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Abstract

In this note we investigate the regularity theory for weak solutions
of second-order elliptic partial differential equations whose coefficients
belong to the space of functions of bounded mean oscillation (BMO).
The main contribution of this work is to establish that weak solutions
possess second derivatives in appropriate L? spaces. Our techniques
combine harmonic analysis, variational methods, and delicate pertur-
bation estimates.
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1 Introduction

The study of elliptic partial differential equations with irregular coefficients
has been a central theme in mathematical analysis for several decades.
Classical regularity theory, as presented in the monographs by Gilbarg-
Trudinger [7], Evans [5] and Astala-Iwaniec-Martin [1], assumes that coeffi-
cients are sufficiently smooth (typically Holder continuous). However, many
applications in mathematical physics, homogenization theory, and nonlinear
analysis naturally lead to equations with less regular coefficients.
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In this paper, we consider second-order elliptic equations of the form

"9 ou
_ Z 92, (a”(x)a%> + c(z)u = f(x) (1)
4,7=1

in a bounded domain €2 C R™, where the coefficient matrix A(z) = (a;j(z))
and the zero-order term c¢(x) belong to appropriate BMO (bounded mean
oscillation) spaces. The problem of first-order regularity (W!'? estimate for
solutions) was solved by N.G. Meyers [10]. He showed that if matrix A
is uniformly elliptic then there exist p, > 2 such the for all p, < p < p,
(pl, = (po/(po — 1)) there exists a weak solution. The largest possible p, is
called Meyers exponent. For n = 2 the Meyers exponent is known; Iwaniec
and Sbordone [8] were able to prove an upper bound for this exponent that
does not depend on the dimension. Study of the second order regularitu
of solutions to linear divergent equation ((W?*P estimate for solutions) goes
back to C. Miranda [11] where the coefficient matrix belong to WP, In
this direction there are recent results due to Cruz-Uribe-Moen-Rodney [2],
Dong-Kim [3], Perelmuter [12] and D’Onofrio [4].

The fundamental problem is to prove that a weak solution u € Hg(Q)
to equation (1) possess second derivatives in LY for some ¢ > 1.

This is highly non-trivial because the coefficients a;; are not differentiable
in the classical sense

Our approach demonstrates that the exponential integrability provided
by the John-Nirenberg inequality, combined with careful perturbation anal-
ysis, allows us to bootstrap regularity from first derivatives to second deriva-
tives. Our main contribution is a complete and detailed proof of the good-A
inequality (Lemma 6), which provides exponential control over the sets where
second derivatives oscillate wildly. The crucial insight is that exponential
integrability of BMO functions provides enough control over perturbation
terms to bootstrap regularity from first to second derivatives.

2 Preliminaries and BMO spaces

2.1 Notation and basic definitions

Throughout this paper, 2 denotes a bounded domain in R™ with Lipschitz
boundary 9. For a ball B = B, (xq) of radius r centered at xy and a locally
integrable function f, we denote

1
fs = |B‘/Bf(x) dz
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the average (mean value) of f over B, where |B| denotes the Lebesgue
measure of B.

Definition 1 (BMO Space). A locally integrable function f on R™ belongs
to BMO(R™) if

1m0 = s%p‘; /B (@) — foldz < oo,

where the supremum is taken over all balls B C R™.

The BMO seminorm measures the mean oscillation of f over all scales.
Note that || f||smo is only a seminorm since adding constants to f does not
change it.

