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Abstract
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1 Introduction

We study the existence of weak solutions to the quasilinear (p, p)-biharmonic
system

A(p(z)|AulP~2Au)
= da(2)|ulP~2u + Ae(2) [ul* Yo/ + L Fy(z,u,v) in Q,

a+1
A(v(z)]Av|P~2Av) (1)
= Mb(2)[v]P~20 + Ae(z) [ul* TP~ o + ﬁFv(aj, w,v) in £,
u=Au=0, v=Av=0 on 012,

where ) is a nonnegative eigenvalue parameter, Q C R” is a bounded domain
with smooth boundary, p > 1 is a constant, u,v € C(€2) with u,v > 0 on €,
a, B, a, b, c satisfy the following conditions:

(A1) « and (8 are nonnegative constants such that a + 5+ 2 = p;

(A2) a,b,c: Q — R are nonnegative measurable functions with

a,b,c € L®(Q) and a*+ V> +c*#0 in Q.

The function F belongs to the class A of functions F : Q x R?> — R,
which are measurable in €2, continuously differentiable in R? for a.e. € §,
F(z,0,0) = 0, and satisfy the following growth conditions:

_ g(p—1)
By, 5,1) sc(ms\p*ﬂt\”p ) @)

_ p(g—1)
(e, 5,8)] < C (1 4 155 ) , 3)

where p,q € [1,%’;})) ifp< % and p,q € [1,00) if p > %, and Fy(x,s,t)
and Fy(z,s,t) denote the partial derivatives of F(z,s,t) with respect to s
and ¢, respectively.

In this paper, we employ the linking theorem of Brezis and Nirenberg (see
Lemma 4 in Section 4) to establish the existence of at least two nontrivial
weak solutions of system (1). Sufficient conditions are provided to ensure
that system (1) admits at least two nontrivial weak solutions for A in a closed

right neighborhood of 0. Our existence result applies to both resonant and
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nonresonant cases by comparing the behavior of the nonlinearity F' with the
principal eigenvalue of the associated biharmonic system

Ap(z)|AulP~2Au)
= Aa(z)[ulP~2u + Ae(z) jul* o)A, in Q,

A(v(z)|Av|P~2Av) (4)
= Ab(x)[v]P~2v + Ac(x)|u|*THof 1y, in Q,
u=Au=0, v=Av=0, on 0f2.

For a detailed discussion of the resonant and nonresonant cases, see Re-
marks 3 and 4 in Section 3. For additional background on linking theorems
and related applications, see, for example, [4,5,18-20].

In recent years, biharmonic problems have been the focus of extensive
research. Regarding problems with principal eigenvalues, among many oth-
ers, we refer to [2,3,6,24] for scalar cases and to [7,14-16] for systems.
For biharmonic problems involving non-discrete eigenvalues, see, for in-
stance, [8,11-13,18] in the scalar setting and [1,9,10,17,21,22] for systems.

In the scalar case, Drabek and Otanik [6] proved in 2001 that the p-
biharmonic boundary value problem

A(JAufP~2Au) = MuP~?u in Q,
u=Au=0 on 012,

admits a principal eigenvalue A1, which is both simple and isolated. Later,
Benedikt and Drabek [2] obtained two-sided estimates for A\; and used them
to study its asymptotic behavior as p — co. When () is a ball centered at
the origin, they [3] further analyzed the asymptotics of Ay as p — 17.

In the case of systems, in 2019, Leadi and Toyou [16] investigated the
existence and simplicity of the principal eigenvalue for the (p, ¢)-biharmonic
System

A(JAulP~2Au) = Na(@)|ulP~2u + c(z)|ul* HolPHu i Q,
A(JAv]772Av) = Mb(2)[v]7 20 + c(z)|u[* TP 1o in Q,
u=Au=0, v=A~Av=0 on 0f).

More recently, Kong and Nichols [14] and Kong, Nichols, and Wang [15]
studied the principal eigenvalue of system (4) (in fact, its generalizations)
along with the associated eigenfunctions. Some of their results, relevant to
the present work, are summarized in Lemma 1 and Remark 2 below.

The studies in [14,15] provide the theoretical foundation for our analysis,
as the behavior of the principal eigenvalue and its associated eigenfunctions
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plays a crucial role in establishing the existence of nontrivial solutions for
system (1).

