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Abstract

The existence and location of solutions are established for an elliptic
system with full gradient dependence and intrinsic operators. The
abstract results are applied to a system with convolution products.
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1 Introduction

The object of this article is to study the following quasilinear elliptic system

—Ap ur = fi (z, Biui, Boua, V (Biur), V (Baug)) in
—Am’u,g = fg (:L’, Blul, BQ’U,Q, V (Blul) s V (BQUQ)) in Q (P)
ur =1ug =0 on 0f2
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on a nonempty bounded open set  in RV with Lipschitz boundary 99.
The equations in (P) are driven by the negative p;—Laplacians —A,, :
Wol’pi(Q) — WLPH(Q) for i = 1,2, where p; € (1,400) and p}; = p;/(pi —1).
These operators are given by

(—Apu,v) = / \Vu(m)\pi_Q Vu(z) - Vou(z)dx for all u,v € W()l’pi(Q).
Q

System (P) also contains the continuous operators called intrinsic B; :
Wol’pi(Q) — WPi(Q) for i = 1,2 as well as the Carathéodory functions
fi : OQxRxRxRY xRN — R meaning that f;(-, s1, 52,1, £2) is measurable
for all (s1,52,&1,&2) € R x R x RY x RY and f;(x,,,-,-) is continuous for
a.e. x € 2, with 4 = 1,2. Such nonlinearities depending on the solution and
its gradient are often called convection terms. Here the problem is more
involved due to the composition with the intrinsic operators.

The counterpart for a single equation is presented in [9]. Here, in the sys-
tem setting, the arguments are more complex because the variables interact
and thus cannot be separated. The first paper that studied problems with
intrinsic operators is [10]. For other recent developments in this direction we
address at [6,8,13,14]. Regarding problems exhibiting full dependence on
the gradient of the solution we refer to [2,4,5,12]. Our application concerns
equations with convolutions. For this topic we recommend [7,11,15].

A weak solution to system (P) is any pair (u1,uz) € I/Vol’p1 (Q) x Wol’p2 (Q)
such that

fi (x, Biuq, Bouo, V (Blul) ,V (BQILQ)) v; € LI(Q), 1=1,2,
and

/ |V’U,1|p172 V’U,l . Vvldx = / f1 (IL’, Blul, BQ’U,Q, \V4 (Blul) ,V (BQUQ)) vlda:,
Q Q

/ ‘VUQ ’p2—2 VUQ . vadx = / fQ (l’, Blul, BQ’U,Q, A4 (Blul) ,V (BQUQ)) ’Ugdx
Q Q

for all (vy,v9) € Wol’pl(ﬂ) X Wol’m(Q).
Due to the Dirichlet boundary condition the underlying space for prob-
lem (P) is the product space W, 7' (Q2) x Wy**(Q) endowed with the norm

[ur, u2)ll = llua [y + lluzllyirs

1
where [ 10 = (Jq[Vu[Pidz)?i for i = 1,2. The corresponding norm
0
on the dual space W~1P1(Q) x W~1#2(Q) is denoted ||(-,-)|,. Recall that

.-
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Wol’pi(Q) is the closure of C°(Q2) in W1Pi(Q)) endowed with the norm
1

1 1
I lyro: = (Jo IVulPide)?i + ([ [ufPide)?i. In the sequel we suppose that

N > p; for i = 1,2. The other cases are simpler and can be handled in the
same way. In this situation, the Sobolev critical exponents are p; = %

for ¢ = 1,2. In order to simplify the presentation, for any real number
T
r € (1,400), we denote 1 = —] (the Holder conjugate of r). For

7 € [1,+00), we will denote by || - || the usual norm in L"(£2).
We formulate the assumptions on the Carathéodory functions f; :  x
R x R x RY x RV — R and the operators B; : Wol’pi(Q) — WhPi(Q) with
i=1,2.
(H1) There exist functions o; € L' (Q) with r; € (1,p}), constants ¢; >
0, d; > 0 for ¢« = 1,2, and constants oy € [O,min {pik — 1,&—%,}),
2
. «_ 1 _P5 ind P p1
Qg € [O,mm {p2 1, (p{),}>, b1 € [O,mm{(m),, (1%)’}) and [y €
[0, min {p%/, p%,}) such that
(»3)" (p7)
|fi(@, 51, 82,61,&)| < 0i(x) + ea]s1|* + cals2|*® + di|&1|™ + daéa|
for a.e. x € Q and all (s1,89,&1,62) ER xR xRY xRN i =1,2.