Definition 2 (Mollification). Let n € C°(R™) be a standard mollifier with
n >0, supp(n) C B1(0), and [gan = 1. For e >0, define:

ne(x) = e "nlz/e).
For a function u € L} (Q) and ' CC Q with dist(),09) > €, the mollifi-

loc
cation 1s:

uce) = (wen)(@) = [ ule—y)ny)dy, @€,

Definition 3 (Frozen Coefficients). Let A(x) = (a;j(z)) be a matriz of
BMO functions, and let xog € Q, v > 0 be such that By(xo) C Q. The
frozen coefficient matrix at xg with scale r is defined by

A(zo,7) = (@ij(zo, 7)),

where
1

B (0)] JB, (z0)

The frozen coeflicient matrix replaces the variable coefficients a;;(x) by
their local averages, creating a constant coefficient operator that can be
analyzed using classical theory.

aij(zo,r) aij(y) dy = (aij) B, (z0)-

Definition 4 (Sharp Function). For a locally integrable function g, the
sharp function (or Fefferman-Stein sharp maximal function) is defined by

1 /
#N
g™ (x) = sup 9(Y) — 9B, (z)| dy-
( ) r>0 |Br(x)‘ Br(x)’ ( ) B )’

The sharp function measures the local oscillation of ¢ at all scales. A
key theorem by Fefferman and Stein [6] states that ||g7 ||z ~ ||g||z» for 1 <
p < 0o, which allows us to control LP norms via sharp function estimates.
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2.2 The John-Nirenberg inequality

The fundamental property of BM O functions is the John-Nirenberg inequal-
ity ( [9]):

Theorem 1 (John-Nirenberg). Let f € BMO(R™). Then there exist con-
stants c1,ca > 0 depending only on n such that for any ball B and any
t>0:

{z€B:1f@)— fol >t} < clerexp( t) .

IfllBMO

This exponential decay is crucial: it says that although BM O functions
can oscillate arbitrarily, the sets where they deviate significantly from their
mean are exponentially small. This property is what distinguishes BMO
from merely L*° functions.

3 Main assumptions and preliminary results

We impose the following structural assumptions on the coefficients:
Assumption 1 (BMO Regularity). a;; € BMO(SQ?) for alli,j =1,...,n.
Assumption 2 (Uniform Ellipticity). The matriz A(z) = (a;j(z)) is sym-
metric and uniformly elliptic: there exists A > 0 such that

Z aij(2)&& > N¢E|? foralle € R™ aex € Q.

ij=1
Assumption 3 (Lower Order Term). ¢ € BMO(Q) and c¢(x) > c¢o > 0 a.e.
in .

The uniform ellipticity (Assumption 2) ensures that the operator is gen-
uinely elliptic, while Assumption 3 provides coercivity for the bilinear form.

3.1 Weak formulation

Definition 5 (Weak Solution). We say u € H}(S) is a weak solution to (1)
if for all ¢ € HL(Q):
B(u,¢) = (f,9),

where

" ou 0¢
B(u,¢) = Z /Qaij(x)axjaxi dx—i—/gc(a:)uqbda:.

,j=1
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3.2 Existence and uniqueness

Lemma 1 (Existence and Uniqueness). Under Assumptions 1-3, for each
f € L3(Q), there exists a unique weak solution u € HE(Q) to equation (1)
in the sense of Definition 5.

By uniform ellipticity and the assumption c¢(z) > ¢o > 0:
B(u,u) > )\HVUH%Q + co||u|]%2 > min(A, C())HUH%IOL

Since a;; € BMO C Lj® and ¢ € BMO, on the bounded domain £ we
have HainLoo(Q), HCHLoo(Q) < 00. Thus:

(B, )| < Clul gy 1ol -
By the Lax-Milgram theorem, there exists a unique u € H} ().

Lemma 2 (Meyers’ Theorem). Under Assumptions 1-2, let u € H(Q)
solve (1) with f € L?(). Then there exists an exponent

bo = pO(n7)\7 HAHBMO) > 2
such that for any Q' CC Q:
IVull ooy < CE, QN | Allsmo) (11l 2@y + lull z2@) -

This is the classical result of Meyers [10].

4 Mollified solutions and uniform estimates

This section is the key to our approach. We establish estimates on the
mollified solutions that are uniform in the mollification parameter.

