
+· · ·

(IVD1) d = e− 1, c = e, f = e+ 1, a < b ≪ e− 1 < e < e+ 1[
a b e

e− 1 e e+ 1

]
−
[

a e− 2 e
b+ 1 e e+ 1

]
+

[
a e− 1 e

b+ 1 e− 1 e+ 1

]
+

+

[
a+ 1 e− 2 e
b e e+ 1

]
+· · ·

(IVE) a < b ≪ d < e < c < f[
a b c
d e f

]
−
[

a d− 1 c
b+ 1 e f

]
+

[
a d c

b+ 1 e− 1 f

]
+

[
a d c− 1

b+ 1 e f

]
+ · · ·
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(V) d− b ≤ 1, 2 ≤ e− c, c+ 1 < f

(VA) b = d− 1, d < c, c+ 3 < f , a < b < d < c ≪ e < f[
a d− 1 c
d e f

]
−

[
a d− 1 e− 1
d c+ 1 f

]
+

[
a d− 1 e
d c+ 1 f − 1

]
+

−
[

a d− 1 e− 1
d c+ 2 f − 1

]
+ · · ·

(VA1) b = d− 1, d = c, d = f − 3, a < d− 1 < d ≪ d+ 2 < d+ 3[
a d− 1 d
d d+ 2 d+ 3

]
−
[

a d− 1 d+ 1
d d+ 1 d+ 3

]
+

[
a d− 1 d+ 2
d d+ 1 d+ 2

]
+

−
[

a+ 1 d d+ 1
d− 1 d d+ 3

]
+ · · ·

(VB) b = d− 1, d < c, c+ 3 = f a < b < d < c ≪ c+ 2 < c+ 3[
a d− 1 c
d c+ 2 c+ 3

]
−
[

a d− 1 c+ 1
d c+ 1 c+ 3

]
+

[
a d− 1 c+ 2
d c+ 1 c+ 2

]
+

−
[

a d c+ 2
d c c+ 2

]
+ · · ·

(VC) d ≤ b, c+ 3 < f a < d ≤ b < c ≪ e < f[
a b c
d e f

]
−

[
a b e− 1
d c+ 1 f

]
+

[
a b e
d c+ 1 f − 1

]
+

+

[
a b c+ 1
d e f − 1

]
+ · · ·

(VC1) d ≤ b, c+ 3 = f , a < d ≤ b < c ≪ e < f[
a b c
d c+ 2 c+ 3

]
−
[

a b c+ 1
d c+ 1 c+ 3

]
+

[
a b c+ 2
d c+ 1 c+ 2

]
+

−
[

a b+ 1 c+ 1
d c c+ 3

]
+ · · ·

(VI) 2 ≤ d− b, 2 ≤ e− c
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(VIA) c < d, a < b < c < d < e < f , c+ 3 < f

[
a b c
d e f

]
−
[

a d− 1 e− 1
b+ 1 c+ 1 f

]
+

[
a d− 1 e

b+ 1 c+ 1 f − 1

]
+

[
a d e

b+ 1 c+ 1 f − 2

]
+· · ·

(VIA1) c < d, c+ 3 = f , a < b < c < c+ 1 < c+ 2 < c+ 3[
a b c

c+ 1 c+ 2 c+ 3

]
−

[
a c c+ 1

b+ 1 c+ 1 c+ 3

]
+

[
a c c+ 2

b+ 1 c+ 1 c+ 2

]
+

+

[
a+ 1 c c+ 1
b c+ 1 c+ 3

]
+· · ·

(VIB) d ≤ c, c+ 3 < f , a < b ≪ d ≤ c ≪ e < f[
a b c
d e f

]
−
[

a d− 1 e− 1
b+ 1 c+ 1 f

]
+

[
a d− 1 e

b+ 1 c+ 1 f − 1

]
+

+

[
a d− 1 e− 1

b+ 1 c+ 2 f − 1

]
+· · ·

(VIB1) d ≤ c, a < b ≪ d ≤ c ≪ c+ 2 < c+ 3[
a b c
d c+ 2 c+ 3

]
−
[

a d− 1 c+ 1
b+ 1 c+ 1 c+ 3

]
+

[
a d− 1 c+ 2

b+ 1 c+ 1 c+ 2

]
+

+

[
a d c+ 1

b+ 1 c+ 1 c+ 2

]
+· · ·

Proof. (IA) c = f , a < d < e < b < c. See [8] for the proof.

