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COMBINATORICS OF HANKEL
RELATIONS*

Gioia Faillal

Abstract

We investigate the problem to determine the defining equations of
the algebraic variety of Hankel two-planes in the projective space. We
compute the first and the second partial lifting of the Machado’s bino-
mial relations, by applying tecniques of Sagbi bases theory.
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1 Introduction

In the study of toric ideals and of canonical bases of subalgebras many
authors are interested on the problem to degenerate an arbitrary paramet-
rically presented variety X into a toric variety Y. The basic idea is to
degenerate the algebra generators into monomials and therefore the algebra
polynomial relations to binomials relations. We can see how this can be
accomplished if X is a Grassmann variety, since there is a beautiful link
between the toric ideal I of the toric degeneration of X and the Grassmann-
Pliicker ideal of X, whose initial ideal, with respect to a fixed weighted term
order ([13]) on the monomials of the polynomial ring of the presentation of
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X, coincides with I. In general for subvarieties of X, the previous result is
not true. For the Hankel variety H(r,n), subvariety of G(r,n) (introduced
in [10] by Giuffrida and Maggioni and later studied in [9], [4] and [6]), the
result is true for r = 1, since we have the basic result of Conca, Herzog,
Valla ([2]). Some combinatorial results are given in [5] and [7]. Neverthe-
less, the toric deformation of H(r,n) is known, in the sense that Machado
([11]) established all binomial relations of the degenerate variety of H(r,n).
Then, an open problem is to find the relations of H(r,n), starting from
Machado relations and most proofs depend currently from Sagbi bases the-
ory. By employing this theory, in [8] we obtain an algorithm that permits
us to write all relations of H(2,5). In the same paper we give the list of
partial liftings of the binomial relations of Machado, consisting of polyno-
mials p; = >, mit , mj a term. In some cases they are effective relations for
H(2,n). It is not clear if it will be possible to obtain all effective relations.
For this proposal, we must work on the 4th term of the partial liftings and
to extend the procedure adopted in [8] by the algorithm, for obtaining terms
mgt, t > 5. In this paper we present in detail all developments of the results
that are built on the partial liftings for H(2,7n)(only two cases are proved in
detail in [8]). Our results are the starting point for a systematic study of the
effective relations of H(2,n), for any n. More precisely, in the main theorem
of Section 2 we describe the basic techniques for all the steps occurring to
obtain the 5th monomial in the virtual relations and the next monomials.
Section 1 contains notations, some known results on Machado relations and
the partial liftings ([8],[11]). Some results of this note have been conjectured
by using the software CoCoA [1].

2 Preliminaries

A matrix of the form

xl $2 “ e PEEEEY xn
45 xs3 U In Tn+1
Hr,n =
x?"—l xr “ e PEEErY xn+r—1
Ly Lr4+1 - Tptr—1 Tn+r

is called Hankel matriz, whose entries belong to a commutative ring R. We
consider generic Hankel matrices H, ,, then the entries are indeterminates.
Let K be a field and S = K[z, z2,...,Zntr] the polynomial ring over K in
n + r indeterminates. We denote by [i1is...1%,] the r-minor with columns



Combinatorics of Hankel relations 115

11 < i2 < ...%p. Let < be the lexicographical order induced by z; > z9 >
... > ZTpyr. Then

z'n< [’ilig .o .’ir] = Tj1 Ljg+1 -+ - Liptr—1,

where the monomial x;, Zi,+1 . .. i, +r—1 is the product of monomials corre-
sponding to the main diagonal of the minor [ijia. ..y
Denote by As ,, the K-algebra over K generated by the initial monomials

Ty Lig41Tig42 With 1 <4y < ip < i3 < n of the 3—minors of Hs,. Moreover,
let T = KYiyigis : 1 < i1 < ia < i3 < n] be the polynomial ring in the
variables ¥;,4,i, and let ¢ : T' — A, ,, be the K-algebra homomorphism with
Yivigis W Tiy Tin+1Tis+2. Bach monomial of degree d in T' can be identified
with a d x 3 matrix

111 412 113

91 122 123

id1 42 43

such that (i11912713) > (i21922%23) > - -+ > (ig1i42i43). In particular a mono-
mial of degree two in T' corresponds to a matrix of the form

a b c
d e f
witha <b<e¢, d<e< fand (a,b,c) > (d,e, f).

Theorem 1. (Machado[11]) With the assumptions and notations intro-
duced, one has:

The kernel J = ker ¢ is generated by the following type of relations

a b c a e c .
(d . f>_<d b f) with e <b, c< f,
a b c a e f .
<d . f><d b c> with e <b, f<e,
a b c a b f .
<d . f>_<d . c> with b<e, f<e,

and assuming that a < d, b <e, c < f one has
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a b ¢ a d—1 ¢ .
_ o
(d e f) (b+1 e f) with b<dye—c<l,d-—1<e¢

a b ¢ a b e—1 ‘
(d 2 f>_<d c+1 f > with d—b<1l,c<e,c+1<f

a b ¢ a d—1 e—1 )
(d . f>_<b+1 et f> with bk d, c<Ke.