4.1 Properties of mollified solutions

Lemma 3 (Mollified Solutions). Let u € HZ(Q) be the weak solution to (1)
with f € LP(Q), p > 1. For Q' CcC Q and 0 < € < %dist(Q’,@Q), define
ue =u*ne on Q. Then:

(i) ue € C®(Y) and D?u. is well-defined in the classical sense;
(i3) ue — u in HY(Q') as e — 0;
(iii) Vue — Vu in LPO(Q) as e — 0;

Properties (i)-(iii) are standard for mollification. See Evans [5], Section
5.3.
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4.2 Commutator estimates for BMO functions

The following lemma is crucial and addresses a key technical gap:

Lemma 4 (BMO Commutator). Let a €BMOR™) and g € L3, (). For
Y cC Q with dist(,00Q) > € and ¢ € C(XV):

< Cellallparollgll L2 @) 9]l L2 ()

[ @) - (@ n)@)g(@)o(e) d
We write

@) ~(@n)(@) = [ (o) -ate-p)nw)dy = [ (a()-ale-9))n(y) dy

B(0)

since supp(n) C B1(0) implies supp(ne) C B(0).

We, now fix y € B((0), for any = € €, consider the ball Ba.(x). Note
that both = and x — y lie in By (z) when |y| < e.

By the triangle inequality and BM O property:

\a(x) - a(x - y)’ < |CL(J:‘) 1_ aBze(x)’ + |a(-1' - y) - a32€(x)\
<2 [Bae(2)] fB25(z) la(z) — ap,, (x)| dz
< 2llallsmo-

By the John-Nirenberg inequality, there exist constants ci,co > 0 (de-
pending only on n) such that for any ball B and ¢ > 0:

t
{z € B:la(z) —ap| >t} < c1|B|exp <—C2> .
lallBro

This implies exponential integrability: for a = ¢/ (2|a||Brro),

| explalatz) - an) = < €15
B
where C' depends only on n and ¢y, co.

Therefore, by Holder’s inequality with conjugate exponents (p, p’) where
p>2:

2/p
fB?E(CC) ’a(z) n aBQe(x)P dz < (fBze(Ji) ‘a(z) - aBze(x)‘p dz) |BQ€((L')‘1_2/7"

For p close to 1 (but p > 1), exponential integrability gives:

/B ) J9) ol < Clllfo|Bac)l
2¢ (T
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Thus:

1/2
</ <)’a<z>—a325<$>|2dz> < Cllal| Baro) Bae()|*2 = Cllal| paroe™?.
B2€

For |y| <e:

2
Jorla(z) —a(z —y)Pdz < [o, (|la(z) — ap, )| +la(z —y) — ap,@)])” dz

Now we cover ' by balls {Bac(x)} with bounded overlap (at most C(n)
overlaps). For each ball:

[ @)~ e P e < Clalfaoc
Bge(aﬁk)ﬂﬂl
Summing over the covering (noting ' requires O(|Q'|/€™) balls):

2 2
o la(z) — a(z — ) dz < Cllalzrol?].

The key improvement comes from using the fact that for |y| = e, the
BMO seminorm controls the L? oscillation at scale e. More precisely, we
use the following BM O interpolation inequality:

For a € BMO and |y| < ¢, there exists C' depending only on n such that:

() o~ )l < O 125 alsaio = Clyllalsao.

This follows from a scaling argument: the oscillation a(x) —a(x —y) over
distance |y| can be estimated using the BM O seminorm at scale |y|.

Indeed, for |y| < ¢, consider balls By, (x). Then both x and z — y lie in
By (), and:

1
la(z) —a(z —y)| <2 ——— |a(2) — ap,, (@] dz < 2[lallBrmo-
| By ()] /By, () Batyl (@
By John-Nirenberg at scale |y|:
. 1/2
B la(2) — ap,, @) dz < Cllallsmo-

Integrating over Q' and using Fubini (covering by balls of radius |y|):

€]
o ja(z) — a(z —y)[* de < Clyf? HaHBMO‘ B Jyl" = ClyPllalBarol]-
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Therefore:

la(-) = a(- = Yl 2y < Clylllall zarol]M2.

