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1 Introduction

We study the existence of weak solutions to the quasilinear (p, p)-biharmonic
system

∆
(
µ(x)|∆u|p−2∆u

)
= λa(x)|u|p−2u+ λc(x)|u|α−1|v|β+1u+ 1

α+1Fu(x, u, v) in Ω,

∆
(
ν(x)|∆v|p−2∆v

)
= λb(x)|v|p−2v + λc(x)|u|α+1|v|β−1v + 1

β+1Fv(x, u, v) in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω,

(1)

where λ is a nonnegative eigenvalue parameter, Ω ⊆ RN is a bounded domain
with smooth boundary, p > 1 is a constant, µ, ν ∈ C(Ω) with µ, ν > 0 on Ω,
α, β, a, b, c satisfy the following conditions:

(A1) α and β are nonnegative constants such that α+ β + 2 = p;

(A2) a, b, c : Ω→ R are nonnegative measurable functions with

a, b, c ∈ L∞(Ω) and a2 + b2 + c2 6≡ 0 in Ω.

The function F belongs to the class A of functions F : Ω × R2 → R,
which are measurable in Ω, continuously differentiable in R2 for a.e. x ∈ Ω,
F (x, 0, 0) = 0, and satisfy the following growth conditions:

|Fs(x, s, t)| ≤ C
(

1 + |s|p−1 + |t|
q(p−1)

p

)
, (2)

|Ft(x, s, t)| ≤ C
(

1 + |t|q−1 + |s|
p(q−1)

q

)
, (3)

where p, q ∈
[
1, Np

N−2p

)
if p < N

2 and p, q ∈ [1,∞) if p ≥ N
2 , and Fs(x, s, t)

and Ft(x, s, t) denote the partial derivatives of F (x, s, t) with respect to s
and t, respectively.

In this paper, we employ the linking theorem of Brezis and Nirenberg (see
Lemma 4 in Section 4) to establish the existence of at least two nontrivial
weak solutions of system (1). Sufficient conditions are provided to ensure
that system (1) admits at least two nontrivial weak solutions for λ in a closed
right neighborhood of 0. Our existence result applies to both resonant and



L. Kong 83

nonresonant cases by comparing the behavior of the nonlinearity F with the
principal eigenvalue of the associated biharmonic system

∆
(
µ(x)|∆u|p−2∆u

)
= λa(x)|u|p−2u+ λc(x)|u|α−1|v|β+1u, in Ω,

∆
(
ν(x)|∆v|p−2∆v

)
= λb(x)|v|p−2v + λc(x)|u|α+1|v|β−1v, in Ω,

u = ∆u = 0, v = ∆v = 0, on ∂Ω.

(4)

For a detailed discussion of the resonant and nonresonant cases, see Re-
marks 3 and 4 in Section 3. For additional background on linking theorems
and related applications, see, for example, [4, 5, 18–20].

In recent years, biharmonic problems have been the focus of extensive
research. Regarding problems with principal eigenvalues, among many oth-
ers, we refer to [2, 3, 6, 24] for scalar cases and to [7, 14–16] for systems.
For biharmonic problems involving non-discrete eigenvalues, see, for in-
stance, [8,11–13,18] in the scalar setting and [1,9,10,17,21,22] for systems.

In the scalar case, Drábek and Ótanik [6] proved in 2001 that the p-
biharmonic boundary value problem{

∆
(
|∆u|p−2∆u

)
= λ|u|p−2u in Ω,

u = ∆u = 0 on ∂Ω,

admits a principal eigenvalue λ1, which is both simple and isolated. Later,
Benedikt and Drábek [2] obtained two-sided estimates for λ1 and used them
to study its asymptotic behavior as p → ∞. When Ω is a ball centered at
the origin, they [3] further analyzed the asymptotics of λ1 as p→ 1+.

In the case of systems, in 2019, Leadi and Toyou [16] investigated the
existence and simplicity of the principal eigenvalue for the (p, q)-biharmonic
system

∆
(
|∆u|p−2∆u

)
= λa(x)|u|p−2u+ c(x)|u|α−1|v|β+1u in Ω,

∆
(
|∆v|q−2∆v

)
= λb(x)|v|q−2v + c(x)|u|α+1|v|β−1v in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω.

More recently, Kong and Nichols [14] and Kong, Nichols, and Wang [15]
studied the principal eigenvalue of system (4) (in fact, its generalizations)
along with the associated eigenfunctions. Some of their results, relevant to
the present work, are summarized in Lemma 1 and Remark 2 below.

The studies in [14,15] provide the theoretical foundation for our analysis,
as the behavior of the principal eigenvalue and its associated eigenfunctions
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plays a crucial role in establishing the existence of nontrivial solutions for
system (1).

We emphasize that, depending on the values of λ, α, β, a, b, and c,
system (1) encompasses several forms. For example, when λ = α = β = 0,
we have 

∆
(
µ(x)|∆u|p−2∆u

)
= Fu(x, u, v) in Ω,

∆
(
ν(x)|∆v|p−2∆v

)
= Fv(x, u, v) in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω.