(IB) c < f a < d < e < b < c < f

Consider the binomial relation(
a b c
d e c

)
−
(
a e c
d b f

)
.

Replace it by the difference of the products of the corresponding mi-
nors:
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[
a b c
d e c

]
−
[
a e c
d b f

]
= (1)− (2)

=

∣∣∣∣∣∣
xa xb xc
xa+1 xb+1 xc+1

xa+2 xb+2 xc+2

∣∣∣∣∣∣
∣∣∣∣∣∣
xd xe xc
xd+1 xe+1 xc+1

xd+2 xe+2 xc+2

∣∣∣∣∣∣+

−

∣∣∣∣∣∣
xa xe xc
xa+1 xe+1 xc+1

xa+2 xe+2 xc+2

∣∣∣∣∣∣
∣∣∣∣∣∣
xd xb xf
xd+1 xb+1 xf+1

xd+2 xb+2 xf+2

∣∣∣∣∣∣ .
The monomials of (1), with {a, d, e + 1} in their support, consist
of the unique monomial xaxdxe+1xb+1xc+2xf+2 that vanishes with a
product of (2), while f1 = xaxdxe+1xb+2xc+1xf+2 of (1) and f2 =
xaxdxe+1xb+2xc+2xf+1 of (2) do not vanish. Then the in<((1)−(2)) =
f1, that gives [

a e b
d c f

]
= (3).

Now in (1) and (2) the products with {a, d, e + 1} in the support are
f1 and f2 that vanish with products of (3). Then we consider the
products with {a, d, e + 2} in their support, xaxdxe+2xb+2xc+1xf+1,
xaxdxe+2xb+1xc+2xf+1 that vanish with products of (2) and (3), in
(2) xaxdxe+2xb+1xc+1xf+2 vanishes with a monomial of (3). Finally
we consider the monomials with {a, d + 1} in their support starting
by xa, xd+1, xe that are only in (1): f3 = xaxd+1xexb+1xc+2xf+2 and
xaxd+1xexb+2xc+1xf+2. Then in<((1)− (2) + (3)) = f3 that gives:[

a d c
e b f

]
.

But the procedure can continue and we can obtain other pieces in the
lifting.

(II) e < b and f < c, a < d < e < b < f < c[
a b c
d e f

]
−
[
a e f
d b c

]
= (4)− (5).

Consider first the monomials of (4) with {a, d} in the support:
xaxdxe+1xb+1xf+2xc+2, xaxdxe+2xb+1xf+1xc+2, xaxdxe+1xb+2xf+2xc+1,
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xaxdxe+2xb+2xf+1xc+1 vanish with products of (5). Then we consider
the monomials with {a, d+1} in the support: f1 = xaxd+1xexb+1xf+2

xc+2 do not vanish. Then in<((4)− (5)) = f1 gives:

[
a d f
e b c

]
= (6).

Now in (6) there are not monomials whose support contains {a, d}
and we consider the monomials containing the variables indexed by
a, d + 1. The monomials f1 and xaxd+1xexb+2xf+2xc+1 of (4) van-
ish with monomials of (6). The monomials xaxd+1xe+1xb+2xf+2xc,
xaxd+1xe+1xbxf+2xc+2 of (5) vanish with monomials of (6). The
monomial f2 = xaxd+1xe+2xbxf+1xc+2 of (8) does not vanish. Then
in<((7)− (8) + (9)) = f2 gives

[
a d e
b f c

]
.

(IIIA) a = d, a < b < e < f < c[
a b c
a e f

]
−
[
a b f
a e c

]
= (7)− (8).

Consider first the monomials with {a, b+1} in the support(since there
are not monomials with a and b ): in (7) x2axb+1xe+1xf+2xc+2 vanishes
with a monomial of (8), while f1 = x2axb+1xe+2xf+1xc+2 does not
vanish. Then in<((7)− (8)) = f1 that gives

+

[
a b e
a f c

]
= (9).