Here we set i < jif j —i > 2.

The following theorem gives a criterion for the existence of a Sagbi basis
which is a variation of the known criterion by Robbiano and Sweedler given
n [12]. The proof is contained in [8].

Theorem 2. Let T = K(y1,...,Ym] be the polynomial ring over K in the
variables yi,...,Ym, and let o : T — A the K-algebra homomorphism with
yi — a; and ¥ : T — inc(A) the K-algebra homomorphism with y; —
in<(a;) fori=1,...,m. Let I = Kery and fi,..., fr be a set of binomial
generators of J = Kervy. Then the following conditions are equivalent:

(@) aiy...,am is a Sagbi basis of A.
(b) For each j, there exist monomials my,...,ms € T and c1,...,cs € K
such that

(7) fj—i-ZfCimiGI. '
(43) in<(p(mit1)) = in<(o(f; + ZZ=1 ckmy)) < in<(p(m;)),
in<(p(f; +c1mi)) <inc(o(fj))-

If the equivalent conditions are satisfied, we call f; + Y7 ¢;m; a lifting

of fj.

3 Computing the relations of H(2,n)

By Theorem 2, one deduced easily the following algorithm ([8]) that
permits to obtain polynomial relations from the binomial relations:

1. Choose one of the binomial relations of the initial terms of the minors
in the initial algebra listed in Theorem 1, replace in the relation the initial
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terms by the corresponding minors to obtain the element f; € Ay ,, and
determine its initial term.

2. If in< f1 is not a product of the initial terms of two minors of H3,,
then the relation f; is not liftable. In this case the minors of Hankel matrix
do not form a Sagbi basis (in our case this never happened).

3. If in< f1 is a product of the initial terms of two minors mi, ms, then
we add a suitable multiple of mims to fi to obtain fo with the property
that in< fo <incfi.

4. Proceed recursively by step 3.

The algorithm is applied to determine the expression of the first and
second lifting of the binomial relations of Machado.

By repeated applications of the algorithm, there is the researched list of
liftings.

For the following the employed monomial order is the lexicographic order
and the usual order of the variables is x; > z2 > ... > x,492. Moreover,

a d c

we will identify the symbol [ e b f ] with the corresponding product of

minors

Lq Tp Te Td Te Te
La+1 Th+1 Letl| [Td4+1 Tetl Letl
Ta42 Tb4+2 Tcet2| |Td+2 Tet2 T2

and the difference between two symbols by (i) — (j).

Theorem 3. The binomial relations of the K —algebra As ,, have the follow-
ing liftings and partial liftings:

I e<bc<f

(IA) c=f, a<d<e<b<ec
a b c|
d e f
(IB) e<f, a<d<e<b<e<f
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(1)

(I11)

(ITIA)

(ITIB)

(I1IC)

(I1ID)

b<e, f<c

a=d, a<b<e<f<ec

a b ¢ a b f a b e

a e f| |a e ¢ + a [ ¢
b=e, a<d<b<f

a b c a b f a d

d b fl7[db c|T|b f
b<d, a<b<d<e<f<ec

a b ¢ a b f a b

d e f d e ¢ || d f

a b f—2

+[d+1 e+l ¢ }+
b>d, a<d<b<e<f<ec

a b ¢ a b f a b e a d b
[d e f}i{d e c}+{d f C]Jr{e f C}Jr

2<d—-be—c<l,d-—1<c

a<bgd<e—1<c<e<f
b ¢ a d—1 ¢ a d e—1
e f} {b+1 e f}+[b+1 c f 7

a
d
{ b+1 ¢ } o

|

G. Failla
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(IVB) d=c=e—-1, a<b<ge—-1l<e<f-1<f

a b e—1 _ a e—2 e—1 n a e—1 e n
e—1 e f b+1 e f b+1 e—1 f—-1

a e—2 e
+[b+2 e f71}+”

(IVB1) d=c=e—-1l,e=f—-1, a<b<ge—1<e<e+]1

a b e—1 _ a e—2 e—1 " a e—1 e n
e—1 e e+1 b+1 e e+ 1 b+1 e—1 e
a+1l e—2 e—1

+{ b e e—l—l}—’—“.

