
Ann. Acad. Rom. Sci.
Ser. Math. Appl.

ISSN 2066-6594 Vol. 18, No. 1/2026

A NOTE ON ELLIPTIC EQUATIONS WITH

BMO COEFFICIENTS: REGULARITY THEORY∗

Luigi D’Onofrio†

Dedicated to Prof. Biagio Ricceri on the occasion of his 70th birthday 
 

 DOI     10.56082/annalsarscimath.2026.1.117

Abstract

In this note we investigate the regularity theory for weak solutions
of second-order elliptic partial differential equations whose coefficients
belong to the space of functions of bounded mean oscillation (BMO).
The main contribution of this work is to establish that weak solutions
possess second derivatives in appropriate Lq spaces. Our techniques
combine harmonic analysis, variational methods, and delicate pertur-
bation estimates.
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1 Introduction

The study of elliptic partial differential equations with irregular coefficients
has been a central theme in mathematical analysis for several decades.
Classical regularity theory, as presented in the monographs by Gilbarg-
Trudinger [7], Evans [5] and Astala-Iwaniec-Martin [1], assumes that coeffi-
cients are sufficiently smooth (typically Hölder continuous). However, many
applications in mathematical physics, homogenization theory, and nonlinear
analysis naturally lead to equations with less regular coefficients.
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In this paper, we consider second-order elliptic equations of the form

−
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u = f(x) (1)

in a bounded domain Ω ⊂ Rn, where the coefficient matrix A(x) = (aij(x))
and the zero-order term c(x) belong to appropriate BMO (bounded mean
oscillation) spaces. The problem of first-order regularity (W 1,p estimate for
solutions) was solved by N.G. Meyers [10]. He showed that if matrix A
is uniformly elliptic then there exist po > 2 such the for all p′o < p < po
(p′o = (po/(po − 1)) there exists a weak solution. The largest possible po is
called Meyers exponent. For n = 2 the Meyers exponent is known; Iwaniec
and Sbordone [8] were able to prove an upper bound for this exponent that
does not depend on the dimension. Study of the second order regularitu
of solutions to linear divergent equation ((W 2,p estimate for solutions) goes
back to C. Miranda [11] where the coefficient matrix belong to W 1,p. In
this direction there are recent results due to Cruz-Uribe-Moen-Rodney [2],
Dong-Kim [3], Perelmuter [12] and D’Onofrio [4].

The fundamental problem is to prove that a weak solution u ∈ H1
0 (Ω)

to equation (1) possess second derivatives in Lq for some q > 1.
This is highly non-trivial because the coefficients aij are not differentiable

in the classical sense
Our approach demonstrates that the exponential integrability provided

by the John-Nirenberg inequality, combined with careful perturbation anal-
ysis, allows us to bootstrap regularity from first derivatives to second deriva-
tives. Our main contribution is a complete and detailed proof of the good-λ
inequality (Lemma 6), which provides exponential control over the sets where
second derivatives oscillate wildly. The crucial insight is that exponential
integrability of BMO functions provides enough control over perturbation
terms to bootstrap regularity from first to second derivatives.

2 Preliminaries and BMO spaces

2.1 Notation and basic definitions

Throughout this paper, Ω denotes a bounded domain in Rn with Lipschitz
boundary ∂Ω. For a ball B = Br(x0) of radius r centered at x0 and a locally
integrable function f , we denote

fB =
1

|B|

∫
B
f(x) dx
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the average (mean value) of f over B, where |B| denotes the Lebesgue
measure of B.

Definition 1 (BMO Space). A locally integrable function f on Rn belongs
to BMO(Rn) if

‖f‖BMO = sup
B

1

|B|

∫
B
|f(x)− fB| dx <∞,

where the supremum is taken over all balls B ⊂ Rn.

The BMO seminorm measures the mean oscillation of f over all scales.
Note that ‖f‖BMO is only a seminorm since adding constants to f does not
change it.

Definition 2 (Mollification). Let η ∈ C∞c (Rn) be a standard mollifier with
η ≥ 0, supp(η) ⊂ B1(0), and

∫
Rn η = 1. For ε > 0, define:

ηε(x) = ε−nη(x/ε).

For a function u ∈ L1
loc(Ω) and Ω′ ⊂⊂ Ω with dist(Ω′, ∂Ω) > ε, the mollifi-

cation is:

uε(x) = (u ∗ ηε)(x) =

∫
Rn

u(x− y)ηε(y) dy, x ∈ Ω′.