(5)

When c(x) ≡ 0 in Ω, the system takes the form
∆
(
µ(x)|∆u|p−2∆u

)
= λa(x)|u|p−2u+ Fu(x, u, v) in Ω,

∆
(
ν(x)|∆v|p−2∆v

)
= λb(x)|v|p−2v + Fv(x, u, v) in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω.

When a(x) = b(x) ≡ 0 in Ω, it becomes
∆
(
µ(x)|∆u|p−2∆u

)
= λc(x)|u|α−1|v|β+1u+ 1

α+1Fu(x, u, v) in Ω,

∆
(
ν(x)|∆v|p−2∆v

)
= λc(x)|u|α+1|v|β−1v + 1

β+1Fv(x, u, v) in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω.

Analogous systems arise when a(x) = c(x) ≡ 0 or b(x) = c(x) ≡ 0 in Ω. Our
existence theorem applies to all these cases.

The remainder of the paper is organized as follows. Section 2 presents
some results on the eigenvalue problem (4), Section 3 states the main theo-
rem, and its proof is provided in Section 4.

2 An eigenvalue problem

Throughout this paper, for any r ∈ (1,∞), we denote the norm of the space
Lr(Ω) by

‖u‖r =

(∫
Ω
|u|r dx

)1/r

, u ∈ Lr(Ω).

We define the space X as

X =
(
W 1,p

0 (Ω) ∩W 2,p(Ω)
)
×
(
W 1,p

0 (Ω) ∩W 2,p(Ω)
)
. (6)

Then, X is a separable and reflexive Banach space equipped with the stan-
dard norm

‖(u, v)‖X = ‖∆u‖p + ‖∆v‖p, (u, v) ∈ X.
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Let the functionals Φ,Ψ : X → R be defined by

Φ(u, v) =
α+ 1

p

∫
Ω
µ(x)|∆u|p dx+

β + 1

p

∫
Ω
ν(x)|∆v|p dx (7)

and

Ψ(u, v) =
α+ 1

p

∫
Ω
a(x)|u|p dx+

β + 1

p

∫
Ω
b(x)|v|p dx

+

∫
Ω
c(x)|u|α+1|v|β+1 dx, (8)

where (u, v) ∈ X.
Under the assumptions (A1) and (A2), it is straightforward to verify

that Φ and Ψ are well-defined and belong to C1(X,R). Moreover, for all
(u, v), (φ, ψ) ∈ X, their Fréchet derivatives satisfy

〈Φ′(u, v), (φ, ψ)〉 = (α+ 1)

∫
Ω
µ(x)|∆u|p−2∆u∆φdx

+ (β + 1)

∫
Ω
ν(x)|∆v|p−2∆v∆ψ dx (9)

and

〈Ψ′(u, v), (φ, ψ)〉 = (α+ 1)

∫
Ω
a(x)|u|p−2uφ dx

+ (α+ 1)

∫
Ω
c(x)|u|α−1|v|β+1uφ dx

+ (β + 1)

∫
Ω
b(x)|v|p−2v ψ dx

+ (β + 1)

∫
Ω
c(x)|u|α+1|v|β−1v ψ dx, (10)

where 〈·, ·〉 denotes the duality pairing between X and its dual space X∗.

Lemma 1. Assume that (A1) and (A2) hold. Then system (4) admits an
eigenpair (

λ1(a, b, c), (u1, v1)
)
,

where λ1(a, b, c) > 0 is the principal eigenvalue and u1, v1 are nonnegative
in Ω. Moreover,

λ1(a, b, c) = Φ(u1, v1) = inf
(u,v)∈M

Φ(u, v), (11)

where
M = {(u, v) ∈ X : Ψ(u, v) = 1}. (12)
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Remark 1. Lemma 1 is a direct consequence of [14, Theorem 2.3] in the
case c 6≡ 0 and µ = ν ≡ 1 in Ω, and of [15, Corollary 3.1] in the case a 6≡ 0
and b 6≡ 0 in Ω. The other situations, where a2 + b2 + c2 6≡ 0 in Ω, can be
treated in a similar way.

Remark 2. To further understand the principal eigenvalue λ1(a, b, c) de-
fined in (11) and its associated eigenfunction (u1, v1), we present below a
summary of several special cases corresponding to different values a, b, and
c:

Case 1: Fully coupled system, c(x) 6≡ 0.

• The corresponding eigenfunction (u1, v1) has both components non-
trivial and of fixed sign. In our setting, we take u1 and v1 to be
positive throughout Ω.

Case 2: Decoupled system, c(x) ≡ 0.

• System (4) reduces to two independent eigenvalue problems:

∆(µ(x)|∆u|p−2∆u) = λa(x)|u|p−2u, u = ∆u = 0, (13)

∆(ν(x)|∆v|p−2∆v) = λb(x)|v|p−2v, v = ∆v = 0. (14)

Let

λ1,u := inf
u 6=0

∫
Ω µ(x)|∆u|p∫

Ω a(x)|u|p
and λ1,v := inf

v 6=0

∫
Ω ν(x)|∆v|p∫

Ω b(x)|v|p
.