(IVC) d<e—1l,c=e, a<b<gd<e—1l<e<f
a b e | a d—1 e " a d e
d e f b+1 e f b+1 e—1 f
B a d e—1 4.
b+1 e f
(IVD) d=e—-1,c=e¢, a<b<e—l<e<f-1<f

a b e _ a e—2 e " a e—1
e—1 e f b+1 e f b+1 e—1

a e—1 e
+{b+1 e f71}+”

~ O
—
+

(IVD1l) d=e—1l,c=e, f=€e+1, a<b<kKe—-1l<e<e+1
a b e B a e—2 e n a e—1 e n
e—1 e e+1 b+1 e e+1 b+1 e—1 e+1

a+1l e—2 e
e e

(IVE) a<bgd<e<c<f
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(V) d-b<1l,2<e—c,c+1<f

(VA) b=d—-1,d<c,c+3<f, a<b<d<c<ge<f

a d—1 c | a d—1 e—1 a d-—1 e n
d e f d c+1 f d c+1 f-1
| a d—1 e—1 ..
d c+2 f-1
(VA1) b=d—-1,d=c,d=f—-3, a<d—-1<d<d+2<d+3
a d—1 d la d=1 d+1 a d—1 d+2
d d+2 d+3 d d+1 d+3 d d+1 d+2
e+l d d+1 4.
d—1 d d+3
(VB) b=d—-1,d<c¢,c+3=f a<b<d<c<Kc+2<c+3
a d-—1 c | a d—1 c+1 a d—1 c+2 n
d ¢c+2 c¢+3 d c+1 c¢c+3 d c+1 c+2

a d c+2
_{d c c+2}+'“

(VC) d<b,c+3<f a<d<b<cKe<f

a b ¢ a b e—1 a b e
d e f |l | derr f | d e41 g1 ]"

(VC1) d<b,c+3=f, a<d<b<cke<f

b b 1 b 2
c }_{a c+ } {a c+ n

c+2 c¢+3 d c+1 c¢+3 d c+1 c+2
b+1 1
+1 c+ }+“.

a
d c c+3

— &R

(V) 2<d-b2<e-c

G. Failla
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(VIA) c<d, a<b<c<d<e<f,c+3<f

b c a d—1 e—1 " a d—1 e
e f b+1 c+1 f b+1 c+1 f-1

a
d

€ +.‘.
b+1 c+1 f—2

(VIAL) e<d,c+3=f, a<b<c<c+l<c+2<c+3

a b c B a c c+1 n a c c+2 "
c+1 ¢c+2 c+3 b+1 c+1 c+3 b+1 ¢c+1 c+2

a+1 c c+1
+{ booc+1 c+3]+”

(VIB) d<c¢,c+3<f, a<bgd<ckge<f
a b ¢ a d—1 e—1 n a d—1 e n
d e f b+1 c+1 f b+1 c+1 f—-1
+ PR N
b+1 c+2 f-1

(VIB1) d<¢, a<bgd<c<c+2<c+3
a b c B a d—1 c+1 a d—1 c+2 n
d c¢c+2 c+3 b+1 c¢c+1 c+3 b+1 c+1 c+2

a d c+1
+{ b+1 c+1 c+2 }Jr

Proof. (IA) c=f, a<d<e<b<c. See[§] for the proof.

(IB) e<f a<d<e<b<ec<f
Consider the binomial relation
a b c _fa e ¢
d e ¢ d b f)°

Replace it by the difference of the products of the corresponding mi-
nors:
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a b c a e ¢
[dec}_[dbf]: (1)-@)
Lq Ty Te Td Te T

= [Ta+1 Tbrl Tetl||Tdtl Tetl Tetl|t
Ta+2 Th+2 Tet2| | Td+2 Tet+2 Te42

Za Te Ze x4 Tp Tf
—|%at+1 Tet+l Letl| |Ld+1l Lo+l Tf41-
Ta+2 Tet2 Let2| |Td+2 To+2 Tf42

The monomials of (1), with {a,d,e + 1} in their support, consist
of the unique monomial x,ZqTe41Tp+1%c427 f4+2 that vanishes with a
product of (2), while fi = ZaZq%et1Tp42%cr12542 of (1) and fo =
LT Tet1Thr2Ter2Z 41 Of (2) do not vanish. Then the in ((1)—(2)) =

f1, that gives
a e b
[ d ¢ f ] =)

Now in (1) and (2) the products with {a,d,e + 1} in the support are
fi and f> that vanish with products of (3). Then we consider the
products with {a,d,e + 2} in their support, z,2q%et22p42Tcr12 41,
TqTTet2Tp41%cq20f41 that vanish with products of (2) and (3), in
(2) TaTqTeqoThi1Ter1T f42 vanishes with a monomial of (3). Finally
we consider the monomials with {a,d + 1} in their support starting
by %4, 441, xe that are only in (1): f3 = TqTq41ZeTpi1Ter2T p42 and
TqTaq1Telhr2Ter1Zf42. Then in ((1) — (2) + (3)) = f3 that gives:

a d c
e b f|°
But the procedure can continue and we can obtain other pieces in the
lifting.
e<band f<c¢, a<d<e<b< f<ec
a b c a e f
— =(4) — (5).
[def] [dbc] (4) - )
Consider first the monomials of (4) with {a,d} in the support:
LaZldTe+1Lp4+1L f4+2Lc+25 LaldLe+2Top+1L f+1Lc+2; LaldLe+1Lo42T f4+2Lc+1,
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(ITTA)