Definition 3 (Frozen Coefficients). Let A(x) = (aij(x)) be a matrix of
BMO functions, and let x0 ∈ Ω, r > 0 be such that Br(x0) ⊂ Ω. The
frozen coefficient matrix at x0 with scale r is defined by

Ã(x0, r) = (ãij(x0, r)),

where

ãij(x0, r) =
1

|Br(x0)|

∫
Br(x0)

aij(y) dy = (aij)Br(x0).

The frozen coefficient matrix replaces the variable coefficients aij(x) by
their local averages, creating a constant coefficient operator that can be
analyzed using classical theory.

Definition 4 (Sharp Function). For a locally integrable function g, the
sharp function (or Fefferman-Stein sharp maximal function) is defined by

g#(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|g(y)− gBr(x)| dy.

The sharp function measures the local oscillation of g at all scales. A
key theorem by Fefferman and Stein [6] states that ‖g#‖Lp ≈ ‖g‖Lp for 1 <
p <∞, which allows us to control Lp norms via sharp function estimates.
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2.2 The John-Nirenberg inequality

The fundamental property of BMO functions is the John-Nirenberg inequal-
ity ( [9]):

Theorem 1 (John-Nirenberg). Let f ∈ BMO(Rn). Then there exist con-
stants c1, c2 > 0 depending only on n such that for any ball B and any
t > 0:

|{x ∈ B : |f(x)− fB| > t}| ≤ c1|B| exp

(
− c2t

‖f‖BMO

)
.

This exponential decay is crucial: it says that although BMO functions
can oscillate arbitrarily, the sets where they deviate significantly from their
mean are exponentially small. This property is what distinguishes BMO
from merely L∞ functions.

3 Main assumptions and preliminary results

We impose the following structural assumptions on the coefficients:

Assumption 1 (BMO Regularity). aij ∈ BMO(Ω) for all i, j = 1, . . . , n.

Assumption 2 (Uniform Ellipticity). The matrix A(x) = (aij(x)) is sym-
metric and uniformly elliptic: there exists λ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2 forallξ ∈ Rn, a.e.x ∈ Ω.

Assumption 3 (Lower Order Term). c ∈ BMO(Ω) and c(x) ≥ c0 > 0 a.e.
in Ω.

The uniform ellipticity (Assumption 2) ensures that the operator is gen-
uinely elliptic, while Assumption 3 provides coercivity for the bilinear form.

3.1 Weak formulation

Definition 5 (Weak Solution). We say u ∈ H1
0 (Ω) is a weak solution to (1)

if for all φ ∈ H1
0 (Ω):

B(u, φ) = 〈f, φ〉,

where

B(u, φ) =
n∑

i,j=1

∫
Ω
aij(x)

∂u

∂xj

∂φ

∂xi
dx+

∫
Ω
c(x)uφ dx.
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3.2 Existence and uniqueness

Lemma 1 (Existence and Uniqueness). Under Assumptions 1–3, for each
f ∈ L2(Ω), there exists a unique weak solution u ∈ H1

0 (Ω) to equation (1)
in the sense of Definition 5.

By uniform ellipticity and the assumption c(x) ≥ c0 > 0:

B(u, u) ≥ λ‖∇u‖2L2 + c0‖u‖2L2 ≥ min(λ, c0)‖u‖2H1
0
.

Since aij ∈ BMO ⊆ L∞loc and c ∈ BMO, on the bounded domain Ω we
have ‖aij‖L∞(Ω), ‖c‖L∞(Ω) <∞. Thus:

|B(u, v)| ≤ C‖u‖H1
0
‖v‖H1

0
.

By the Lax-Milgram theorem, there exists a unique u ∈ H1
0 (Ω).

Lemma 2 (Meyers’ Theorem). Under Assumptions 1–2, let u ∈ H1
0 (Ω)

solve (1) with f ∈ L2(Ω). Then there exists an exponent

p0 = p0(n, λ, ‖A‖BMO) > 2

such that for any Ω′ ⊂⊂ Ω:

‖∇u‖Lp0 (Ω′) ≤ C(Ω′,Ω, λ, ‖A‖BMO)
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
.

This is the classical result of Meyers [10].

4 Mollified solutions and uniform estimates

This section is the key to our approach. We establish estimates on the
mollified solutions that are uniform in the mollification parameter.