Now the remaining monomials in the sum (7)− (8)+ (9) vanish at all.
Then (IIIA) is a relation.

(IIIB) b = e, a < d < b < f < c[
a b c
d b f

]
−
[
a b f
d b c

]
= (10)− (11).

Consider first the monomials with the variables indexed by a, d: the
monomials of (10) xaxdxb+1xb+1xf+2xc+2, xaxdxb+1xb+2xf+1xc+2,
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xaxdxb+1xb+2xf+2xc+2, xaxdxb+2xb+2xf+1xc+1 vanish with monomi-
als of (11). The monomials with {a, d+1} in the support are xaxd+1xb
xb+1xf+2xc+2 of (10) that vanishes with a monomial of (11) and f1 =
xaxd+1xbxb+2xf+1xc+2 of (11) that does not vanish. Then in<((10)−
(11)) = f1 that gives:

+

[
a d b
b f c

]
(12).

Now the remaining monomials in (10)−(11)+(12) vanish at all. Then
(IIIB) is a relation.

(IIIC) b ≤ d, a < b < e < f < c[
a b c
d e f

]
−
[
a b f
d e c

]
= (13)− (14).

Consider first the monomials with the variables indexed by a, b + 1:
xaxb+1xdxe+1xf+2xc+2 of (13) vanishes with a monomial of (14), while
the monomial f1 = xaxb+1xdxe+2xf+1xc+2 of (13) does not vanish.
Then in<((13)− (14)) = f1 that we write as

+

[
a b e
d f c

]
= (15)

Now the monomials f1 of (13) and xaxb+1xdxe+2xf+2xc+1 of (14) van-
ish with monomials of (15). Consider the monomials with {a, d+1} in
the support. The monomials xaxb+1xd+1xexf+2xc+2, xaxb+1xd+1xe+2

xfxc+2 of (13) vanish with monomials of (14) and (15). The monomial
xaxb+1xd+1xe+2xf+2xc of (14) vanishes with a monomial of (15). The
monomial f2 = xaxb+1xd+1xfxe+2xc+2 of (14) does not vanish. Then
the in<((13)− (14) + (15)) = f2 that gives:

+

[
a d e

b+ 1 f − 1 c

]
.

(IIID) b > d, a < d < b < e < f < c[
a b c
d e f

]
−
[
a b f
d e c

]
= (16)− (17).

Consider the monomials with the variables indexed by a, d:
xaxdxb+1xe+1xf+2xc+2 of (16) vanishes with a monomial of (17) while
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f1 = xaxdxb+1xe+2xf+1xc+2 of (16) does not vanish. Then the
in<((16)− (17)) = f1 that gives:

+

[
a b e
d f c

]
= (18).

Now f1 of (16) and xaxdxb+1xe+2xf+2xc+1 of (17) vanish with mono-
mials of (18). Consider the monomials containing the variables indexed
by a, d, b+ 2: xaxdxb+2xe+1 xf+2xc+1, xaxdxb+2xe+2xc+1xf+1 of (16)
vanish with monomials of (17) and (18); xaxdxb+2xe+1xf+1xc+2 of (17)
vanishes with monomials of (18). Consider the monomials with {a, d+
1, b+ 1} in the support: xaxd+1xb+1xe+2xfxc+2, xaxd+1xb+1xexf+2

xc+2 of (16) vanish with monomials of (17) and (18). xaxd+1xb+1xe+2

xf+2xc of (17) vanishes with a monomial of (18). Consider the mono-
mials with {a, d+1, b+2} in the support: f2 = xaxd+1xb+2xexf+1xc+2

of (17) does not vanish. Then in<((16)− (17) + (18)) = f2 that gives

+

[
a d b
e f c

]
.

The expression is not yet a relation since all the monomials do not
vanish. It is easy to check that the monomial xa+1xd+2xbxe+1xfxc+2

is the next lifting.

(IVA) a < b≪ d < e− 1 ≤ c < e < f . See [8] for the proof.