(I1IB)

LT dTet2Lh12% f4+1%c41 vanish with products of (5). Then we consider
the monomials with {a,d+ 1} in the support: fi = ZqTq4+1TeTpr12 142
Zet2 do not vanish. Then in.((4) — (5)) = f1 gives:

a d f
[ e b ¢ ] = (6).
Now in (6) there are not monomials whose support contains {a,d}
and we consider the monomials containing the variables indexed by
a,d + 1. The monomials fi; and aZq41ZeTpt22 12241 of (4) van-
ish with monomials of (6). The monomials Zq%d41Tet1Tp42T f42Tc,
LaLdi1Tep10pL f12Zcq2 Of (5) vanish with monomials of (6). The
monomial fo = ZaZdq1Te22pT f+12c42 Of (8) does not vanish. Then
in<((7) = (8) + (9)) = f2 gives

e

c } ’

a
b
a=d, a<b<e<f<ec

-l e

Consider first the monomials with {a,b+ 1} in the support(since there
are not monomials with a and b ): in (7) xgxb+1xe+1a:f+2a:c+g vanishes
with a monomial of (8), while f; = x2xp 1Tc o f+1Tc42 does not
vanish. Then in-((7) — (8)) = f1 that gives

fti)o

Now the remaining monomials in the sum (7) — (8) + (9) vanish at all.
Then (IIIA) is a relation.

d
f

b=e, a<d<b< f<ec

[3 Z ;]‘[3 Z £]=<10>—<11>.

Consider first the monomials with the variables indexed by a,d: the
monomials of (10) TqTqZp41Tp4+1% f+2Tct25 TaZLdLo+1Lh42% f4+1Lc42,
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(I1IC)

(ITID)
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TaTdTh41Th42% f42Tc125 TaTdTp+2Tp42T f41Tc+1 vanish with monomi-
als of (11). The monomials with {a,d+1} in the support are z,z4+12
Tp12 f2%c42 Of (10) that vanishes with a monomial of (11) and fi =
TqTd41TpTp42T f+1Tct2 Of (11) that does not vanish. Then in((10) —

(11)) = f1 that gives:
+ [ ) ? ﬁ ] (12).

Now the remaining monomials in (10) — (11) 4 (12) vanish at all. Then
(ITIB) is a relation.

b<d, a<b<e<f<ec

AREnEET

Consider first the monomials with the variables indexed by a,b + 1:
TqLp10dTe4 1% f12%cq2 Of (13) vanishes with a monomial of (14), while
the monomial fi = zqTp11TqZTer22 f1Tc42 of (13) does not vanish.
Then in((13) — (14)) = f1 that we write as

a b
g

Now the monomials fi of (13) and xq%p1124%eq2% f122c41 Of (14) van-
ish with monomials of (15). Consider the monomials with {a,d+1} in

(&
C

| =)

the support. The monomials x,Zp412d41Ze® f42Tct2, TaTpt1Td41Tet2
xfZeqo of (13) vanish with monomials of (14) and (15). The monomial
LT 10441 Tet2T f42c Of (14) vanishes with a monomial of (15). The
monomial fo = TqTp41Td41%fTer2Ter2 Of (14) does not vanish. Then
the in<((13) — (14) + (15)) = f2 that gives:

n a d
b+1 f—1

a0
[ |

b>d, a<d<b<e<f<ec

[ 3 Z ; ] —’[ Z Z i } = (16) — (17).

Consider the monomials with the variables indexed by a, d:
LT dThy1Teq 1% f12%cq2 Of (16) vanishes with a monomial of (17) while
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(IVA)
(IVB)

fi = Ty 1Teqo f1Zcq2 Of (16) does not vanish. Then the
in<((16) — (17)) = f1 that gives:

+[g ; i]z(lS).