We emphasize that, depending on the values of A\, «, 3, a, b, and c,
system (1) encompasses several forms. For example, when A = a = 5 = 0,
we have

A(p(z)|AulP~2Au) = Fy(z,u,v) in Q,
A(v(z)|Av|P~2Av) = Fy(z,u,v) in Q, (5)
u=Au=0,v=Av=0 on 0f).
When ¢(z) =0 in 2, the system takes the form
A(p(z)|AulP72Au) = Xa(z)|ulP~?u + Fy(z,u,v) in Q,
A(v(z)|AvP~2Av) = Ab(z)[v[P~20 + Fy(z,u,v) inQ,
u=Au=0,v=A~Av=0 on 0f).
When a(z) = b(z) =0 in Q, it becomes

A(p(z)|AuP~2Au) = Ae(z)u* o] Hlu + %HFu(x,u,v) in ,
A(v(z)|Av[P~2Av) = Ae(z)|u*To[F 1o + ﬁFv(x,u,v) in €,

u=Au=0, v=Av=0 on 0f).
Analogous systems arise when a(z) = ¢(z) =0 or b(z) = ¢(z) =0 in 2. Our
existence theorem applies to all these cases.
The remainder of the paper is organized as follows. Section 2 presents
some results on the eigenvalue problem (4), Section 3 states the main theo-
rem, and its proof is provided in Section 4.

2 An eigenvalue problem

Throughout this paper, for any r € (1,00), we denote the norm of the space

L™ () by )
|y = </ |uv’dx> . ueL'(Q).
Q

We define the space X as
X = (Wol’p(Q) n W?m(g)) X (W&*’(Q) N W2”’(Q)> . (6)

Then, X is a separable and reflexive Banach space equipped with the stan-
dard norm

[(w, 0)lx = |Aully + [|Av]lp,  (u,v) € X
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Let the functionals ®, ¥ : X — R be defined by

B, v) = 21 [tz )|Au|pdx+6+ /Ql/(x)]Av|pdx (M)
and
\I/(u,v):a—;l/g (2 )|u|pdx+5+ /Qb(x)|vpd:v
+ [ claaf o do ®)

where (u,v) € X.

Under the assumptions (A1) and (A2), it is straightforward to verify
that ® and ¥ are well-defined and belong to C'(X,R). Moreover, for all
(u,v), (¢,v) € X, their Fréchet derivatives satisfy

(@ (0,0, 6.9) = (0 +1) [ pla) Aup~AuAgda
—i—(ﬁ—l—l)/ﬂu(m)\Av[f"zAvAwd:c (9)
and
(/(0,0).60.9) = (0 +1) [ a@)luPuoda
+(a—l—1)/90(:1:)|u|°‘_1|v|’3+1u¢dx
+(5+1)/Qb(a:)|v|p_2v1/)da:
+(5+1)/Qc<m)yua+1|v\ﬁ1mpdm, (10)

where (-, -) denotes the duality pairing between X and its dual space X*.
Lemma 1. Assume that (A1) and (A2) hold. Then system (4) admits an

eigenpair

(>\1 (aa b, C)v (uh 'Ul))a
where Ai(a,b,c) > 0 is the principal eigenvalue and uy,v1 are nonnegative
i 2. Moreover,

Ai(a,b,c) = ®(ug,v1) = inf  P(u,v), (11)
(u,v)eM

where
M ={(u,v) € X : ¥(u,v) =1}. (12)
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Remark 1. Lemma 1 is a direct consequence of [14, Theorem 2.3] in the
case cZ 0 and p =v =1 in Q, and of [15, Corollary 3.1] in the case a # 0
and b # 0 in Q. The other situations, where a? + b> 4 ¢ # 0 in €, can be
treated in a similar way.

Remark 2. To further understand the principal eigenvalue Ai(a,b,c) de-
fined in (11) and its associated eigenfunction (u1,v1), we present below a
summary of several special cases corresponding to different values a, b, and

C:

Case 1: Fully coupled system, c¢(z) # 0.

e The corresponding eigenfunction (u1,v1) has both components non-
trivial and of fixed sign. In our setting, we take u; and wv; to be
positive throughout 2.

Case 2: Decoupled system, c(z) = 0.

e System (4) reduces to two independent eigenvalue problems:

Ap(z)| AulP2Au) = da(z)|[ulP~2u, ©w= Au=0, (13)

A(v(z)|Av|P~2Av) = \b(z)|v|P~?v, v = Av=0. (14)
Let

e fQ ,U ‘Au|p
lu -

Then, it can be shown that

AP
and  Ap, := inf M
v20 [q b(@)|v[P

)\1(0,, b, 0) = min{)\lvu, /\171]}.
Moreover, if p(x) = v(z) and a(z) = b(x), then A\, = A1 ,, hence