(H2) The maps B; : Wy (2) — WPi(Q) are continuous and there exist
nonnegative constants K1 and Ko such that

1Biullp + 1V (Biw)|llp; < K [lull 1 + Ko

for all u € Wy (Q) and i = 1,2.

(H3) There exist functions ¢; € L'(Q) and constants a; > 0, b; > 0 for
i = 1,2 with

1> 2Pi(a; + b)) K (1)
such that
fi(w,51,82,€1,62)8i < Gi(2) + ar]s1]”* + az[s2|”* + bi|& [ + ba|Ea|™?
for a.e. x € Q and all (s1,89,61,62) € R x R x RY x RV,

Our existence result of weak solutions to problem (P) reads as follows.
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Theorem 1. Assume that conditions (H1)-(H3) are fulfilled. Then problem
(P) admits at least one weak solution.

The proof of Theorem 1 is given in Section 4.

Next we consider a refinement of problem (P) targeting the location of
solutions: given the constants Ry > 0 and Ry > 0, find a weak solution
(u1,u2) € Wy PH(Q) x Wy P2 (Q) of system (P) satisfying

il < Riy i=1,2 (2)
The interest for this problem is that it offers an a priori bound for the

solution.
Qur result in this direction is as follows.

Theorem 2. Fiz R; > 0 and Ry > 0 and assume that conditions (H1)-(H3)
are verified together with

a1
16l + lIGally + 27 (ar + D) K3" + 272(az + bo) K5* \ o _
1—2m (a1 + bl)K]lol =

and

1
Gl + el + 2 (0 + ) KB + 25y + KT\ _
1—2P2(a1+b1)Kf2 = 2

Then problem (P) admits at least one weak solution (uy,us) € Wol’pl(ﬂ) X
Wy 2(Q) for which the bounds (2) hold.

The proof of Theorem 2 is done in Section 4.

2 Preliminaries

The Sobolev embedding theorem ensures that the space VVO1 Pi(Q) is contin-
uously embedded in L7(Q2) whenever 7 € [1,p}] for ¢ = 1,2. Therefore there
exists a constant ¢; » > 0 such that

lully = O lullyrr Ve W (9). (3)

By the Rellich-Kondrachov theorem, the embedding of I/VO1 Pi(Q) into L™(Q)
is compact for 7 € [1, py).
We quote from [3] the following basic result.
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Proposition 1. The negative p;— Laplacian —A,, : W()l’pi(Q) — WLP(Q)
for i = 1,2 is continuous, bounded (in the sense that it maps bounded
sets into bounded sets), mazimal monotone, strictly monotone (so, pseu-

domonotone) and satisfies the (Sy)—property, that is, any sequence {u,} C
Wol’pi(Q) for which u, — u in Wol’pi(Q) and lim sup(—A,, uy, up —u) < 0
n——+oo

fulfills up — u in Wol’p"(Q).

From Proposition 1 we can establish the (S )—property of the operator
(—A,,, —A,,) on the product space I/Vol’p1 (Q) x I/Vol’p2 (Q). For the proof we
refer to [4, Lemma 4].

Proposition 2. If (u1p, uoy) — (u1,u2) in Wol’m(ﬂ) X I/Vol’p2 (Q) and

lim sup((—Ap, win, —Ap,uan), (U1n — w1, u2p — uz)) <0,
n—-4o0o

then (u1n, ugn) = (u1,ug) in Wy (Q) x Wy P2(Q).
In our approach we need the following basic theorem.

Theorem 3 (see [3, Theorem 2.99]). Let X be a real reflexive Banach space
and let A : X — X* be a bounded, coercive and pseudomonotone operator.
Then for every b € X* the equation Ax = b has at least one solution x € X.

Our application makes use of the convolution product, a notion that we
now recall in our context. The convolution of p € L*(RY) and u € I/VO1 P(Q),
1 < p < +o0, is defined as

(pxu)(x) = /RN p(y)u(z —y)dy forx € Q,

where u € Wol’p(Q) C WLP(RY) is extended by 0 on RV \ Q.
Young’s theorem for convolution provides the estimate

o * ullLoeny < lollpr@emyllull Lo@yy = lloll @y llullp (4)
(see [1, Theorem 4.15]). The weak partial derivatives of p % u are given by

0 ou .
ami(p*u)—p*axi, i=1,...,N, (5)

so the gradient of p *x u is equal to

ou ou
Vip*u)= (p*axl,...,p*m>.
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From (4) and (5) we obtain