Now fi of (16) and xq%q%pt1Teq2% f12%ct1 Of (17) vanish with mono-
mials of (18). Consider the monomials containing the variables indexed
by a,d, b+ 2: TqTqTp12Teq1 Tf12Tet1, LaldThr2Tet2Teqr1Z 41 Of (16)
vanish with monomials of (17) and (18); £,%qZp42%es17 f41Tcq2 Of (17)
vanishes with monomials of (18). Consider the monomials with {a, d+
1,b+ 1} in the support: TqTdq41%641Te 2T fTet2, TaTdt1Tht1Tel f42

Zeyo of (16) vanish with monomials of (17) and (18). ZqTg11Tpr1Tet2
xf12xc of (17) vanishes with a monomial of (18). Consider the mono-
mials with {a,d+1,b+2} in the support: fo = ZaZd41Tp12Te® f11Tc42
of (17) does not vanish. Then in-((16) — (17) 4+ (18)) = fo that gives

L@ d b
e f ¢ |’
The expression is not yet a relation since all the monomials do not

vanish. It is easy to check that the monomial zq17q2TpTet17fTe 2
is the next lifting.

a<b<gd<e—1<c<e<f. See 8] for the proof.

d=c=e—1 a<bge—-l<e<f-1<f

a b 6—1]_[ @ e=2 el 9y (20).

e—1 e f b+1 e f

Consider the monomials with {a, b+1,e—1} in the support (since there
are not monomials with z, and xp): in (19) £Tp41Te—1Tet1Tet 1742,
—ZqTpy1Te—1Tet1Zet22 f+1 vanish with monomials of (20). Consid-
ering the monomials with {a,b + 1,e}, in (19) ZqTp1TeTeTer1Zf42
vanishes with a monomial of (20) while fi = ZaZpt1ZeTeTet22 41 Of
(20) does not vanish. Then in((19) — (20)) = f1 that we write as

a e—1 e

b+1 e—1 f—1 = (20).

Now in (21) there are not monomials with {a, b+1,e—1} in the support
and consider again monomials containing x4, Tpy1, Te: a:aazb+1a:ex§ 41
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(IVB1)

(IVC)
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Tfil, TaZpp1Teletr1Ter22s Of (19) vanish with monomials of (21).
Consider the monomials with {a, b+1, e+1} in the support: azawbeZ’H
xy of (19) vanishes with a product of (21). Then consider the mono-
mials containing the variables indexed by a,b + 2,e — 1:
LTp42Te—1LeTet 1T f42, LaLhr2Te—1LeLer2® f41 Of (19) vanish with prod-
ucts of (20) and (21), while fo = 242120122, 2741 of (21) does not
vanish. Then in((19) — (20) + (21)) = f2 that we write as

a e—2 e—1
b+2 e f—1]|"

d=c=e—l,e+1l=f a<bge—1<e<e+1

a b e—1 _ a e—2 e—1
e—1 e e+1 b+1 e e+1

} = (22) — (23).

Consider first the monomials with {a,b+1,e—1} in the support (since
there are not monomials with x, and z3): in (22) ma$b+1me,1mz+1xe+3,
xaxb+1$6_1xe+1$z 4o vanish with monomials of (23). Considering the
monomials with 4, Zpy1, Te, in (22) we have 2,241 172Te11Tcr3, that
vanishes with a monomial of (23); in (23) we have only fi = .7y 122
22, 5. Then in.((22) — (23)) = f1 that we write as

a e—1 e

b+1 e—1 ¢ = (24).

Now in (24) there are not monomials with z,, p11, Zc—1 in the support
and we consider the monomials with x,, xp41, Te: 2xaxb+1xexg+1xe+2
of (22) vanishes with a monomial of (24). Consider the monomials
with {a,b + 1,e + 1} in the support: a:axbﬂa:‘éﬂ of (22) vanishes
with a monomial of (24). Then we consider the monomials containing
Ta, Tpi2, Te—1. It easy to check that in the sum (22) — (23) + (24)
all the monomials with the variable x, vanish. Then we consider
monomials containing z,y1,xp. They are only in (22) where fo =
Tat1TpTe—122, 1 Tey3 does not vanish. Then ine ((22)—(23)+(24)) = fo
that we write as
a+1l e—2 e—1
[ b e e+1 ] '

d<e—1l,c=e a<bgd<e—-1l<e<f

[?l : ﬂ‘{b& o ﬂ=(25>—(26>.
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Consider first the monomials with {a,b+ 1,d} in the support: in (25)
TaTp1TdTer1Te 2T f42, TaTht1TdTe2Tet2Tf41 Vanish with monomi-
als of (26). Then we consider the the monomials with {a,b+1,d+ 1}
in the support: f1 = TqTp41Ta+1%eTer2r 42 of (25) does not vanish
and then in((25) — (26)) = f1 that we write as

[bil eil H:m)'

Now we consider the products in (25), (26), (27) containing the vari-
ables indexed by a,b+ 1,d+ 1,e + 1: fo = TqTp1Td4+1Tet1Tet 1T f41
does not vanish. Then in.((25) — (26) + (27)) = fo that we write as

a d e—1
_[b—i-le f ]

(IVD) d=e—1lc=e a<b<e—-1l<e<f-1<f

a b e a e—2 e
[6—1 e f]_[b—i-l e f}_(QS)_@g)’

Consider the monomials with the variables indexed by a,b+ 1,e — 1
(since there are not monomials with a and b): 2,%p41Te—1Tet1Tet2T 42,
TaTp41Te—1Tet2Ter2T f41 Of (34) vanish with products of (29). Then
we consider the products containing the variables indexed by a,b+1, e:
f1 = TaTp1Te®eTeyot p4o of (28) does not vanish. Then in((28) —
(29)) = f1 that we write as

a e—1 e

Tlos1 e—1 f

= (30).