)\1(@, b, 0) = )\17u = )\1 V-

)

e The eigenfunction corresponding to A (a, b, 0) for the decoupled system
(4):
o (u1,0) if A1, < A1y, where uy solves (13) and is positive in .
o (0,v1) if A1y < A1,4, where v; solves (14) and is positive in Q.

o Any (vyup,d0vy) with (v,9) # (0,0) if A\;, = A14. In this context,
we take v = § = 1.
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Case 3: One equation active.
e Ifa£0,b=0,c=0, then

uf fQN |Au‘p

A1(a, 0,0
( )= b Jo a(@)lulp

bl

with eigenfunctions of the form (uj,0).
e Similarly, if a =0, b# 0, ¢ =0, then

fQ x)|Av|P

A1(0,5,0
( )= ”7“) Job@)olr

)

with eigenfunctions of the form (0, vy).

In the sequel, we write A1 instead of Ai(a, b, c) when the dependence on
a, b, and c is clear from the context.

Lemma 2. Assume that (A1) and (A2) hold. If (u1,v1) € M and (ugz,v2) €
M are both minimizers of ® on M, then they are linearly dependent, that
is, there exists p € R\ {0} such that (ug,v2) = p(ui,v1). In other words,
any two minimizers of ® on M are scalar multiples of one another.

Proof. Since (u1,v1), (u2,v2) € M are both minimizers of ®, we have
)\1 = @(ul,vl) = (I)(UQ, ’02).

Suppose (uj,v1) and (ug,v) are not scalar multiples. Define the convex
combination

(ug,ve) == (1 —t)(u1,v1) + t(ug,v2), tel0,1].
Because @ is strictly convex,
D (ug,vr) < (1 —)®(ur,v1) + tP(ug,v2) = A\ forallt € (0,1).  (15)
Define the function
G(t,s) == ¥ ((ug,v¢) + s(w, 2)) — 1
for some fixed (w, z) € X, where s is a scalar parameter. Observe that

G(0,0) == \I/(ul,vl) —1=0
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since (u1,v1) € M. The partial derivative of G with respect to s at (0,0) is
D;G(0,0) = DY (uy,v1)[(w, 2)].
If (w, z) is chosen such that

<\II,(UI7U1)7 (w7 z)) # 0,

then by the Implicit Function Theorem, there exist a neighborhood I of 0
and a unique continuously differentiable function

such that G(t, s(t)) =0, i.e.,

W ((ug,ve) + s(t)(w, 2)) = 1.
Hence the curve

(ﬂt, 675) = (uta Ut) + S(t)(w7 Z)

lies entirely on the constraint set M for ¢ near 0. By the continuity of ®
and (15), for small ¢ # 0, we have

(I)(at,ﬁt) = (I)((Ut,’l}t) + s(t)(w,z)) < )\1.

This contradicts the fact that \; is the minimum of ® on M. The contra-
diction shows (u1,v1) and (ug,vs) must be scalar multiples. The lemma is
thus proved. O

Lemma 3. Assume that (A1) and (A2) hold. Let (ui,v1) be given as in
Lemma 1. Set V' = span{(u1,v1)} and choose a closed subspace W C X
such that X =V @ W. Define

D (u,v)

/)\\ = inf .
(u,w)eW\{0} ¥ (u,v)

(16)

Then X > 1.

Proof. Assume, by contradiction, that X = A1. Then there exists a sequence
(Un,vn) C W with ¥(u,,v,) = 1 (we may normalize each element so the
denominator equals 1) and ®(uy,vy,) | X = A1. The sequence {(tn,vpn)} is
bounded in X, hence (up to a subsequence) (up,vn) = (Uco, Voo ) Weakly in
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X and (tn, vn) = (Ueo, Vo) strongly in LP(€2) x LP(£2). The constraint passes
to the limit: ¥(ueo, Vo) = 1. By weak lower semicontinuity, we obtain

D (Uoo, Voo) < liminf ®(uy,,v,) = A1,
n—oo

50 P (Uno, Vo) = A1. Therefore (un, Vo) € M attains the global infimum A;.
By Lemma 2, it follows that (uso, Vso) must be a scalar multiple of (uq,v7),
hence (Uso, Vo) € V.

But each (up,v,) lies in W, and W is closed and hence weakly closed, so
the weak limit (Ueo, Vo) € W. Thus, (ue, Vo) € VNW. Since X =Va W
is a direct sum, we have V.NW = {0}. Therefore (uoo,vo0) = (0,0). This
contradicts the fact that ¥U(us, V) = 1. This contradiction shows A > Aq,
as claimed. O

3 Existence of weak solutions

For a.e. x €  and all (s,t) € R?, since F € A, from (2) and (3), we have

|F (2, 5,t)|

LOF(x,7s,1t)
F(JJ,0,0)"‘/() TdT

1
< / (|s| |Fs(xz,7s,7t)| + |¢] \Ft(x,Ts,Tt)\) dr
0

a(p—1)
P

1 o N pla-1)
< C’/ |s| + [s|PTP~" + |7t |s| + |t| + [¢|979 " + |7s| T |t| | dT
0

a(p pa=1)

_ _ —1)
sc<\s\+\t\+rsp+trq+rtr P rtr).