(IVB) d = c = e− 1 a < b≪ e− 1 < e < f − 1 < f[
a b e− 1

e− 1 e f

]
−

[
a e− 2 e− 1

b+ 1 e f

]
= (19)− (20).

Consider the monomials with {a, b+1, e−1} in the support (since there
are not monomials with xa and xb): in (19) xaxb+1xe−1xe+1xe+1xf+2,
−xaxb+1xe−1xe+1xe+2xf+1 vanish with monomials of (20). Consid-
ering the monomials with {a, b + 1, e}, in (19) xaxb+1xexexe+1xf+2

vanishes with a monomial of (20) while f1 = xaxb+1xexexe+2xf+1 of
(20) does not vanish. Then in<((19)− (20)) = f1 that we write as[

a e− 1 e
b+ 1 e− 1 f − 1

]
= (21).

Now in (21) there are not monomials with {a, b+1, e−1} in the support
and consider again monomials containing xa, xb+1, xe: xaxb+1xex

2
e+1
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xf+1, xaxb+1xexe+1xe+2xf of (19) vanish with monomials of (21).
Consider the monomials with {a, b+1, e+1} in the support: xaxb+1x

3
e+1

xf of (19) vanishes with a product of (21). Then consider the mono -
mials containing the variables indexed by a, b+ 2, e− 1:
xaxb+2xe−1xexe+1xf+2, xaxb+2xe−1xexe+2xf+1 of (19) vanish with prod-
ucts of (20) and (21), while f2 = xaxb+2xe−1x

2
e+1xf+1 of (21) does not

vanish. Then in<((19)− (20) + (21)) = f2 that we write as[
a e− 2 e− 1

b+ 2 e f − 1

]
.

(IVB1) d = c = e− 1, e+ 1 = f a < b≪ e− 1 < e < e+ 1[
a b e− 1

e− 1 e e+ 1

]
−
[

a e− 2 e− 1
b+ 1 e e+ 1

]
= (22)− (23).

Consider first the monomials with {a, b+1, e−1} in the support (since
there are not monomials with xa and xb): in (22) xaxb+1xe−1x

2
e+1xe+3,

xaxb+1xe−1xe+1x
2
e+2 vanish with monomials of (23). Considering the

monomials with xa, xb+1, xe, in (22) we have xaxb+1x
2
exe+1xe+3, that

vanishes with a monomial of (23); in (23) we have only f1 = xaxb+1x
2
e

x2e+2. Then in<((22)− (23)) = f1 that we write as[
a e− 1 e

b+ 1 e− 1 e

]
= (24).

Now in (24) there are not monomials with xa, xb+1, xe−1 in the support
and we consider the monomials with xa, xb+1, xe: 2xaxb+1xex

2
e+1xe+2

of (22) vanishes with a monomial of (24). Consider the monomials
with {a, b + 1, e + 1} in the support: xaxb+1x

4
e+1 of (22) vanishes

with a monomial of (24). Then we consider the monomials containing
xa, xb+2, xe−1. It easy to check that in the sum (22) − (23) + (24)
all the monomials with the variable xa vanish. Then we consider
monomials containing xa+1, xb. They are only in (22) where f2 =
xa+1xbxe−1x

2
e+1xe+3 does not vanish. Then in<((22)−(23)+(24)) = f2

that we write as [
a+ 1 e− 2 e− 1
b e e+ 1

]
.

(IVC) d < e− 1, c = e, a < b≪ d < e− 1 < e < f[
a b e
d e f

]
−
[

a d− 1 e
b+ 1 e f

]
= (25)− (26).



Combinatorics of Hankel relations 127

Consider first the monomials with {a, b+1, d} in the support: in (25)
xaxb+1xdxe+1xe+2xf+2, xaxb+1xdxe+2xe+2xf+1 vanish with monomi-
als of (26). Then we consider the the monomials with {a, b+1, d+1}
in the support: f1 = xaxb+1xd+1xexe+2xf+2 of (25) does not vanish
and then in<((25)− (26)) = f1 that we write as[

a d e
b+ 1 e− 1 f

]
= (27).