Now we consider the monomials in (28), (29), (30) containing the vari-
ables indexed by a,b+1,e,e + 1: fo = 2a&p11TeTeq1Teq2T 41 Of (28)
vanishes with a product of (29), Z,Zp1Te®et1Ter12 42 of (29) van-
ishes with a product of (30). But there is another product f3 in (30)
equal to fo that does not vanish. Then in((28) — (29) + (30)) = f3

that we write as
n a e—1 e
b+1 e f—11

(IVDl) d=e—1c=e=,f=e+1 a<b<ge—-1<e<e+1
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This case is the same of (IVD) until the first lifting, just putting f =
e + 1. Computing the second lifting, the monomial z,Zp11TeTer1Ter2
Tet2, corresponding to f3 of (VD), vanishes with a monomial of (28).
Then we consider monomials with {a,b + 1,e 4+ 1} in the support:
TqTht1Tet1Tet1Tet1Tet2 vanishes with a product of (30). The mono-
mials with {a,b+ 2,e — 1} in the support: T,TpioTe—1Tetr1Tet1Tets
of (28) and ,XpioTe—1TeTet2Tets Of (29) vanish with monomials of
(30). The monomials containing the variables indexed by a,b + 2, e:
2XqTh12TeTet1Tet1Ter2 ANd TaZpioTeTeTetr1Tetrs Of (28) vanish with
monomials of (29) and (30). The monomials having {a,b + 2,e + 1}
in the support are T,&p49%et1Tet1Tet1Te+1 Of (28) that vanishes with
a monomial of (30). The monomials containing the variables indexed
by a,b+ 3 are £qxp13Te—1TeTet2Tetr2 ANd TqTp13Te—1Tet1Tet1Tet2 OF
(29) that vanish with monomials of (30).Finally, consider the mono-
mials containing the variables indexed by a + 1, b that there exist only
in (28):f3 = TaTpTe—1Tet1Tet2Tet3, fo = Tat1TpTe—1Tet2Tet2Tet3-
Then in((28) — (29) + (30)) = f3 that we write as

a+1l e—2 e
b e e+1 |’

a<bgd<e<c<f

[Z z H_[bﬁ dgl ﬂ=<31)—<3z>.

Consider first the products containing the monomials with the vari-
ables a,b+ 1, d (since there are not monomials with variables indexed
by a,b): in (31) xqTp11T3Tet1

Teq 2L f12, LaLp1LdTeq2Teq2®f41 vanish with products of (32). Then
we consider the products containing variables indexed by a,b+1,d+1:
f1 = ZaZp11%d41Teq2Teqo s and fo = ToZpp18d41TeleqaZp12 Of (31),
f3 = TaTp1Ta41Ter1Ter1T 512 and fi = TaTp1Ta41Ter2Ter1T511 OF
(32); f1, f2, f3, fa do not vanish and then in.((31) — (32)) = fa, that

we write

a d c

b+1 e—1 f—1 = (33).
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(VA)

(VA1)

Now we consider f5 = TqTp11Td4+1%Zet1Tcq22 41 Of (33) with {a,b +
1,d+1}. fi1, fa, f3, fa, f5 do not vanish. Then in((31)—(32)4(33)) =
f3 that we write as

a d c—1
b+1 e f '
b=d—-1,d<c,c+3<f a<b<d<cgKe<f
a d—1 c a d—1 e—1
[d e f]_[d c+1 f }(34)_(35)'
We consider the monomials with variables indexed by a, d (since there
are not monomials with variables indexed by a and d—1): z 242412
Tet1Z f42 of (34) vanishes with a product of (35), while f1 = zqTqrqZcq2

Tet2Z 41 Of (34) and fo = 2,2q%qTcq3Ter12 541 Of (35) do not vanish.
Then in<((34) — (35)) = f1 that gives:

a d-—1 e
[d c+1 fl]:(‘%)'

Now fy does not vanish with any product of (35) and (36). Then
in<((34) — (35) + (36)) = fo that gives:

| a d—1 e—1
d c+2 f—-1]|
b=d—-1,d=c,d=f-3, a<d-1<d<d+2<d+3

a d—1 d a d—1 d+1 |
d d+2 d+3]_[d d+1 d+3]_(37)_(38)'