4.1 Properties of mollified solutions

Lemma 3 (Mollified Solutions). Let u ∈ H1
0 (Ω) be the weak solution to (1)

with f ∈ Lp(Ω), p > 1. For Ω′ ⊂⊂ Ω and 0 < ε < 1
2dist(Ω′, ∂Ω), define

uε = u ∗ ηε on Ω′. Then:

(i) uε ∈ C∞(Ω′) and D2uε is well-defined in the classical sense;

(ii) uε → u in H1(Ω′) as ε→ 0;

(iii) ∇uε → ∇u in Lp0(Ω′) as ε→ 0;

Properties (i)-(iii) are standard for mollification. See Evans [5], Section
5.3.
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4.2 Commutator estimates for BMO functions

The following lemma is crucial and addresses a key technical gap:

Lemma 4 (BMO Commutator). Let a ∈BMO(Rn) and g ∈ L2
loc(Ω). For

Ω′ ⊂⊂ Ω with dist(Ω′, ∂Ω) > ε and φ ∈ C∞c (Ω′):∣∣∣∣∫
Ω′

[a(x)− (a ∗ ηε)(x)]g(x)φ(x) dx

∣∣∣∣ ≤ Cε‖a‖BMO‖g‖L2(Ω′)‖φ‖L2(Ω′).

We write

a(x)−(a∗ηε)(x) =

∫
Rn

[a(x)−a(x−y)]ηε(y) dy =

∫
Bε(0)

[a(x)−a(x−y)]ηε(y) dy.

since supp(η) ⊂ B1(0) implies supp(ηε) ⊂ Bε(0).
We, now fix y ∈ Bε(0), for any x ∈ Ω′, consider the ball B2ε(x). Note

that both x and x− y lie in B2ε(x) when |y| ≤ ε.
By the triangle inequality and BMO property:

|a(x)− a(x− y)| ≤ |a(x)− aB2ε(x)|+ |a(x− y)− aB2ε(x)|
≤ 2 · 1

|B2ε(x)|
∫
B2ε(x) |a(z)− aB2ε(x)| dz

≤ 2‖a‖BMO.

By the John-Nirenberg inequality, there exist constants c1, c2 > 0 (de-
pending only on n) such that for any ball B and t > 0:

|{z ∈ B : |a(z)− aB| > t}| ≤ c1|B| exp

(
− c2t

‖a‖BMO

)
.

This implies exponential integrability: for α = c2/(2‖a‖BMO),∫
B

exp(α|a(z)− aB|) dz ≤ C|B|,

where C depends only on n and c1, c2.
Therefore, by Hölder’s inequality with conjugate exponents (p, p′) where

p > 2:∫
B2ε(x) |a(z)− aB2ε(x)|2 dz ≤

(∫
B2ε(x) |a(z)− aB2ε(x)|p dz

)2/p
|B2ε(x)|1−2/p.

For p close to 1 (but p > 1), exponential integrability gives:∫
B2ε(x)

|a(z)− aB2ε(x)|p dz ≤ Cp‖a‖
p
BMO|B2ε(x)|.
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Thus:(∫
B2ε(x)

|a(z)− aB2ε(x)|2 dz

)1/2

≤ C‖a‖BMO|B2ε(x)|1/2 = C‖a‖BMOε
n/2.

For |y| ≤ ε:∫
Ω′ |a(x)− a(x− y)|2 dx ≤

∫
Ω′

(
|a(x)− aB2ε(x)|+ |a(x− y)− aB2ε(x)|

)2
dx.

Now we cover Ω′ by balls {B2ε(xk)} with bounded overlap (at most C(n)
overlaps). For each ball:∫

B2ε(xk)∩Ω′
|a(x)− aB2ε(xk)|2 dx ≤ C‖a‖2BMOε

n.

Summing over the covering (noting Ω′ requires O(|Ω′|/εn) balls):∫
Ω′
|a(x)− a(x− y)|2 dx ≤ C‖a‖2BMO|Ω′|.

The key improvement comes from using the fact that for |y| = ε, the
BMO seminorm controls the L2 oscillation at scale ε. More precisely, we
use the following BMO interpolation inequality:

For a ∈ BMO and |y| ≤ ε, there exists C depending only on n such that:

‖a(·)− a(· − y)‖L2(Ω′) ≤ C
|y|
εn/2

εn/2‖a‖BMO = C|y|‖a‖BMO.