Now we consider the products in (25), (26), (27) containing the vari-
ables indexed by a, b + 1, d + 1, e + 1: f2 = xaxb+1xd+1xe+1xe+1xf+1

does not vanish. Then in<((25)− (26) + (27)) = f2 that we write as

−
[

a d e− 1
b+ 1 e f

]
.

(IVD) d = e− 1 c = e a < b≪ e− 1 < e < f − 1 < f[
a b e

e− 1 e f

]
−
[

a e− 2 e
b+ 1 e f

]
= (28)− (29).

Consider the monomials with the variables indexed by a, b + 1, e − 1
(since there are not monomials with a and b): xaxb+1xe−1xe+1xe+2xf+2,
xaxb+1xe−1xe+2xe+2xf+1 of (34) vanish with products of (29). Then
we consider the products containing the variables indexed by a, b+1, e:
f1 = xaxb+1xexexe+2xf+2 of (28) does not vanish. Then in<((28) −
(29)) = f1 that we write as

+

[
a e− 1 e

b+ 1 e− 1 f

]
= (30).

Now we consider the monomials in (28), (29), (30) containing the vari-
ables indexed by a, b+ 1, e, e+ 1: f2 = xaxb+1xexe+1xe+2xf+1 of (28)
vanishes with a product of (29), xaxb+1xexe+1xe+1xf+2 of (29) van-
ishes with a product of (30). But there is another product f3 in (30)
equal to f2 that does not vanish. Then in<((28) − (29) + (30)) = f3
that we write as

+

[
a e− 1 e

b+ 1 e f − 1

]
.

(IVD1) d = e− 1 c = e =, f = e+ 1 a < b≪ e− 1 < e < e+ 1
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This case is the same of (IVD) until the first lifting, just putting f =
e+ 1. Computing the second lifting, the monomial xaxb+1xexe+1xe+2

xe+2, corresponding to f3 of (VD), vanishes with a monomial of (28).
Then we consider monomials with {a, b + 1, e + 1} in the support:
xaxb+1xe+1xe+1xe+1xe+2 vanishes with a product of (30). The mono-
mials with {a, b + 2, e − 1} in the support: xaxb+2xe−1xe+1xe+1xe+3

of (28) and xaxb+2xe−1xexe+2xe+3 of (29) vanish with monomials of
(30). The monomials containing the variables indexed by a, b + 2, e:
2xaxb+2xexe+1xe+1xe+2 and xaxb+2xexexe+1xe+3 of (28) vanish with
monomials of (29) and (30). The monomials having {a, b + 2, e + 1}
in the support are xaxb+2xe+1xe+1xe+1xe+1 of (28) that vanishes with
a monomial of (30). The monomials containing the variables indexed
by a, b+3 are xaxb+3xe−1xexe+2xe+2 and xaxb+3xe−1xe+1xe+1xe+2 of
(29) that vanish with monomials of (30).Finally, consider the mono-
mials containing the variables indexed by a+1, b that there exist only
in (28):f3 = xaxbxe−1xe+1xe+2xe+3, f4 = xa+1xbxe−1xe+2xe+2xe+3.
Then in<((28)− (29) + (30)) = f3 that we write as[

a+ 1 e− 2 e
b e e+ 1

]
.

(IVE) a < b≪ d < e < c < f

[
a b c
d e f

]
−
[

a d− 1 c
b+ 1 e f

]
= (31)− (32).

Consider first the products containing the monomials with the vari-
ables a, b+ 1, d (since there are not monomials with variables indexed
by a, b): in (31) xaxb+1xdxe+1

xc+2xf+2, xaxb+1xdxe+2xc+2xf+1 vanish with products of (32). Then
we consider the products containing variables indexed by a, b+1, d+1:
f1 = xaxb+1xd+1xe+2xc+2xf and f2 = xaxb+1xd+1xexc+2xf+2 of (31),
f3 = xaxb+1xd+1xe+1xc+1xf+2 and f4 = xaxb+1xd+1xe+2xc+1xf+1 of
(32); f1, f2, f3, f4 do not vanish and then in<((31) − (32)) = f2, that
we write

[
a d c

b+ 1 e− 1 f − 1

]
= (33).
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Now we consider f5 = xaxb+1xd+1xe+1xc+2xf+1 of (33) with {a, b +
1, d+1}. f1, f2, f3, f4, f5 do not vanish. Then in<((31)−(32)+(33)) =
f3 that we write as

[
a d c− 1

b+ 1 e f

]
.