We consider the monomials with {a,d} in the support (since there
are not monomials with variables indexed by a and d — 1 ): in (37)
TaTaTyTdroTq+3Tqss vanishes with a product of (38) while f1 = z,x414
Ta12Tq14Tqs of (37) and fo = 2,24Tq2q43%443Tq44 of (38) do not
vanish. Then in((37) — (38)) = f1 that we can write:

a d—1 d+2

d d+1 d+2 = (39).
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Now in (37) and (38) the monomials with {a,d} in the support are fi
and fo that vanish with products of (39). Then we consider the mono-
mials containing variables x4, xq, x4+1. In (37) xaxdx?l+1zd+3xd+5,
xaxdxd+1x(2j+2xd+5 vanish with monomials of (38), xaxdxfl+1md+4a:d+4
vanishes with a monomial of (39). In (37) and (39) 22,24%4+1Td+2Td+3
Z4+4 vanishes with monomials of (38) and (39). In (38) z,ZqTd+1Td+2
Td+3Td+4, xaazdazdﬂxz 3 vanish with products of (39). The products
containing the variables x4, xq, 412 are in (39) xaxdx§+2x?l+3 and
TaTqTs, T4 that vanish with products of (38) and (39); the products
containing the variables x,, 411 are in (37) xaxdx3+1xd+2xd+5 and
$amfl+1xd+2xd+3xd+5 that vanish with products of (38), J;aa:da;?l+1:cd+3
Tia and x5 Tapoxs, 5 that vanish with products of (39); in (39)
maxfl+1xd+2x§+3 and xawd+1xfl+2xd+3 that vanish with products of
(40).The products containing the variables x4, xq—1 are:

Lot 1Td-1Td4 175, 3Td s AN T 1 Td—1Ta 4125, 9Tays I (37), Tald_1Tds1
2, and f3 = Tap1Tq 175, | Tas3Ta4s N (44), Tap1Td—1Td41Td42Td+3
Tdad, wa+1md,1x3+1x§+4 in (39). All of the previous products do not
vanish and in<((37) — (38)) = f3 that we can write as

a+1 d d+1
d—1 d d+3 |’

b=d—-1,d<c,c+3=f a<d-1<d<c<Kc+2<c+3

a d—1 c a d—1 c+1 |
d c+2 C—|-3:|_|:d c+1 C+3]_(40)_(41)'

We consider the monomials with variables x,, x4 (since there are not
monomials with x4, x4-1): in (40) xaxﬁxc+2x0+3xc+5 vanishes with
a product of (41), while fi = z,2%zc222,, (in (40)) and f, =
Tari2?, 3%cqa (in (41)) do not vanish. Then inc((40) — (41)) = f1
that gives

a d-1 c+2 |
[d c+1 c+2]_(42)'

Now fy does not vanish with any product of (40) and (42). Then
in<((40) — (41) + (42)) = f2 and we have:

_adc+2
d ¢ c+2 |
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(VC)

(VC1)

(VIA)

d<bc+3<f, a<d<b<cge<f
a b c a b e—1
[d ¢ f]_[d e+l f ]_(43)_(44)'
We consider first the monomials with variables z,, x4:
T LTy 1T eq2Teq12 f4+2 (in (43)) vanishes with a product of (44), while

J1 = TaTaTp1Teq2Ter2T g1 (In (43))and fo = TaTaTp1Te43Te1Tf41
(in (44)) do not vanish. Then in.((43) — (44)) = f1, that we write as

[Z c—lb—l fi1]:(45)'

Now fo does not vanish with any product of (43) and (44). Then
in<((43) — (44) + (45)) = fo that we write as

a b c+1
+[d e f—l]'

d<bc+3=f, a<d<b<cge<f

a b c a b c+11 |
[d c+2 c+3]_[d c+1 c+3 }_(46)_(47)'

We consider the monomials with {a, d} in the support: in (46) xqz4Tp41
Tet2Tet3Teys vanishes with a product of (47), while fi = z,xqxpi1
TeyoTepdaZerq ((in (46))and fo = 2o2qTp412eq3Tc43Tcqa ((in (47)) do
not vanish. Then in.((46) — (47)) = f1 that we write as

a b c+2 |
[ d c+1 c¢+2 } = (48).
Now f1 and fo vanish with products of (48) and we consider the mono-
mials containing x4, x4, Tpro. The monomial f3 = xoxgTpoTet1Tets
Zcts does not vanish. Then in. ((46) — (47) + (48)) = f3 that we write

as
a b+1 c+1
d c c+3 |’

c<d,c+3<f, a<b<c<d<e<f
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a b c a d—1 e—1
[d e f}_[lw—l c+1 f ]_(49)_(50)'
Consider the monomials with {a,b+ 1} (since there are not monomi-
als containing z,,xp): in (49) we have Z,Tp1Tcr2TqTeq1Zf42 (that

vanishes with a product of (50)), fi = TaTp41Tet2TaTet22 41 and
TqLpi1Teq3TdTer12f41. Then in ((49) — (50)) = fi that gives:

a d—1 e
{b+1 c+1 f—1]:(51)'