9=l < [ 19prupds= [ (i (p§§)> @

=1

[NJiS)

N

g/RN(Z

=1
= NPl o 9] [

p
ou
p* aﬂ?z‘) = Np”p”IZ;(RN [ 1Vul HLp RN)

We are thus led to
o * wllwi = llp % ully = 119 (o )] 1l
_1
< ol (Al,;: T N) 19l (6)

In (6) the notation A, stands for the first eigenvalue of —A, on Wol’p(Q),
that is,

p
My — f l |VU!pHp_
wewlr@\{oy  [ullp

3 Properties of the associated Nemytskii opera-
tors

The right-hand sides of the equations in system (P) are expressed through
the operator A : WP () x WyP2(Q) — W=1P1(Q) x W~ 1P2(Q) described
by

(A(ur,uz), (v1,02)) = AW (ur, ug) (v1) + AP (ur, us) (va), (7)

where

A (g, us) (v;) = / fi (x, Byur, Bous, V(Byuy), V(Bauy)) vida
Q

for all (uy,us2),(vi,ve) € Wol’pl(Q) X I/Vol’pz’(Q)7 with ¢ = 1,2. The next
proposition shows in particular that the operator A is well defined.

Proposition 3. Assume that condition (H1) holds. The following bounds
hold

1AD @, o)l -1

1

< ol O + a0, vy Bl + 2l o

Tp]—aq Tph—ag

+di)_m_ 1Y (Brua)| [l + daby (Bau2)| 122 (8)

a2
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and

1A (1, ws)l| 1.0

< lloally2r, + 10, »p [[Bruallys +c20, b5 |

Tpi—ag py—og

+d16y, H IV(Biuw)| |5 + d2bs,_ (Bausz)| H;’i’; (9)
pr1—

042

for all (u1,ug) € WO ’pl(Q) X Wo P2 ().

Proof. By hypothesis (H1) and using (3) in conjunction with Holder’s in-
equality we find that

1 (a;, Blul, BQUQ, \% (Blul) ,V (BQUQ)) vldx

Pl—Oq p2—o¢2

< / (Io1] 4 e1 [ Biea|* + 2| Byua|

Q

i [V (Brun)|? + do|V (Byuz)|? ) vi]de
< ol lloslley + el Brualiye odll o

plfoq p2—a2
B1 B2

| [V (Brua)l [y [lorll 2 + dof| [V (Bauz)] HmHvlllp;gBQ

< <||01H7”’191,7“1+619 e pite2d ||B2U2||Zf> [v1llyyren

(d19 o [IV@Buu)| [+ daty sz
’po—PBo

(Baua) 112) vy

for all uy,v; € W, ’pl(Q) and ug € WyP?(Q). Likewise we have

/ f2 ($, Blul, BQUQ, V (Blul) y V (BQUQ)) ’Uzd.’x
Q

< /Q<|02\+C1|B1U1!a1 + co| Baug|*?
1|V (Brun)|? + da|V (Byuz)|? ) sl de
< lotlwlloallr, + el Bruslloall_sp  +callBauzllp2lloall o5
Pioa1 iz
+di || [V (Byu1)| ||p11||v1Hm{151 + do| [V (Baus)| HpiHvlllp;’gﬁ2
<

<\|U2Hw292,r2+0192 vi IBruallys +c20 b HB2U2H§§> V237102

Tpl—aq Tps—ag

+ (16 _es_I11V(Bru) [ + dof_ (Baua)| 1) vzl 100
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for all u; € VVO1 PL(Q) and ug,ve € VVO1 P2(Q)). These estimates lead directly
to the bounds (8) and (9). O

Corollary 1. Under the hypotheses of Proposition 3 and assuming moreover
that the operators By and Bs are bounded, the operator A defined in (7) is
bounded.

Proof. This follows readily from Proposition 3 and since the operators Bj
and By are bounded. O

Corollary 2. Under the hypotheses of Proposition 3 and assuming more-
over that the operators By and By are bounded, if (uin,u2n) — (u1,u2) in
W,y PH(Q) x W,y P2(Q) then we have

lim (A (u1pn,u2,pn), (U1 — w1, U2,y —u2)) = 0. (10)
n—oo

Proof. As in the proof of Proposition 3, for i = 1,2 we note that

/ £ (2 Brusm, Batian, V (Brurn) , V (Batia.n)) (i — us)da
Q
< / (\Ui! + ¢1 | Brug p|™ + 2 | Baug n|*?
Q
iy [V (Brura)|* + da [V (Bauza)|* ) luin — il da.