(VA) b = d− 1, d < c, c+ 3 < f a < b < d < c≪ e < f[
a d− 1 c
d e f

]
−

[
a d− 1 e− 1
d c+ 1 f

]
= (34)− (35).

We consider the monomials with variables indexed by a, d (since there
are not monomials with variables indexed by a and d−1): xaxdxdxc+2

xe+1xf+2 of (34) vanishes with a product of (35), while f1 = xaxdxdxc+2

xe+2xf+1 of (34) and f2 = xaxdxdxc+3xe+1xf+1 of (35) do not vanish.
Then in<((34)− (35)) = f1 that gives:

[
a d− 1 e
d c+ 1 f − 1

]
= (36).

Now f2 does not vanish with any product of (35) and (36). Then
in<((34)− (35) + (36)) = f2 that gives:

−
[
a d− 1 e− 1
d c+ 2 f − 1

]
.

(VA1) b = d− 1, d = c, d = f − 3, a < d− 1 < d≪ d+ 2 < d+ 3[
a d− 1 d
d d+ 2 d+ 3

]
−
[
a d− 1 d+ 1
d d+ 1 d+ 3

]
= (37)− (38).

We consider the monomials with {a, d} in the support (since there
are not monomials with variables indexed by a and d − 1 ): in (37)
xaxdxdxd+2xd+3xd+5 vanishes with a product of (38) while f1 = xaxdxd
xd+2xd+4xd+4 of (37) and f2 = xaxdxdxd+3xd+3xd+4 of (38) do not
vanish. Then in<((37)− (38)) = f1 that we can write:[

a d− 1 d+ 2
d d+ 1 d+ 2

]
= (39).
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Now in (37) and (38) the monomials with {a, d} in the support are f1
and f2 that vanish with products of (39). Then we consider the mono-
mials containing variables xa, xd, xd+1. In (37) xaxdx

2
d+1xd+3xd+5,

xaxdxd+1x
2
d+2xd+5 vanish with monomials of (38), xaxdx

2
d+1xd+4xd+4

vanishes with a monomial of (39). In (37) and (39) 2xaxdxd+1xd+2xd+3

xd+4 vanishes with monomials of (38) and (39). In (38) xaxdxd+1xd+2

xd+3xd+4, xaxdxd+1x
3
d+3 vanish with products of (39). The products

containing the variables xa, xd, xd+2 are in (39) xaxdx
2
d+2x

2
d+3 and

xaxdx
3
d+2xd+4 that vanish with products of (38) and (39); the products

containing the variables xa, xd+1 are in (37) xaxdx
2
d+1xd+2xd+5 and

xax
2
d+1xd+2xd+3xd+5 that vanish with products of (38), xaxdx

2
d+1xd+3

xd+4 and xax
2
d+1xd+2x

2
d+3 that vanish with products of (39); in (39)

xax
2
d+1xd+2x

2
d+3 and xaxd+1x

3
d+2xd+3 that vanish with products of

(40).The products containing the variables xa, xd−1 are:
xa+1xd−1xd+1x

2
d+3xd+4 and xa+1xd−1xd+1x

2
d+2xd+5 in (37), xaxd−1xd+1

x3d+3 and f3 = xa+1xd−1x
2
d+1xd+3xd+5 in (44), xa+1xd−1xd+1xd+2xd+3

xd+4, xa+1xd−1x
2
d+1x

2
d+4 in (39). All of the previous products do not

vanish and in<((37)− (38)) = f3 that we can write as[
a+ 1 d d+ 1
d− 1 d d+ 3

]
.

(VB) b = d− 1, d < c, c+ 3 = f a < d− 1 < d < c≪ c+ 2 < c+ 3[
a d− 1 c
d c+ 2 c+ 3

]
−
[
a d− 1 c+ 1
d c+ 1 c+ 3

]
= (40)− (41).