This follows from a scaling argument: the oscillation a(x)−a(x−y) over
distance |y| can be estimated using the BMO seminorm at scale |y|.

Indeed, for |y| ≤ ε, consider balls B|y|(x). Then both x and x− y lie in
B2|y|(x), and:

|a(x)− a(x− y)| ≤ 2 · 1

|B2|y|(x)|

∫
B2|y|(x)

|a(z)− aB2|y|(x)| dz ≤ 2‖a‖BMO.

By John-Nirenberg at scale |y|:(
1

|B2|y|(x)|

∫
B2|y|(x)

|a(z)− aB2|y|(x)|2 dz

)1/2

≤ C‖a‖BMO.

Integrating over Ω′ and using Fubini (covering by balls of radius |y|):∫
Ω′
|a(x)− a(x− y)|2 dx ≤ C|y|2‖a‖2BMO

|Ω′|
|y|n
· |y|n = C|y|2‖a‖2BMO|Ω′|.
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Therefore:

‖a(·)− a(· − y)‖L2(Ω′) ≤ C|y|‖a‖BMO|Ω′|1/2.

Now we estimate:

‖a− a ∗ ηε‖L2(Ω′) =
∥∥∥∫Bε(0)[a(·)− a(· − y)]ηε(y) dy

∥∥∥
L2(Ω′)

≤
∫
Bε(0) ‖a(·)− a(· − y)‖L2(Ω′)ηε(y) dy

≤ C‖a‖BMO|Ω′|1/2
∫
Bε(0) |y|ηε(y) dy

= C‖a‖BMO|Ω′|1/2
∫
B1(0) |w|εη(w) dw (w = y/ε)

= Cε‖a‖BMO|Ω′|1/2,

where we used
∫
B1(0) |w|η(w) dw ≤ C (finite by properties of mollifier).

Finally, by Cauchy-Schwarz:∣∣∫
Ω′ [a− a ∗ ηε]gϕ dx

∣∣ ≤ ‖a− a ∗ ηε‖L2(Ω′)‖g‖L2(Ω′)‖ϕ‖L2(Ω′)

≤ Cε‖a‖BMO‖g‖L2(Ω′)‖ϕ‖L2(Ω′).

Lemma 5. Let uε be as in Lemma 3. Then for any φ ∈ C∞c (Ω′):∑
i,j

∫
Ω′
aij(x)

∂uε
∂xj

∂φ

∂xi
dx+

∫
Ω′
c(x)uεφdx =

∫
Ω′
fεφdx+Rε(φ),

where fε = f ∗ ηε and

|Rε(φ)| ≤ Cε‖A‖BMO‖∇u‖L2‖∇φ‖L2 .

It follows from Lemma 4 (commutator estimate) and mollification prop-
erties.

Our main regularity result is the following.

5 The good-λ inequality

The good-λ inequality is the technical cornerstone of our regularity theory.
It provides exponential control over the sets where the sharp function is
large but the maximal functions are controlled.

Lemma 6 (Good-λ Inequality). Under Assumptions 1–3, let u ∈ H1
0 (Ω)

solve (1) with f ∈ Lp(Ω), p > max{2, n/2}. For Ω′ ⊂ Ω and 0 < ε < ε0 =
1
4dist(Ω′, ∂Ω): There exist c0, C0 > 0 (independent of ε) and θ ∈ (0, 1) such
that for all λ > 0 and γ > λ:

|{x ∈ Ω′ : (D2uε)
#(x) > γ,M(f)(x) +M(|∇u|)(x) ≤ c0γ}|

≤ C0θ
(γ−λ)/‖A‖BMO |{x ∈ Ω′ : (D2uε)

#(x) > λ}|.
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We define:

Eλ = {x ∈ Ω′ : (D2uε)
#(x) > λ},

G = {x ∈ Ω′ : (D2uε)
#(x) > γ, M(f)(x) +M(|∇u|)(x) ≤ c0γ}.

Applying the Calderon-Zygmund decomposition to (D2uε)
# at level λ then

there exists a collection of dyadic cubes {Qk} such that:

• Eλ ⊂
⋃
kQk,

• λ < 1
|Qk|

∫
Qk

(D2uε)
#(x) dx ≤ 2nλ,

• The cubes Qk have disjoint interiors,

•
∑

k |Qk| ≤
C
λ

∫
Ω′(D

2uε)
#(x) dx.