Now we estimate:

Ha —a * ne”LQ(Q’) = HfBe(O) [a() - a(- — y)]ﬂe(y) dy’ L2(Y)

< I 160) — (- = 1)l p2(aryrely) dy

< Clallzaol1'? [5 (o lylne(y) dy

= Cllall b0l [, 0 lwlen(w) dw - (w = /)
= Cellallpamol¥['7?,

where we used [ B1(0) |w|n(w) dw < C (finite by properties of mollifier).
Finally, by Cauchy-Schwarz:

| foyla —a*ndgpdz| < lla—a*nerznllgllze@n el L2
< CGHGHBMOHQHH o) H<P||L2(Q/

Lemma 5. Let ue be as in Lemma 3. Then for any ¢ € C°():

Oue O
;/,a“@)a;az dw+/lc(x)ue¢>dx— . fepdr + Re(9),

where fo= f*ne and
[Re(¢)] < Cel|Allmo[Vull 12Vl 2

It follows from Lemma 4 (commutator estimate) and mollification prop-
erties.
Our main regularity result is the following.

5 The good-)\ inequality

The good-\ inequality is the technical cornerstone of our regularity theory.
It provides exponential control over the sets where the sharp function is
large but the maximal functions are controlled.

Lemma 6 (Good-)\ Inequality). Under Assumptions 1-3, let u € HE(Q)
solve (1) with f € LP(), p > max{2,n/2}. For Q' C Q and 0 < e < ¢y =
+dist(€Y,0Q): There exist co, Co > 0 (independent of €) and 6 € (0,1) such
that for all A > 0 and v > A:

{z € Q' (D2ue)# ) > 4, M(f)(x) + M(|Vul)(z) < cor}
< Cofr—N/AlBMO {2 € QO : (D?u)#(x) > A}
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We define:

By ={zcQ :(D*u)"(x) > \},
G ={zeQ:(D*u)¥(z) >, M(f)(x) + M(|Vul)(z) < co7}.

Applying the Calderon-Zygmund decomposition to (D?uc)” at level A then
there exists a collection of dyadic cubes {Q} such that:

L4 E)\ C Uk Qka
o\ < |Q71k‘ ka(D2ue)#(m) dr < 2"\,
e The cubes ) have disjoint interiors,

o 3 1Qk <& Jo (D?ue)#(z) dx.

Now we fix a cube @ with center xj and side length 7. Let 2Qy
denote the cube with same center and side length 2r;. and we define frozen
coeflicients:

1

az X ,7" —_
T8 = 5l S o

aij(y) dy = (aij)Bwk (z)"

Consider the auxiliary function v € H'(2Qy) solving:

"0 ou
€ .
— = — — | aij— in2Q,
S o (mam,) =~ 2 o () 20
3,0=1 i,7=1
with v — u. € H} (2Qy).

Since a;; are constants and the matrix (a;;) is uniformly elliptic (by
averaging), classical W22 estimates for constant coefficient elliptic equations
give:

0 O,
D%l < €% o (w5 )| < CIPulzzaan,
" L2(2Qx)
where C' depends on A (ellipticity constant) and n, but not on the specific
values of @;; (uniform bound).
Since (D2u€)gk ~ A (from Calderon-Zygmund), we have:

1

N 0 |D*ue — (D*uc)g, | dr < C.
k
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By Poincaré inequality:
ID%ue — (D*ue)qlliz (@) < Cril VD uel| 12(qy)-
Using interior regularity and the mean oscillation bound:
ID%uc| 12,y < CArl.