Then, it can be shown that

λ1(a, b, 0) = min{λ1,u, λ1,v}.

Moreover, if µ(x) = ν(x) and a(x) = b(x), then λ1,u = λ1,v, hence

λ1(a, b, 0) = λ1,u = λ1,v.

• The eigenfunction corresponding to λ1(a, b, 0) for the decoupled system
(4):

� (u1, 0) if λ1,u < λ1,v, where u1 solves (13) and is positive in Ω.

� (0, v1) if λ1,v < λ1,u, where v1 solves (14) and is positive in Ω.

� Any (γu1, δv1) with (γ, δ) 6= (0, 0) if λ1,v = λ1,u. In this context,
we take γ = δ = 1.
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Case 3: One equation active.

• If a 6≡ 0, b ≡ 0, c ≡ 0, then

λ1(a, 0, 0) = inf
u 6=0

∫
Ω µ(x)|∆u|p∫

Ω a(x)|u|p
,

with eigenfunctions of the form (u1, 0).

• Similarly, if a ≡ 0, b 6≡ 0, c ≡ 0, then

λ1(0, b, 0) = inf
v 6=0

∫
Ω ν(x)|∆v|p∫

Ω b(x)|v|p
,

with eigenfunctions of the form (0, v1).

In the sequel, we write λ1 instead of λ1(a, b, c) when the dependence on
a, b, and c is clear from the context.

Lemma 2. Assume that (A1) and (A2) hold. If (u1, v1) ∈M and (u2, v2) ∈
M are both minimizers of Φ on M , then they are linearly dependent, that
is, there exists ρ ∈ R \ {0} such that (u2, v2) = ρ (u1, v1). In other words,
any two minimizers of Φ on M are scalar multiples of one another.

Proof. Since (u1, v1), (u2, v2) ∈M are both minimizers of Φ, we have

λ1 = Φ(u1, v1) = Φ(u2, v2).

Suppose (u1, v1) and (u2, v2) are not scalar multiples. Define the convex
combination

(ut, vt) := (1− t)(u1, v1) + t(u2, v2), t ∈ [0, 1].

Because Φ is strictly convex,

Φ(ut, vt) < (1− t)Φ(u1, v1) + tΦ(u2, v2) = λ1 for all t ∈ (0, 1). (15)

Define the function

G(t, s) := Ψ
(
(ut, vt) + s(w, z)

)
− 1

for some fixed (w, z) ∈ X, where s is a scalar parameter. Observe that

G(0, 0) = Ψ(u1, v1)− 1 = 0
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since (u1, v1) ∈M . The partial derivative of G with respect to s at (0, 0) is

DsG(0, 0) = DΨ(u1, v1)[(w, z)].

If (w, z) is chosen such that

〈Ψ′(u1, v1), (w, z)〉 6= 0,

then by the Implicit Function Theorem, there exist a neighborhood I of 0
and a unique continuously differentiable function

s = s(t), t ∈ I,

such that G(t, s(t)) = 0, i.e.,

Ψ
(
(ut, vt) + s(t)(w, z)

)
= 1.

Hence the curve
(ũt, ṽt) := (ut, vt) + s(t)(w, z)

lies entirely on the constraint set M for t near 0. By the continuity of Φ
and (15), for small t 6= 0, we have

Φ(ũt, ṽt) = Φ
(
(ut, vt) + s(t)(w, z)

)
< λ1.

This contradicts the fact that λ1 is the minimum of Φ on M . The contra-
diction shows (u1, v1) and (u2, v2) must be scalar multiples. The lemma is
thus proved.

Lemma 3. Assume that (A1) and (A2) hold. Let (u1, v1) be given as in
Lemma 1. Set V = span{(u1, v1)} and choose a closed subspace W ⊂ X
such that X = V ⊕W . Define

λ̂ = inf
(u,v)∈W\{0}

Φ(u, v)

Ψ(u, v)
. (16)

Then λ̂ > λ1.

Proof. Assume, by contradiction, that λ̂ = λ1. Then there exists a sequence
(un, vn) ⊂ W with Ψ(un, vn) = 1 (we may normalize each element so the
denominator equals 1) and Φ(un, vn) ↓ λ̂ = λ1. The sequence {(un, vn)} is
bounded in X, hence (up to a subsequence) (un, vn) ⇀ (u∞, v∞) weakly in
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X and (un, vn)→ (u∞, v∞) strongly in Lp(Ω)×Lp(Ω). The constraint passes
to the limit: Ψ(u∞, v∞) = 1. By weak lower semicontinuity, we obtain

Φ(u∞, v∞) ≤ lim inf
n→∞

Φ(un, vn) = λ1,

so Φ(u∞, v∞) = λ1. Therefore (u∞, v∞) ∈M attains the global infimum λ1.
By Lemma 2, it follows that (u∞, v∞) must be a scalar multiple of (u1, v1),
hence (u∞, v∞) ∈ V .