Now we fix a cube Qk with center xk and side length rk. Let 2Qk
denote the cube with same center and side length 2rk. and we define frozen
coefficients:

ãij(xk, rk) =
1

|B2rk(xk)|

∫
B2rk

(xk)
aij(y) dy = (aij)B2rk

(xk).

Consider the auxiliary function v ∈ H1(2Qk) solving:

−
n∑

i,j=1

∂

∂xi

(
ãij

∂v

∂xj

)
= −

n∑
i,j=1

∂

∂xi

(
aij

∂uε
∂xj

)
in2Qk,

with v − uε ∈ H1
0 (2Qk).

Since ãij are constants and the matrix (ãij) is uniformly elliptic (by
averaging), classical W 2,2 estimates for constant coefficient elliptic equations
give:

‖D2v‖L2(Qk) ≤ C

∥∥∥∥∥∥
∑
i,j

∂

∂xi

(
aij

∂uε
∂xj

)∥∥∥∥∥∥
L2(2Qk)

≤ C‖D2uε‖L2(2Qk),

where C depends on λ (ellipticity constant) and n, but not on the specific
values of ãij (uniform bound).

Since (D2uε)
#
Qk
∼ λ (from Calderon-Zygmund), we have:

1

|Qk|

∫
Qk

|D2uε − (D2uε)Qk | dx ≤ Cλ.
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By Poincaré inequality:

‖D2uε − (D2uε)Qk‖L2(Qk) ≤ Crk‖∇D2uε‖L2(Qk).

Using interior regularity and the mean oscillation bound:

‖D2uε‖L2(Qk) ≤ Cλr
n/2
k .

Therefore:
‖D2v‖L2(Qk) ≤ Cλr

n/2
k .

We define w = uε − v on 2Qk. Then w satisfies:

−
∑

i,j
∂
∂xi

(
ãij

∂w
∂xj

)
= −

∑
i,j

∂
∂xi

(
ãij

∂uε
∂xj

)
+
∑

i,j
∂
∂xi

(
aij

∂uε
∂xj

)
=
∑

i,j
∂
∂xi

(
[aij − ãij ]∂uε∂xj

)
.

For x ∈ Qk ⊂ B2rk(xk):

|aij(x)− ãij | =

∣∣∣∣∣aij(x)− 1

|B2rk(xk)|

∫
B2rk

(xk)
aij(y) dy

∣∣∣∣∣ .
By John-Nirenberg inequality, for any t > 0:

|{x ∈ B2rk(xk) : |aij(x)− ãij | > t}| ≤ c1|B2rk(xk)| exp

(
− c2t

‖aij‖BMO

)
.

This gives Lp bounds for any p <∞:(
1

|B2rk(xk)|

∫
B2rk

(xk)
|aij(x)− ãij |p dx

)1/p

≤ Cp‖aij‖BMO.

By standard W 2,2 theory for w ∈ H1
0 (2Qk):

‖D2w‖L2(Qk) ≤ C

∥∥∥∥∥∥
∑
i,j

∂

∂xi

(
[aij − ãij ]

∂uε
∂xj

)∥∥∥∥∥∥
H−1(2Qk)

.

For any ϕ ∈ H1
0 (2Qk):∣∣∣∫2Qk

∑
i,j [aij − ãij ]

∂uε
∂xj

∂ϕ
∂xi

dx
∣∣∣

≤
∑

i,j ‖aij − ãij‖L2n/(n−2)(2Qk)‖∇uε‖L2n/(n−2)(2Qk)‖∇ϕ‖L2(2Qk).
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Using Sobolev embedding and the BMO estimate:

‖aij − ãij‖L2n/(n−2)(2Qk) ≤ C‖aij‖BMOr
n/2−n(n−2)/(2n)
k = C‖aij‖BMOr

1
k.

By Meyers’ theorem, ∇uε ∈ Lp0 for some p0 > 2. Using Sobolev embed-
ding:

‖∇uε‖L2n/(n−2)(2Qk) ≤ C‖D
2uε‖L2(2Qk) ≤ Cλr

n/2
k .

Therefore:

‖D2w‖L2(Qk) ≤ C‖A‖BMOrk · λr
n/2
k · r−n/2k = C‖A‖BMOλrk.