Considering the monomials containing variables xz,,zp41 starting by
Zq, Tpt1, Tet2, We Observe that the monomials f1 and 42y 11 Tcr2T441%,
x 19 of (49) vanish with products of (51) and (50), while fo = z,xp41
TeyoTar1Teratf of (49) do not vanish. Then in<((49) — (50) + (51)) =
fo that gives

a d e
b+1 c+1 f—-2|°

c<d,c+3=f, a<b<c<c+l<c+2<c+3

a b c a c c+1

c+1 c+2 c+3 ] B [ b+1 c+1 3+ ] = (52) = (53)
We consider the monomials with {a,b+ 1} in the support (since there
are not monomials containing x,, xp).The products containing z.y; in
(52) are T4Xp41Ter1Tcr2Te+3%c+5 that vanishes with a product of (53)
and f1 = TaTb41Tct1Tct2TeraTera. In (53) we have fo = zoxpi12041
Tet3TersTera. Then in.((52) — (53)) = fi1, hence

a c c+ 2
T2 (5a).
b+1 c+1 c+2
Now the monomials containing g, Tp+1, eyl are: LaXpp1Tet1Tet2Tot4
Zetd, that vanishes with fi, and xq%p11Tct1Tet3%Tc+3%c+a,that van-
ishes with f,. Then we have to consider the products containing
Tay Tpt1, Tetz 10 (52), (53) and (54): in (52), TaTpr1Tet2Tet2Tet3Teta
and X Tpi1Tet2Tet2Tet2Tct5 vanish with two products of (53), xqzp11
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Lot 2Tt 2% ct3Tctd ANA TaTpt1T o2 c43%c+3%c+3 vanish with two prod-
ucts of (54). Then we consider the products containing z,, zp 12, begin-
ning with 24, p12, Teq1: i (52) TeTppoTet1Ter1Tet3Tets, TaTpr2Tetl
Tet3Tet3Tct3y Lalht2Tet1Tet2Tet2Tets vanish with pro- ducts of (53),
TaTp 2Tt 1T e 1Te ATt dy 2TqThy2Tet1Tc42Te 3% c+4 Vanish with prod-
ucts of (53). In (53) ZaTpt2Tct2Tetr2Zer3Tets vanishes with a term of
(54). Finally we consider the products containing x441,xp. They ap-
pear only in (52) and so

7:n<((52) - (53) + (54)) = Ta+1TpLcA1L 2L 43T c+5

that gives:
a+1 c c+1
b c+1 ¢+3|°

(VIB) d<c¢,c+3<f a<bgd<cge<f

a b c a d—1 e—1
[de f]_[b—i—l c+1  f ]_(55)_(56)'
We consider the monomials with {a,b+ 1} in the support (since there
are not monomials with x4,y ): in (55) Ze@p4124Tcq2Teq 1212 Van-

ishes with a product of (56), while fi = 2a2p124% 2% eqa2 41 Of (55)
does not vanish. Then in.((55) — (56)) = f1 that gives

a d—1 e
[b+1 c+1 f—l]:(57)'

Now f; vanishes with a monomial of (57), fo = TaTp+1TdTet-3Tet1T f+1
does not vanish. Then in.((55) — (56) + (57)) = f2 that gives

n a d—1 e—-1
b+1 c¢c+2 f—1["

(VIBl) d<c¢ a<b<gd<c<gc+2<c+3

a b c a d—1 c+1 ]|
d c+?2 c—i—B}_[b—l—l c+1 c+3]_(58)_(59)'
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Consider the monomials with the variables z,,zy + 1 (since there are
not monomials with x4,z ): we have in (58) ZaZp412d%ct2Tet3Tets,
that vanishes with a product of (59), fi = TaZp+1TdTet2TctaTera and
fo = Taxp1124T 3T 3% c+4. Then in  ((58)—(59)) = f1 that we write
as

a d—1 c+2 — (60).
b+1 c+1 c+2
Here the products containing x,, xy+1, 24 vanishes with products of
(58) and (59). So we consider all products containing z, Tp4+1, Ti+1-
In (58) the products o Tpr1T4T et 2Tt dTetd, LaTpt1Tdi1Tet2Tet3Tetd,
TaTp41Td 41Tt 2T e 2Tet5s Talor1Tdy1Tet2Tet2Te+s vanish with prod-
ucts of (58) or (59). The remaining products are:
fo = TaTp 10441121 3T cra and ToTp1Td 41T 43Tt 3Tcr3. Then

in<((58) = (59) + (60)) = f2

that we write as

a d c+1
b+1 c+1 c+2

O]

Remark 1. The property of normality of H(2,n) has been studied in [3],
by using the partial liftings given in [§].
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