We consider the monomials with variables xa, xd (since there are not
monomials with xa, xd−1): in (40) xax

2
dxc+2xc+3xc+5 vanishes with

a product of (41), while f1 = xax
2
dxc+2x

2
c+4 ( in (40)) and f2 =

xax
2
dx

2
c+3xc+4 ( in (41)) do not vanish. Then in<((40) − (41)) = f1

that gives [
a d− 1 c+ 2
d c+ 1 c+ 2

]
= (42).

Now f2 does not vanish with any product of (40) and (42). Then
in<((40)− (41) + (42)) = f2 and we have:

−
[
a d c+ 2
d c c+ 2

]
.
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(VC) d ≤ b, c+ 3 < f , a < d ≤ b < c≪ e < f[
a b c
d e f

]
−
[
a b e− 1
d c+ 1 f

]
= (43)− (44).

We consider first the monomials with variables xa, xd:
xaxdxb+1xc+2xe+1xf+2 (in (43)) vanishes with a product of (44), while
f1 = xaxdxb+1xc+2xe+2xf+1 (in (43))and f2 = xaxdxb+1xc+3xe+1xf+1

(in (44)) do not vanish. Then in<((43)− (44)) = f1, that we write as[
a b e
d c+ 1 f − 1

]
= (45).

Now f2 does not vanish with any product of (43) and (44). Then
in<((43)− (44) + (45)) = f2 that we write as

+

[
a b c+ 1
d e f − 1

]
.

(VC1) d ≤ b, c+ 3 = f , a < d ≤ b < c≪ e < f[
a b c
d c+ 2 c+ 3

]
−
[
a b c+ 11
d c+ 1 c+ 3

]
= (46)− (47).

We consider the monomials with {a, d} in the support: in (46) xaxdxb+1

xc+2xc+3xc+5 vanishes with a product of (47), while f1 = xaxdxb+1

xc+2xc+4xc+4 ( in (46))and f2 = xaxdxb+1xc+3xc+3xc+4 ( in (47)) do
not vanish. Then in<((46)− (47)) = f1 that we write as[

a b c+ 2
d c+ 1 c+ 2

]
= (48).

Now f1 and f2 vanish with products of (48) and we consider the mono-
mials containing xa, xd, xb+2. The monomial f3 = xaxdxb+2xc+1xc+3

xc+5 does not vanish. Then in<((46)− (47)+(48)) = f3 that we write
as [

a b+ 1 c+ 1
d c c+ 3

]
.

(VIA) c < d, c+ 3 < f , a < b < c < d < e < f
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[
a b c
d e f

]
−
[

a d− 1 e− 1
b+ 1 c+ 1 f

]
= (49)− (50).

Consider the monomials with {a, b+ 1} (since there are not monomi-
als containing xa, xb): in (49) we have xaxb+1xc+2xdxe+1xf+2 (that
vanishes with a product of (50)), f1 = xaxb+1xc+2xdxe+2xf+1 and
xaxb+1xc+3xdxe+1xf+1. Then in<((49)− (50)) = f1 that gives:[

a d− 1 e
b+ 1 c+ 1 f − 1

]
= (51).

Considering the monomials containing variables xa, xb+1 starting by
xa, xb+1, xc+2, we observe that the monomials f1 and xaxb+1xc+2xd+1xe
xf+2 of (49) vanish with products of (51) and (50), while f2 = xaxb+1

xc+2xd+1xe+2xf of (49) do not vanish. Then in<((49)− (50)+(51)) =
f2 that gives [

a d e
b+ 1 c+ 1 f − 2

]
.

(VIA1) c < d, c+ 3 = f , a < b < c < c+ 1 < c+ 2 < c+ 3

[
a b c

c+ 1 c+ 2 c+ 3

]
−
[

a c c+ 1
b+ 1 c+ 1 c3+

]
= (52)− (53).

We consider the monomials with {a, b+1} in the support (since there
are not monomials containing xa, xb).The products containing xc+1 in
(52) are xaxb+1xc+1xc+2xc+3xc+5 that vanishes with a product of (53)
and f1 = xaxb+1xc+1xc+2xc+4xc+4. In (53) we have f2 = xaxb+1xc+1

xc+3xc+3xc+4. Then in<((52)− (53)) = f1, hence[
a c c+ 2

b+ 1 c+ 1 c+ 2

]
= (54).