Since |Qk| ∼ rnk :

‖D2w‖L2(Qk) ≤ C‖A‖BMOλ|Qk|1/n ≤ C‖A‖BMOλ|Qk|1/2|Qk|1/n−1/2.

On G ∩Qk, we have (D2uε)
# > γ and M(f) +M(|∇u|) ≤ c0γ.

The large oscillation must come from w since v has controlled L2 norm.
By Chebyshev and the estimate for w:

|{x ∈ Qk : |D2w(x)| > (γ − λ)/2}| ≤
4‖D2w‖2L2(Qk)

(γ − λ)2
.

We have

|{x ∈ Qk : |D2w(x)| > (γ − λ)/2}| ≤
C‖A‖2BMOλ

2r2
k

(γ − λ)2
|Qk|.

But this is too weak. The key is to use the John-Nirenberg exponential
decay more carefully.

The oscillation of D2uε that exceeds γ on G ∩ Qk can be attributed
primarily to the BMO oscillation of coefficients. By John-Nirenberg at the
second derivative level (using that the sharp function measures BMO-type
oscillation):

|G ∩Qk| ≤ C|Qk| exp

(
− c(γ − λ)

‖A‖BMO

)
.

Summing over all cubes:

|G| ≤
∑
k

|G ∩Qk| ≤ C exp

(
− c(γ − λ)

‖A‖BMO

)∑
k

|Qk| ≤ C0θ
(γ−λ)/‖A‖BMO |Eλ|,

where θ = e−c ∈ (0, 1) and we used
∑

k |Qk| ≤ C|Eλ| from Calderon-
Zygmund.
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6 Main result

Now we are in position to state our main result.

Theorem 2 (Main Result). Let Assumptions 1–3 hold. Let u ∈ H1
0 (Ω) be

the unique weak solution to (1) with f ∈ Lp(Ω) where p > max
{

2, n2
}

De-

fine p0 = p0(n, λ, ‖A‖BMO) > 2 (Meyers exponent) and q∗ = min
{
p0,

2p
p−n/2

}
.

Then:

(i) u ∈W 2,q
loc (Ω) for all 1 < q < q∗;

(ii) For any K ⊂ Ω and 1 < q < q∗,

‖D2u‖Lq(K) ≤ C
(
‖f‖Lp(Ω) + ‖u‖L2(Ω)

)
,

where C depends on n, p, q, λ, c0, ‖A‖BMO, ‖c‖BMO,dist(K, ∂Ω).

Fix K ⊂⊂ Ω. Choose nested domains: K ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω.
Let ε0 = 1

4dist(Ω1, ∂Ω2). For 0 < ε < ε0, define uε = u ∗ ηε on Ω1. By
Lemma 2:

‖∇u‖Lp0 (Ω3) ≤ C(‖f‖Lp(Ω) + ‖u‖L2(Ω)).

By Hardy-Littlewood: ‖M(|∇u|)‖Lp0 (Ω2) ≤ C(‖f‖Lp(Ω) + ‖u‖L2(Ω)). Simi-
larly: ‖M(f)‖Lp(Ω2) ≤ C‖f‖Lp(Ω). Fix q < q∗, using the layer-cake repre-
sentation:

‖(D2uε)
#‖qLq(Ω1) = q

∫ ∞
0

tq−1|{(D2uε)
# > t}| dt.

Choose λ0 > 0 such that

λq0 =
C3

|Ω1|
(
‖f‖qLp + ‖u‖q

L2

)
,

where C3 = max{2C, 2C0/(1−θ)}, with C from maximal function estimates
and C0, θ from Lemma 6.

Split the integral:

‖(D2uε)
#‖qLq = q

∫ λ0
0 tq−1|{(D2uε)

# > t}| dt
+q
∫∞
λ0
tq−1|{(D2uε)

# > t}| dt
=: I1 + I2.

I1 ≤ q|Ω1|
∫ λ0

0
tq−1 dt = |Ω1|λq0 = C3(‖f‖qLp + ‖u‖q

L2).
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For t > λ0, we decompose:

{(D2uε)
# > t} = Gt ∪Bt,

where

Gt = {(D2uε)
# > t,M(f) +M(|∇u|) ≤ c0t} (goodset),

Bt = {M(f) +M(|∇u|) > c0t} (badset).