But each (un, vn) lies in W , and W is closed and hence weakly closed, so
the weak limit (u∞, v∞) ∈W . Thus, (u∞, v∞) ∈ V ∩W . Since X = V ⊕W
is a direct sum, we have V ∩W = {0}. Therefore (u∞, v∞) = (0, 0). This
contradicts the fact that Ψ(u∞, v∞) = 1. This contradiction shows λ̂ > λ1,
as claimed.

3 Existence of weak solutions

For a.e. x ∈ Ω and all (s, t) ∈ R2, since F ∈ A, from (2) and (3), we have

|F (x, s, t)|

=

∣∣∣∣F (x, 0, 0) +

∫ 1

0

∂F (x, τs, τt)

∂τ
dτ

∣∣∣∣
≤
∫ 1

0

(
|s| |Fs(x, τs, τt)|+ |t| |Ft(x, τs, τt)|

)
dτ

≤ C
∫ 1

0

(
|s|+ |s|p̄τ p̄−1 + |τt|

q̄(p̄−1)
p̄ |s|+ |t|+ |t|q̄τ q̄−1 + |τs|

p̄(q̄−1)
q̄ |t|

)
dτ

≤ C
(
|s|+ |t|+ |s|p̄ + |t|q̄ + |t|

q̄(p̄−1)
p̄ |s|+ |s|

p̄(q̄−1)
q̄ |t|

)
.

This, together with Young’s inequality, implies that

|F (x, s, t)| ≤ C1

(
|s|+ |t|+ |s|p̄ + |t|q̄

)
, (17)

where C1 is a positive constant independent of (s, t) ∈ R2.
Define the functional N : X → R by

N(u, v) =

∫
Ω
F (x, u, v) dx. (18)

Then, it can be shown that N is well-defined and belongs to C1(X,R).
Moreover, for all (u, v), (φ, ψ) ∈ X, its Fréchet derivative is given by

〈N ′(u, v), (φ, ψ)〉 =

∫
Ω

[
Fu(x, u, v)φ+ Fv(x, u, v)ψ

]
dx. (19)
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Definition 1. We say that (u, v) ∈ X is a weak solution of system (1) if it
satisfies ∫

Ω
µ(x)|∆u|p−2∆u∆φdx

= λ

∫
Ω
a(x)|u|p−2uφ dx+ λ

∫
Ω
c(x)|u|α−1|v|β+1uφ dx

+
1

α+ 1

∫
Ω
Fu(x, u, v)φdx

and ∫
Ω
ν(x)|∆v|p−2∆v∆ψ dx

= λ

∫
Ω
b(x)|v|p−2v ψ dx+ λ

∫
Ω
c(x)|u|α+1|v|β−1v ψ dx

+
1

β + 1

∫
Ω
Fv(x, u, v)ψ dx

for all (φ, ψ) ∈ X.

Let the functional I : X → R be defined by

I(u, v) = Φ(u, v)− λΨ(u, v)−N(u, v), (20)

where Φ and Ψ are defined by (7) and (8), respectively. Then, using (9),
(10), and (19), we deduce that (u, v) is a critical point of I if and only if it
is a weak solution of system (1).

Henceforth, let λ1 be as in Lemma 1, and let λ̂ be as in Lemma 3.
We make the following assumptions:

(H1) (Local growth near the origin) There exist r > 0 and λ̄ ∈ (λ1, λ̂)
such that, for a.e. x ∈ Ω and all s, t ∈ [0, r], we have

λ1K(x, s, t) ≤ F (x, s, t) ≤ λ̄K(x, s, t),

where

K(x, s, t) =
α+ 1

p
a(x)|s|p +

β + 1

p
b(x)|t|p + c(x)|s|α+1|t|β+1. (21)

(H2) (Subcritical growth at infinity) As |s|+ |t| → ∞, we require

lim sup
|s|+|t|→∞

ess sup
x∈Ω

Q(x, s, t) < λ1 + λ̄− λ̂, (22)
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where

Q(x, s, t) =
F (x, s, t)

K(x, s, t)
for a.e. x ∈ Ω and all (s, t) ∈ R2.

(H3) (Raywise asymptotics) For a.e. x ∈ Ω and all (s, t) withK(x, s, t) 6=
0, the following limits hold:

lim
ρ→∞

Q(x, ρs, ρt) = λ1 + λ̄− λ̂ (23)

and

lim
ρ→∞

(
ρ
dF (x, ρs, ρt)

dρ
− pF (x, ρs, ρt)

)
=∞. (24)

We now state the main theorem of this paper.

Theorem 1. Suppose that (H1) holds and either (H2) or (H3) is satisfied.
Then, for each λ ∈

[
0, λ̂− λ̄

]
, system (1) admits at least two nontrivial weak

solutions.

Remark 3. Under assumption (H1), system (5) (i.e., system (1) with λ = 0)
is resonant at the origin if

lim
(s,t)→(0+,0+)

Q(x, s, t) = λ1.