Now the monomials containing xa, xb+1, xc+1 are: xaxb+1xc+1xc+2xc+4

xc+4, that vanishes with f1, and xaxb+1xc+1xc+3xc+3xc+4,that van-
ishes with f2 . Then we have to consider the products containing
xa, xb+1, xc+2 in (52), (53) and (54): in (52), xaxb+1xc+2xc+2xc+3xc+4

and xaxb+1xc+2xc+2xc+2xc+5 vanish with two products of (53), xaxb+1
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xc+2xc+2xc+3xc+4 and xaxb+1xc+2xc+3xc+3xc+3 vanish with two prod-
ucts of (54). Then we consider the products containing xa, xb+2, begin-
ning with xa, xb+2, xc+1: in (52) xaxb+2xc+1xc+1xc+3xc+5, xaxb+2xc+1

xc+3xc+3xc+3, xaxb+2xc+1xc+2xc+2xc+5 vanish with pro - ducts of (53),
xaxb+2xc+1xc+1xc+4xc+4, 2xaxb+2xc+1xc+2xc+3xc+4 vanish with prod-
ucts of (53). In (53) xaxb+2xc+2xc+2xc+3xc+3 vanishes with a term of
(54). Finally we consider the products containing xa+1, xb. They ap-
pear only in (52) and so

in<((52)− (53) + (54)) = xa+1xbxc+1xc+2xc+3xc+5

that gives: [
a+ 1 c c+ 1
b c+ 1 c+ 3

]
.

(VIB) d ≤ c, c+ 3 < f a < b≪ d ≤ c≪ e < f

[
a b c
d e f

]
−
[

a d− 1 e− 1
b+ 1 c+ 1 f

]
= (55)− (56).

We consider the monomials with {a, b+1} in the support (since there
are not monomials with xa, xb ): in (55) xaxb+1xdxc+2xe+1xf+2 van-
ishes with a product of (56), while f1 = xaxb+1xdxc+2xe+4xf+1 of (55)
does not vanish. Then in<((55)− (56)) = f1 that gives[

a d− 1 e
b+ 1 c+ 1 f − 1

]
= (57).

Now f1 vanishes with a monomial of (57), f2 = xaxb+1xdxc+3xe+1xf+1

does not vanish. Then in<((55)− (56) + (57)) = f2 that gives

+

[
a d− 1 e− 1

b+ 1 c+ 2 f − 1

]
.

(VIB1) d ≤ c a < b≪ d ≤ c≪ c+ 2 < c+ 3

[
a b c
d c+ 2 c+ 3

]
−
[

a d− 1 c+ 1
b+ 1 c+ 1 c+ 3

]
= (58)− (59).
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Consider the monomials with the variables xa, xb + 1 (since there are
not monomials with xa, xb ): we have in (58) xaxb+1xdxc+2xc+3xc+5,
that vanishes with a product of (59), f1 = xaxb+1xdxc+2xc+4xc+4 and
f2 = xaxb+1xdxc+3xc+3xc+4. Then in<((58)−(59)) = f1 that we write
as [

a d− 1 c+ 2
b+ 1 c+ 1 c+ 2

]
= (60).

Here the products containing xa, xb+1, xd vanishes with products of
(58) and (59). So we consider all products containing xa, xb+1, xd+1.
In (58) the products xaxb+1xdxc+2xc+4xc+4, xaxb+1xd+1xc+2xc+3xc+4,
xaxb+1xd+1xc+2xc+2xc+5, xaxb+1xd+1xc+2xc+2xc+5 vanish with prod-
ucts of (58) or (59). The remaining products are:
f2 = xaxb+1xd+1xc+2xc+3xc+4 and xaxb+1xd+1xc+3xc+3xc+3. Then

in<((58)− (59) + (60)) = f2

that we write as

[
a d c+ 1

b+ 1 c+ 1 c+ 2

]

Remark 1. The property of normality of H(2, n) has been studied in [3],
by using the partial liftings given in [8].
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