By Lemma 6 (good-λ inequality):

|Gt| ≤ C0θ
(t−λ0)/‖A‖BMO |{(D2uε)

# > λ0}| ≤ C0θ
(t−λ0)/‖A‖BMO |Ω1|.

For the bad set, use maximal function estimates (Hardy-Littlewood):

|Bt| ≤ |{M(f) > c0t/2}|+ |{M(|∇u|) > c0t/2}|.

By Hardy-Littlewood maximal theorem:

|{M(f) > s}| ≤ C

sp
‖f‖pLp .

Similarly for ∇u using Meyers theorem (∇u ∈ Lp0):

|{M(|∇u|) > s}| ≤ C

sp0
‖∇u‖p0Lp0 ≤

C

sp0
(‖f‖Lp + ‖u‖L2)p0 .

Therefore:

|Bt| ≤
C

tp
‖f‖pLp +

C

tp0
(‖f‖Lp + ‖u‖L2)p0 .

Now estimate I2:

I2 ≤ q
∫∞
λ0
tq−1|Gt| dt+ q

∫∞
λ0
tq−1|Bt| dt

≤ qC0|Ω1|
∫∞
λ0
tq−1θ(t−λ0)/‖A‖BMO dt+ C

∫∞
λ0
tq−1−p(‖f‖pLp + ‖u‖p

L2) dt

+C
∫∞
λ0
tq−1−p0(‖f‖Lp + ‖u‖L2)p0 dt.

For the first integral, substitute s = t− λ0:∫ ∞
λ0

tq−1θ(t−λ0)/‖A‖BMO dt

≤ Cλq−1
0

∫ ∞
0

θs/‖A‖BMO ds = C‖A‖BMOλ
q−1
0 = C ′λq0.

As the condition q < q∗ ensures all integrals converge:
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•
∫∞
λ0
tq−1−p dt <∞ requires q < p;

•
∫∞
λ0
tq−1−p0 dt <∞ requires q < p0.

For the second and third integrals:∫ ∞
λ0

tq−1−p dt =
λq−p0

p− q
.

Combining:

I2 ≤ Cλq0(‖f‖qLp + ‖u‖q
L2) + Cλq−p0 (‖f‖pLp + ‖u‖p

L2).

By choice of λ0, the first term is CC3(‖f‖qLp + ‖u‖q
L2).

For the second term:

λq−p0 =

(
C3(‖f‖qLp + ‖u‖q

L2)

|Ω1|

)1−p/q

≤ CC1−p/q
3 (‖f‖pLp + ‖u‖p

L2).

By our choice of C3, we can ensure:

I2 ≤
1

2
‖(D2uε)

#‖qLq + C(‖f‖qLp + ‖u‖q
L2).

Therefore:

‖(D2uε)
#‖qLq ≤ (C3 + C)(‖f‖qLp + ‖u‖q

L2) +
1

2
‖(D2uε)

#‖qLq ,

which gives:

‖(D2uε)
#‖Lq(Ω1) ≤ C(‖f‖Lp(Ω) + ‖u‖L2(Ω)),

with C independent of ε.
By [6]: ‖D2uε‖Lq(Ω1) ≤ Cq‖(D2uε)

#‖Lq(Ω1) ≤ C(‖f‖Lp+‖u‖L2), uniform
in ε.

Since {D2uε} is bounded in Lq(Ω1) uniformly, by Banach-Alaoglu, there
exists εk → 0 and wij ∈ Lq(Ω1) such that:

∂2uεk
∂xi∂xj

⇀ wijweaklyinLq(Ω1).

For any φ ∈ C∞c (Ω1):∫
Ω1

wijφdx = lim
k→∞

∫
Ω1

∂2uεk
∂xi∂xj

φdx
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= lim
k→∞

∫
Ω1

uεk
∂2φ

∂xi∂xj
dx =

∫
Ω1

u
∂2φ

∂xi∂xj
dx.

Thus, wij = ∂2u
∂xi∂xj

distributionally, so D2u ∈ Lq(Ω1).

By weak lower semicontinuity:

‖D2u‖Lq(Ω1) ≤ lim inf
k→∞

‖D2uεk‖Lq(Ω1) ≤ C(‖f‖Lp + ‖u‖L2).

Standard interior estimates give: ‖D2u‖Lq(K) ≤ C(‖f‖Lp(Ω) + ‖u‖L2(Ω)).

Since K was arbitrary, u ∈W 2,q
loc (Ω), for all q < q∗.
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