Otherwise, if this limit is strictly above λ1, the system is nonresonant near
zero.

Remark 4. Assumption (H2) corresponds to a subcritical and uniformly
nonresonant regime: Q(x, s, t) remains strictly below the critical threshold
λ1 + λ̄ − λ̂ at infinity, and the energy functional has standard variational
geometry for all λ ∈ [0, λ̂− λ̄].

In contrast, (H3) describes an asymptotically critical regime along rays,
with Q converging to the critical threshold and the additional superlinearity
condition (24) ensuring sufficient growth. Here, the problem can become
resonant as λ approaches λ̂− λ̄, but compactness is preserved, guaranteeing
multiple nontrivial solutions.

Thus, the main existence conclusion holds in both cases, but the asymp-
totic behavior and resonance properties of the nonlinearity differ.

Intuitively, (H2) keeps the nonlinearity safely below the critical level (non-
resonant), while (H3) lets it approach the critical level along rays (resonant),
but the extra superlinearity ensures solutions still exist.
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4 Proof of Theorem 1

Recall that a functional I, defined on a real Banach space X, is said to
satisfy the Palais–Smale condition (PS condition, for short) if every sequence
{wn} ⊂ X, such that

I(wn) is bounded and I ′(wn)→ 0 in X∗,

admits a strongly convergent subsequence in X. Such a sequence {wn} is
called a PS sequence.

Lemma 4. ([4, Theorem 4]) Let X be a real Banach space with a direct sum
decomposition X = V ⊕W with dimV < ∞. Suppose that I ∈ C1(X,R)
satisfies the PS condition and is bounded below, I(0) = 0, and infw∈X I(w) <
0. Assume also that I has a local linking at 0, that is, for some ρ > 0,

I(w) ≤ 0 for w ∈ V with ||w|| ≤ ρ,

I(w) ≥ 0 for w ∈W with ||w|| ≤ ρ.

Then, I has at least two nontrivial critical points.

In what follows, let X be defined by (6) and let V and W be given
as in Lemma 3. We also denote by I the functional given in (20). Then,
X = V ⊕W with dimV = 1 <∞.

Lemma 5. Assume that (H1) holds. Then, for each λ ∈
[
0, λ̂ − λ̄

]
, I has

a local linking at 0 with respect to the decomposition X = V ⊕W .

Proof. Since V is finite-dimensional, all norms on V are equivalent. Hence,
there exists a constant C2 > 0 such that

‖u‖L∞(Ω) + ‖v‖L∞(Ω) ≤ C2‖(u, v)‖X for all (u, v) ∈ V.

Taking ρ > 0 sufficiently small ensures that, for all (u, v) ∈ V with ‖(u, v)‖X ≤
ρ, we have

|u(x)| ≤ r and |v(x)| ≤ r for all x ∈ Ω,

where r > 0 is as in assumption (H1).
Below, we fix λ ∈

[
0, λ̂− λ̄

]
. Let (u, v) ∈ V be such that ‖(u, v)‖X ≤ ρ.

Note that α+ β + 2 = p by (A1). Then, in view of (8) and (21), we have

Φ(u, v) = λ1Ψ(u, v)

= λ1

∫
Ω
K(x, u, v) dx.
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Thus, from (18), (20) and (H1), it follows that

I(u, v) = λ1

∫
Ω
K(x, u, v) dx− λΨ(u, v)−

∫
Ω
F (x, u, v) dx

≤
∫

Ω

[
λ1K(x, u, v)− F (x, u, v)

]
dx

≤ 0.

Now, let (u, v) ∈W be such that ‖(u, v)‖X ≤ ρ. Define

S = {x ∈ Ω | |u(x)| ≤ r and |v(x)| ≤ r}

and denote by Sc the complement of S in Ω. From (16), we have

Φ(u, v) ≥ λ̂Ψ(u, v).

Then, from (20) and (H1), we derive that

I(u, v) = Φ(u, v)−
(
λ− λ̄

)
Ψ(u, v)−N(u, v) + λ̄Ψ(u, v)

≥

(
1− λ− λ̂

λ̂

)
Φ(u, v)−

∫
S

[
F (x, u, v)− λ̄K(x, u, v)

]
dx

−
∫
Sc

[
F (x, u, v)− λ̄K(x, u, v)

]
dx

≥

(
1− λ− λ̂

λ̂

)
Φ(u, v)−

∫
Sc

[
F (x, u, v)− λ̄K(x, u, v)

]
dx. (25)

Note from (17) and (21) that there exist constants C3 > 0 and w ∈
(
p, Np

N−2p

]
if p < N

2 , and w ∈ (p,∞) if p ≥ N
2 , such that

F (x, u, v − λ̄K(x, u, v)) ≤ C3 (|u|w + |v|w) for all (u, v) ∈ Sc.