Since r; € (1,p}) and «o; < pf — 1 for i = 1,2, the Rellich-Kondrachov
embedding theorem implies

/ |oi(@)||win — wil dv < |lon |l lwin — willr, = 0 as n = +o00
Q
and

[ Bl s =l de < Bt i =l ;=0 as m = +ox,
P 7042
where the boundedness of the operators B; has been used, too. Since aq <
(;: 1), and ag < Wy *),, through the Rellich-Kondrachov embedding theorem
p1
and the boundedness of the operators B; for ¢ = 1,2 we arrive at

|Bgu2n| |ur,p —w|de < ||Bgu2n|] ||u1n w1 v —0asn— +o0
p5—a
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and

/ |Blul,n|a1 |u2,n - u2| dr < ”Blul,nH;}l ||u2,n - u2|| 7 0as n — 4o0.
Q a1

We pass to the terms involving the gradient. The Rellich-Kondrachov

embedding theorem can be applied thanks to 87 < min {é’—f),, (p—zl),} and

B2 < min {%, %} which ensures
2 1

pi  — 0

Py =Py

IV Bt P i = nlde < 1V B[ i~ ]
Q
asn — +oo,1=1,2,

/ IV (Bauzn) | [u1n — wi|dz < |||V (Baugn)| 152]| w1 — ua 2 — 0
o 2

p2—P2

as n — +o0o,
/ |V (Bruin) P |ug,n — uzldz < || [V (Brui)| [t l[uzn — uall_e_ —0
Q P1—F1

as n — +oo. Taking into account (7), the proof of (10) is achieved. O

4 Existence of solutions

Our approach relies on the operator
(=B, —Ap,) = A WP (Q) x Wy () = WH(Q) x W2 (Q),
with A introduced in (7).

Lemma 1. Assume that condition (H1) is fulfilled and the operators By and
By are bounded. Then the operator (—A,,, —A,,) — A, with A defined by
(7), is bounded and pseudomonotone.

Proof. The definition of the negative p;—Laplacian —A,,, for i = 1, 2, reveals
that the operator (—A,,, —A,,) is bounded. As known from Corollary 1, the
operator A is bounded. Hence it turns out that the operator (—A,,, —A,,)—
A is bounded.

In order to establish that the operator (—A,,, —A,,) — A is pseudomono-
tone, we have to prove for each sequence (uj y,u2,) C VVol’p1 (Q) x I/Vol’p2 (Q)
satisfying

(U1ms Uz ) — (u1,u2) in WP () x Wy P2(Q)
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and

limsup(((—AQp;, —=Ap,) — A) (U1,n, U2,n) 5 (U1 — UtU2, —u2)) <0, (11)

n—oo
that it holds
liminf(((=Ap,, =Ap,) = A) (ur,n, u2,0) s (W10 = V1, uz0 = V2))
> (((=Apy, —Ap,) — A) (u1,u2) , (U1 — v1,uz — v2)) (12)

for all (vy,va) € Wy () x Wy P2().
Due to (10), we see that (11) results in

limsup ((=Ap, 1 pn, Ut — u1) + (—Apy 2y, 2, — uz)) < 0.
n—o0

Then Proposition 2 implies that (w1, tg,) — (u1,uz) in Wy P* () x Wy P2 ().
From here we can conclude that (12) is true, thus completing the proof. [J

Lemma 2. Assume that conditions (H1)-(H3) are fulfilled. Then the oper-
ator (—Ap,, —Ap,) — A, with A defined by (7), is coercive, which means that

li <((_Ap17_AP2) _A) (uhuQ)’(ulauQ))
1m
(w1 uz) | —o00 | (w1, u2) ||

= +o0.  (13)

Proof. By hypotheses (H2)-(H3) and a well-known convexity inequality we
get

/ fi (2, Buuy, Bos, V(Byuy), V(Baus)) uada
Q

< Gl + ar[[Brua|[y + az|| Bauzl[p:
+01[| [V (Bru)| [ + ba| [V (Bauz2)| |13

< Gl + (an + o) (K [V [|p, + K2)™
+(az + b2) (K1 [Vu| [|p, + K2)P?