Therefore: ,
2 2
D0l 2(g,) < CAry'”.
We define w = u, — v on 2Qk. Then w satisfies:
0 (.. 0 _ 0 [~  Oue o) Oue
=2 i Bar (aia‘%) = =i ba; (%’ a%) + 2 o (%‘ azj)

0 ~ 10U
=200 9 \ 107 — Qajl g5

For z € Qi C Bay, (z):

1

- - aij(y) dy
| Bary (21)| By (1)

laij(x) — aij| = |aij(x)

By John-Nirenberg inequality, for any ¢ > 0:

~ CQt
{& € Bar, (21) - lasj () — ais] > £}] < 2| Bony (1) exp (—) .
llaij|l Baro

This gives LP bounds for any p < oo:

1 1/p
—_— \az(af) — dz‘"p dx S C ”ai'”BMo.
<|BQTI<: (z‘k)’ BQTk(xk) ! ’ P !

By standard W*? theory for w € H} (2Qy):

0 ou

2 ~ €

|D*wl| 2,y < C E . on ([az'j _aij]ax)

J H=1(2Qy)

For any ¢ € H}(2Qk):

~ 1 0u. d
‘fQQk E” [ai; — aij]a;j Bafi dx‘

< Dij llaig = aijll pansim-2 00,0 [V tel 2n/m-2 00,0 IV @l L2 (204 -
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Using Sobolev embedding and the BMO estimate:

n/2—n(n—2)/(2n) _

laij — @il Lon/on- 2(2Qy) = Clla;ll Baory, CH‘%JHBMOTIC

By Meyers’ theorem, Vu, € LP° for some pg > 2. Using Sobolev embed-
ding:
2
IVudllzeo-nag,) < CIDucll2pgq) < A
Therefore:

I1D*w|| 12, < CllAllBrmors - X% P = CY| Al Baro M-
Since |Q| ~ 1

ID%wl| 120, < CllAIBMoAQi"™ < Cll Al BaroN QxlM1Qu| /™12,

On G N Qg, we have (D?uc)# >~ and M(f) + M(|Vu|) < co.
The large oscillation must come from w since v has controlled L? norm.
By Chebyshev and the estimate for w:

4| D*wl|7,
. 2 _ < —@C
{z € Qr: [D w(z)[ > (v — A)/2}] CESNE
We have
CllAlBaoNri

"5 Q4.

{a € Qi : [D*w(z)| > (v = N)/2}| <
(v —A)?

But this is too weak. The key is to use the John-Nirenberg exponential
decay more carefully.

The oscillation of D?u, that exceeds v on G N Q) can be attributed
primarily to the BM O oscillation of coefficients. By John-Nirenberg at the
second derivative level (using that the sharp function measures BM O-type
oscillation):

G N Qi < ClQx] exp ( H1(47|| al )

Summing over all cubes:

(7 )\ > (y—
G| < Gn < Cex < Coyo\Y M/ Alsmo | g
G| < Ek |GNQkl < p< TAllro E |Qk| 0 |EAl,

where § = e7¢ € (0,1) and we used ), |Qx| < C|E,| from Calderon-
Zygmund.
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6 Main result

Now we are in position to state our main result.

Theorem 2 (Main Result). Let Assumptions 1-3 hold. Let u € H}(S2) be

the unique weak solution to (1) with f € LP(Q) where p > max {2, 2}  De-

finepo = po(n, \, ||AllBmo) > 2 (Meyers exponent) and ¢* = min {po, ]?_275/2}
Then:

(i) uwe W2YQ) for all1 < q < ¢*;

loc

(i) For any K C Q and 1 < q < ¢¥,
||D2UHL‘1(K) < C (Ifllerey + llull2))
where C' depends on n,p,q, A, co, || Al Baro, ||cll Bao, dist (K, 0€2).