Thus, in view of the fact that

1− λ− λ̂
λ̂
≥ 0,
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from (7) and (25), it follows that

I(u, v) ≥

(
1− λ− λ̂

λ̂

)(α+ 1

p
µ ‖∆u‖pp +

β + 1

p
ν ‖∆v‖pp

)
− C3

∫
Sc

(
|u|w + |v|w

)
dx

≥

(
1− λ− λ̂

λ̂

)(α+ 1

p
µ ‖∆u‖pp +

β + 1

p
ν ‖∆v‖pp

)
− C3

(
‖u‖ww + ‖v‖ww

)
≥

(
1− λ− λ̂

λ̂

)(α+ 1

p
µ ‖∆u‖pp +

β + 1

p
ν ‖∆v‖pp

)
− C4

(
‖∆u‖wp + ‖∆v‖wp

)
,

where
µ = min

x∈Ω
|µ(x)| > 0, ν = min

x∈Ω
|ν(x)| > 0, (26)

and C4 is a positive constant independent of (u, v).
Since w > p, we see that I(u, v) ≥ 0 for ρ > 0 sufficiently small. Hence,

we have proved that I has a local linking at 0. This completes the proof of
the lemma.

Lemma 6. Any bounded sequence {(un, vn)} ⊂ X such that I ′(un, vn)→ 0
in X∗ has a convergent subsequence.

Proof. Let {(un, vn)} ⊂ X be bounded and satisfy I ′(un, vn) → 0 in X∗.
Then, by the reflexivity of X, passing to a subsequence if necessary (which
we do not relabel), we may assume that

(un, vn) ⇀ (u, v) in X.

We shall show the convergence is actually strong in X. We need the
standard pointwise monotonicity estimate (see, for example (2.2) in [23]):
For every k > 1, there exists a constant Dk > 0 (depending only on k) such
that for all vectors ξ, η ∈ Rm (in our application m = 1) we have

(
|ξ|k−2ξ−|η|k−2η

)
·(ξ−η) ≥ Dk ·

{
|ξ − η|k, k ≥ 2,

(|ξ|+ |η|)k−2|ξ − η|2, 1 < k < 2.
(27)
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For any index n, we can write the identity〈
Φ′(un, vn)− Φ′(u, v), (un − u, vn − v)

〉
=
〈
I ′(un, vn)− I ′(u, v), (un − u, vn − v)

〉
+ λ

〈
Ψ′(un, vn)−Ψ′(u, v), (un − u, vn − v)

〉
+
〈
N ′(un, vn)−N ′(u, v), (un − u, vn − v)

〉
. (28)

Since I ′(un, vn)→ 0 in X∗ and (un − u, vn − v) is uniformly bounded in
X, we have〈

I ′(un, vn)− I ′(u, v), (un − u, vn − v)
〉
→ 0 as n→∞. (29)

Under our standing hypotheses the maps

Ψ′ : X → X∗, N ′ : X → X∗

are compact (Nemytskii operators built from a, b, c ∈ L∞(Ω) and from the
F -data (F ∈ A)). Concretely:
• Boundedness of {(un, vn)} in X implies, by the Rellich–Kondrachov

theorem, that (up to a subsequence) un → u strongly in Lr(Ω) and vn → v
strongly in Ls(Ω) for every exponent r, s strictly below the Sobolev critical
exponents associated to W 2,p(Ω).
• The pointwise (or strong Lr(Ω)) convergence together with the growth

assumptions on the nonlinearities yields, by dominated convergence and
standard continuity of Nemytskii maps, that each of the coefficient-type
terms

a(x)|un|p−2un, b(x)|vn|p−2vn,

c(x)|un|α−1un|vn|β+1, c(x)|un|α+1|vn|β−1vn

converges strongly in the appropriate Lebesgue spaces which embed con-
tinuously into X∗ via the standard duality pairings with φ, ψ. Therefore,
Ψ′(un, vn) has a strongly convergent subsequence in X∗. The same reasoning
applies to N ′(un, vn) (using the growth/regularity of Fu, Fv).

Hence, by passing to a further subsequence if necessary, we may assume

Ψ′(un, vn)→ T in X∗ and N ′(un, vn)→ S in X∗

for some T, S ∈ X∗. Then, since (un − u, vn − v) is uniformly bounded in
X, it follows that〈

Ψ′(un, vn)−Ψ′(u, v), (un − u, vn − v)
〉
→ 0 (30)
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and 〈
N ′(un, vn)−N ′(u, v), (un − u, vn − v)

〉
→ 0 (31)

as n→∞.
Now, from (28)–(31) we obtain that〈

Φ′(un, vn)− Φ′(u, v), (un − u, vn − v)
〉
→ 0 as n→∞. (32)

From (9), we see that〈
Φ′(un, vn)− Φ′(u, v), (un − u, vn − v)

〉
= (α+ 1)

∫
Ω
µ(x)

(
|∆un|p−2∆un − |∆u|p−2∆u

)
· (∆un −∆u) dx

+ (β + 1)

∫
Ω
ν(x)

(
|∆vn|p−2∆vn − |∆v|p−2∆v

)
· (∆vn −∆v) dx.