< Gl + 27 ag + b)) (KT [V | |15+ K5Y)

+2727 Yaz + b)) (K1 || [ Vel 152 + K3?)
for all (u1,uz) € Wy (Q) x Wy P*(Q) and i = 1,2. Tt follows that

((=Apy, —Ap,) — A)(u1,u2), (ur,uz))
> (1 =2 (ay + b)) KT [V | B + (1 — 2P2(ag + bo) KT?) || [Vug| |72
—[ICulle = [1¢2llr — 2P (a1 + b1) K5' — 2P2(ap + bo) K57,

Therefore the operator (—A,,,—A,,) — A satisfies (13) because of (1)
and p; >1,7=1,2. ]
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Now we are able to provide the proof of Theorem 1.

Proof of Theorem 1. The proof is carried out by applying Theorem
3 to the operator (—A,,, —Ap,) — A : Wy P (Q) x Wy P2() — W11 () x
W—1P2(Q), with A defined in (7), observing that the resolution of system
(P) is equivalent to solving the operator equation

((=Ap1, =Ap,) = A)(u1, u) = 0. (14)

Lemma 1 ensures that the operator (—A,,, —A,,) — A is bounded and pseu-
domonotone. Lemma 2 shows that the operator (—A,,, —A,,) — A is coer-
cive. Hence the assumptions required to apply Theorem 3 for the operator
(—A,,, —Ap,) — A on the space Wol’pl(Q) X I/Vol’p2 (Q) are fulfilled. Conse-
quently, there exists (uj,us) € Wol’pl(Q) X Wol’m () solving equation (14).
Accordingly, (ui,u2) is a weak solution to problem (P), which completes
the proof of Theorem 1.

Let us pass to the proof of Theorem 2

Proof of Theorem 2. Theorem 2 provides us with a solution (uy,us) €
Wol’p1 (Q) x Wol’p2 (Q) to system (P). Then (14) and the estimate in the proof
of Lemma 2 lead to

(1= 2P (ag + b1) KT [Vug[B: 4 (1 — 2P (ag + b2) KT?)|| [Vuo| ||P?
< [ICull + [1G2lln + 2P (a1 + b1) K5 + 2P (ag + ba) K5°.

whence the desired conclusion is achieved.

5 Application to systems with convolutions

We apply our theoretic results to the following system involving convolution
products

—Apug = 1+(p*u1)%+(p*u2)2 (1+|V(p*xuz)[”) inQ
—Ap,uz = 1+(p*u1)%+(p*uz)2 (14 |V(pxu1)|’) inQ (Q)
Ul = U2 = O on 89,

where p1,p2 € (1,+00), p € LY(Q) and v > 0.
Our result on problem (@) is formulated as follows.



Ezistence and location of solutions 114

Theorem 4. Assume that v € [O,min { (5{1),, (;’5),, (5;2),, (;’5,}> and

1 1

IR -1
ol L1 vy < 271 <max{)\1;11 A g bt N> : (15)

Then problem (Q) admits at least one weak solution (uy,us) € Wol’pl(ﬂ) X
Wy P2 (9).
In addition, there is the estimate

1
1 _ 1 _ 1 pi b
oz < @O (1= (2ollrmy (maxtn, 2y +8))7) 7
(16)
i=1,2.
Proof. The proof proceeds by applying Theorem 2. To this end we introduce
the functions fi : @ x Rx Rx RY x RN - R, i=1,2, by

1
= (1 Y
fi(z, s1,82,&1,8&2) 1+s%+53( + |&2|7),

fa(x,81,52,61,&2) = (1+ &),

1+ 52+ 83
and the maps B; : Wol’pi(Q) — WhPi(Q), i =1,2, by
Bi(v) = pxv, wveWiP(Q).

The assumption on v entails that hypothesis (H1) is satisfied. By (6) we
infer that

1 1

ool < lollxmy (maxth 2 ALY+ N ) ol
0

for all v € T/VO1 Pi(Q), i = 1,2. Consequently, hypothesis (H2) holds with the
11

constants K1 = [|p[|p1mw) max{)\ig,)\uf} + N) and Ky = 0. Since we
have st

fi(, s1,82,1,62)81 = m(l + [&2]7) < 2+ [P
and 59

fo(®, 51, 82,81, &2)82 = m(l +[”) <24 [& 7,

and thanks to (15), hypothesis (H3) is verified, too. According to The-
orem 1 we conclude that system (@) possesses a weak solution (uj,us) €
I/VO1 PLQ) x WO1 P2(Q)). The bound of the solution described in (16) is a direct
consequence of Theorem 2. The proof is complete. O
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