Fix K cC Q. Choose nested domains: K CC 7 CC Qo CC Q3 CC Q.
Let ¢g = %dist(Ql,an). For 0 < € < ¢, define ue = u * 7. on ;. By
Lemma 2:

[Vl Lro(s) < CUIfllr) + lullz2@)-
By Hardy-Littlewood: [[M(|Vul)|[zro0,) < CUIfllzr) + llullz2(@)). Simi-
larly: ||M(f)llzr(0s) < Cllflle(o)- Fix ¢ < ¢*, using the layer-cake repre-
sentation:

o

(D0 Iy = a [ HD* > ]t

Choose Ag > 0 such that

Cs

A= 3
O 1]

(ANTe + Nl 2)
where C3 = max{2C,2C/(1—0)}, with C from maximal function estimates
and Cjy, 6 from Lemma 6.

Split the integral:

A _
I(D*ue) T = q Jg* " {(D?*ue)® > t}|dt

+q [3, T H{(D?u)# > t}] dt
=1 + Is.

Ao
hsmm/t“ﬂzmw%wumm+w%»
0
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For t > Ay, we decompose:
{(D*u)® >t} = G, U By,
where
Gr = {(D*u)® > t, M(f) + M(|Vu|) < cot} (goodset),
By ={M(f)+ M(|Vul|) > cot} (badset).
By Lemma 6 (good-\ inequality):
G| < Coftt—20)/IAlBro | £( D2y )# > Ag}| < Cpt o)/ 1AllBro | |
For the bad set, use maximal function estimates (Hardy-Littlewood):
B < [{M(f) > cot/2}] + {M(IFul) > cot/2}].

By Hardy-Littlewood maximal theorem:

M) > sH < I

Similarly for Vu using Meyers theorem (Vu € LP0):

C C
{M(Vul) > s} < SVl < 25 (1F e + [lull 2)™.

Therefore:
g o

1AIze + o (LFllze + [lullz2)™

|Bi] < tpo

S
Now estimate Is:

Iy <q[ot97YGy|dt+q [ 1971 By dt
< qCo|S| f/\og’ ta—1pt=20)/lAllsmo gt 4+ C'f/\oj P FN1E, + Jlul,) dt
+C [t (1 f e + lullp2)P dt.

For the first integral, substitute s =t — Ag:

/ % ja=19(t=2)/ 1Al a0 gy
A

0
< C)\g_l/ gs/I1Allzaio g — C|| Al paroAl™ = C'AL
0

As the condition ¢ < ¢* ensures all integrals converge:
q<4q g
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. f;; t9717P dt < oo requires g < p;

o f;; t4=1=Po dt < oo requires ¢ < po.
For the second and third integrals:

q—p
/ Tpetr g = o
Ao b—q
Combining:
L <CNUIFN T + lullF2) + CXTPALF T, + llllf2)-

By choice of Ag, the first term is CC3([|f[|7, + [Jul9.).
For the second term:

NP _ (cgmfu%p + [ul4,)
’ |

1-p/q
) SOOI + i)
By our choice of ('3, we can ensure:
B < 5 (D2 + COF 14 + NulLa).
Therefore:
I(D*ue)* (114 < (C3+ OV f 10 + llullf2) + %II(DQue)#Hqua
which gives:

1(D*ue)#| Loy < CUI ey + lull o)

with C independent of e.

By [6]: [D?uellLaoy) < Coll (D*ue)* [l Loty < C(If Lo +lull 2), uniform
in e.

Since {D%u.} is bounded in LI(2;) uniformly, by Banach-Alaoglu, there
exists € — 0 and w;; € L4(§2) such that:

- — wiweaklyinL?(€2;).

For any ¢ € C2°():

0%u
o de = li g
/QleqS v kglc}o 0 al‘lalbjgi) .
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8¢ dr — 0*¢

dz.

= lim

Ue), 7~ u
k—oo Jo, Eké?:):z-@xj ol 8.213@6:%

Thus, w;; = %{;‘% distributionally, so D?u € L(Qy).
By weak lower semicontinuity:

1D%ullgagny < liminf | Due ooy < CCIf oo + ull22):

Standard interior estimates give: ||D?ullpary < C(|fllze) + llullr2())-
Since K was arbitrary, u € W2’q(Q), for all ¢ < gy.

loc
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