Therefore, by (27), (32), and the fact that ν ∈ C(Ω) with µ, ν > 0 on Ω, we
deduce that∫

Ω
Θp(∆un,∆u) dx→ 0 and

∫
Ω

Θp(∆vn,∆v) dx→ 0 (33)

as n→∞, where

Θp(ξ, η) =

{
|ξ − η|p, p ≥ 2,

(|ξ|+ |η|)p−2|ξ − η|2, 1 < p < 2.

We analyze two cases:

Case A: p ≥ 2. Then Θp(∆un,∆u) = |∆un − ∆u|p. From (33), we see
that {∆un} converges strongly in Lp(Ω) to ∆u. Thus ∆un → ∆u strongly
in Lp(Ω). The same argument gives ∆vn → ∆v in Lp(Ω).

Case B: 1 < p < 2. In this case, Θp(ξ, η) = (|ξ| + |η|)p−2|ξ − η|2. From
(33), we know that

An :=

∫
Ω

(|∆un|+ |∆u|)p−2|∆un −∆u|2 dx→ 0 as n→∞.

We claim that this implies ∆un → ∆u strongly in Lp(Ω). To see this, write

|∆un −∆u|p =
(
(|∆un|+ |∆u|)p−2|∆un −∆u|2

)p/2 · (|∆un|+ |∆u|) p(2−p)
2 .
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Use Hölder’s inequality with the conjugate exponents q = 2
p and q′ = 2

2−p
(note q > 1 because p < 2) to get

‖∆un −∆u‖pLp ≤
(∫

Ω
(|∆un|+ |∆u|)p−2|∆un −∆u|2 dx

)p/2
·
(∫

Ω
(|∆un|+ |∆u|)p dx

)(2−p)/2
.

The second factor is uniformly bounded because {∆un} is bounded in Lp.
Hence, there exists C5 > 0 such that

‖∆un −∆u‖pLp ≤ C5 A
p/2
n .

Since An → 0, we have ‖∆un−∆u‖Lp → 0. This proves strong convergence
also in the subquadratic case 1 < p < 2.

Finally, since the norm on X is equivalent to the sum of the Lp-norm of
∆u and the Lp-norm of ∆v, the strong convergence of ∆un → ∆u in Lp(Ω)
and ∆vn → ∆v in Lp(Ω) yields

(un, vn)→ (u, v) in X.

This completes the proof of the lemma.

Lemma 7. Assume that either (H2) or (H3) holds. Then, for any λ ∈[
0, λ̂− λ̄

]
, the following assertions are true:

(a) I is coercive on X, that is, I(u, v)→∞ as ‖(u, v)‖X →∞;

(b) I satisfies the PS condition.

Proof. (a) We first assume that (H2) holds. From (17) and (22), there exist
ε > 0 and C6 > 0 such that

F (x, s, t) ≤
(
λ1 + λ̄− λ̂− ε

)
K(x, s, t) + C6

for a.e. x ∈ Ω and all (s, t) ∈ R2.
Also, in view of (11), it is clear that

Φ(u, v) ≥ λ1Ψ(u, v) for all (u, v) ∈ X. (34)
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Thus, for any (u, v) ∈ X, from (8), (20), and (21), we obtain

I(u, v)

≥ Φ(u, v)− λ

λ1
Φ(u, v)−

(
λ1 + λ̄− λ̂− ε

) ∫
Ω
K(x, u, v) dx− C4|Ω|

= Φ(u, v)− λ

λ1
Φ(u, v)−

(
λ1 + λ̄− λ̂− ε

)
Ψ(u, v)− C6|Ω|

≥

(
1− λ+ λ1 + λ̄− λ̂− ε

λ1

)
Φ(u, v)− C6|Ω|

≥
(

1− λ1 − ε
λ1

)
Φ(u, v)− C6|Ω|,

where | · | denotes the Lebesgue measure of a set.
Then, by (7), we have

I(u, v) ≥
(

1− λ1 − ε
λ1

)(
α+ 1

p
µ ‖∆u‖pp +

β + 1

p
ν ‖∆v‖pp

)
− C6|Ω|,

where µ and ν are defined in (26). This shows that I(u, v) → ∞ as
‖(u, v)‖X →∞.

Next, we assume that (H3) holds. Suppose, by contradiction, that J is
not coercive. Then there exist a sequence {(un, vn)} ⊂ X and a constant
C7 > 0 such that

‖(un, vn)‖X →∞ and J(un, vn) ≤ C7.

Define the normalized sequence

(ũn, ṽn) =
(un, vn)

‖(un, vn)‖X
, ‖(ũn, ṽn)‖X = 1.

By reflexivity and compact embeddings, up to a subsequence, we have

(ũn, ṽn) ⇀ (ũ0, ṽ0) in X,

(ũn, ṽn)→ (ũ0, ṽ0) in Lp(Ω)× Lp(Ω),

(ũn, ṽn)(x)→ (ũ0, ṽ0)(x) for a.e. x ∈ Ω.

For any ρ ≥ 0, write

F (x, ρũn, ρṽn) =
(
λ1 + λ̄− λ̂

)
K(x, ρũn, ρṽn) +G(x, ρũn, ρṽn), (35)
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where K is defined by (21) and

G(x, ρũn, ρṽn) = F (x, ρũn, ρṽn)−
(
λ1 + λ̄− λ̂

)
K(x, ρũn, ρṽn).

Then, we have

ρ
dF (x, ρũn, ρṽn)

dρ
− pF (x, ρũn, ρṽn)

= ρ
dG(x, ρũn, ρṽn)

dρ
− pG(x, ρũn, ρṽn). (36)

Moreover, for a.e. x ∈ Ω, in view of (23), (24), and (36), we derive that

lim
ρ→∞

G(x, ρũn, ρṽn)

K(x, ρũn, ρṽn)
= 0 (37)

and

lim
ρ→∞

(
ρ
dG(x, ρũn, ρṽn)

dρ
− pG(x, ρũn, ρṽn)

)
=∞. (38)

Note from (A1) and (21) that

d

dρ

(
G(x, ρũn, ρṽn)

K(x, ρũn, ρṽn)

)
=

d

dρ

(
G(x, ρũn, ρṽn)

ρpK(x, ũn, ṽn)

)

=
ρp ddρG(x, ρũn, ρṽn)− pρp−1G(x, ρũn, ρṽn)

ρ2pK(x, ũn, ṽn)

=
ρ d
dρG(x, ρũn, ρṽn)− pG(x, ρũn, ρṽn)

ρp+1K(x, ũn, ṽn)
.

For any M > 0, (38) implies that there exists RM > 0 such that for all
ρ ≥ RM ,

ρ
dG(x, ρũn, ρṽn)

dρ
− pG(x, ρũn, ρṽn) ≥M.

Then, we have

d

dρ

(
G(x, ρũn, ρṽn)

K(x, ρũn, ρṽn)

)
≥ M

ρp+1K(x, ũn, ṽn)
.

Integrating the above inequality over the interval [ρ, T ] ⊂ [RM ,∞) yields
that

G(x, T ũn, T ṽn)

K(x, T ũn, T ṽn)
− G(x, ρũn, ρṽn)

K(x, ρũn, ρṽn)
≥ M

pK(x, ũn, ṽn)

(
1

ρp
− 1

T p

)
.
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Let T →∞. Using (37), we obtain that

G(x, ρũn, ρṽn)

K(x, ρũn, ρṽn)
≤ − M

pρpK(x, ũn, ṽn)
= − M

pK(x, ρũn, ρṽn)
.

Thus,

G(x, ρũn, ρṽn) ≤ −M
p

for all ρ ≥ RM .

By the arbitrariness of M > 0, we have

lim
ρ→∞

G(x, ρũn, ρṽn) = −∞ (39)

Choosing ρ = ‖(un, vn)‖X in (35) and (39), we obtain that

F (x, un, vn) =
(
λ1 + λ̄− λ̂

)
K(x, un, vn) +G(x, un, vn)

and
lim
ρ→∞

G(x, un, vn) = −∞.

Hence, in view of (34) and the fact that λ ∈ [0, λ̂− λ̄], we see thst

I(un, vn) = Φ(un, vn)− λΨ(un, vn)−N(un, vn)

≥ Φ(un, vn)− λΨ(un, vn)−
(
λ1 + λ̄− λ̂

)∫
Ω
K(x, un, vn) dx

−
∫

Ω
G(x, un, vn) dx

= Φ(un, vn)−
(
λ+ λ1 + λ̄− λ̂

)
Ψ(un, vn)−

∫
Ω
G(x, un, vn) dx

≥ Φ(un, vn)− λ1Ψ(un, vn)−
∫

Ω
G(x, un, vn) dx

≥ −
∫

Ω
G(x, un, vn) dx→∞ as n→∞.

This contradicts I(un, vn) ≤ C7. Therefore, I is coercive.
(b) The conclusion follows directly from part (a) and Lemma 6. This

completes the proof of the lemma.

Proof of Theorem 1. Let λ ∈ [0, λ̂− λ̄]. By Lemma 5, I has a local linking
at 0 with respect to the decomposition X = V ⊕W , where dimV = 1 <∞.
Lemma 7 ensures that I satisfies the Palais–Smale condition and is bounded
below. From (20), we have I(0) = 0.

We consider two cases:
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• If inf(u,v)∈X I(u, v) < 0, then by Lemma 4, I has at least two nontrivial
critical points, which correspond to nontrivial weak solutions of (1).

• If inf(u,v)∈X I(u, v) ≥ 0, then I(u, v) = 0 for all (u, v) ∈ V with
‖(u, v)‖X ≤ ρ, where ρ > 0 is as in the proof of Lemma 5. In this
case, I has infinitely many critical points, so (1) has infinitely many
weak solutions.

This completes the proof.
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