This, together with Young’s inequality, implies that
|F(,5,t)] < O (Is| + [t + |s|P +]¢]7) (17)

where C} is a positive constant independent of (s,t) € R2.
Define the functional N : X — R by

N(u,v):/QF(x,u,v) dx. (18)

Then, it can be shown that N is well-defined and belongs to C'(X,R).
Moreover, for all (u,v), (¢,9) € X, its Fréchet derivative is given by

(N (u, ), () = /

; {Fu(x, u,v) ¢ + Fy(z,u,v) 1/}] dx. (19)
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Definition 1. We say that (u,v) € X is a weak solution of system (1) if it
satisfies

/ w(x)| AulP2AuA¢ dx
Q

= )\/ a(x)]u|p2uq§dx+)\/ () |ul* L oPH ¢ d
Q Q

1

+a—|—1

/ Fu(z,u,v) ¢ dx
Q

and

/V(:(:)]Av]p_2AvAz/de
Q
_ /b(:v)|v|p_2vwdﬂc—|—>\/ o(@)|u* L[] Lo v da
Q Q
1

+ BH/QFv(x,u,v)q/)d:c

for all (¢,¢) € X.
Let the functional I : X — R be defined by

I(u,v) = ®(u,v) — AV (u,v) — N(u,v), (20)

where ® and VU are defined by (7) and (8), respectively. Then, using (9),
(10), and (19), we deduce that (u,v) is a critical point of I if and only if it
is a weak solution of system (1). R

Henceforth, let A1 be as in Lemma 1, and let A be as in Lemma 3.

We make the following assumptions:

(H1) (Local growth near the origin) There exist 7 > 0 and \ € ()\1,/):)
such that, for a.e. z € Q and all s,t € [0, 7], we have

MK (z,s,t) < F(x,s,t) < AK(x,s,t),

where

a+1 +1
a(@))s + 211

K(x,s,t) = b(z)[t]P + c(x)]s|* TP (21)

(H2) (Subcritical growth at infinity) As |s| + [t| — oo, we require

limsup esssup Q(z,s,t) < A + A — X, (22)
|s|+[t|—o0  zEQ
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where

for a.e. x € Q and all (s,t) € R%

Q(x,s,t) = jf(;‘glgj

(H3) (Raywise asymptotics) Fora.e. x € Q and all (s,t) with K(x, s,t) #
0, the following limits hold:

lim Q(x,ps,pt) = A1 + A — A (23)
p—r00

and
. < dF(z, ps, pt)
lim ( p————=

ap — pF(x, ps, pt)) = o0. (24)

p—00

We now state the main theorem of this paper.

Theorem 1. Suppose that (H1) holds and either (H2) or (H3) is satisfied.
Then, for each A € [O, /\—)\], system (1) admits at least two nontrivial weak
solutions.

Remark 3. Under assumption (H1), system (5) (i.e., system (1) with A = 0)
is resonant at the origin if

lim T,s,t) = A
(o) @S =2
Otherwise, if this limit is strictly above A;, the system is nonresonant near
Z€ro.

Remark 4. Assumption (H2) corresponds to a subcritical and uniformly
nonresonant regime: Q(z,s,t) remains strictly below the critical threshold
A+ — X at infinity, and the energy functional has standard variational
geometry for all A € [0, A — AJ.

In contrast, (H3) describes an asymptotically critical regime along rays,
with @ converging to the critical threshold and the additional superlinearity
condition (24) ensuring sufficient growth. Here, the problem can become
resonant as A\ approaches - A, but compactness is preserved, guaranteeing
multiple nontrivial solutions.

Thus, the main existence conclusion holds in both cases, but the asymp-
totic behavior and resonance properties of the nonlinearity differ.

Intuitively, (H2) keeps the nonlinearity safely below the critical level (non-
resonant), while (H3) lets it approach the critical level along rays (resonant),
but the extra superlinearity ensures solutions still exist.
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4 Proof of Theorem 1

Recall that a functional I, defined on a real Banach space X, is said to
satisfy the Palais—Smale condition (PS condition, for short) if every sequence
{wy,} C X, such that

I(wy) is bounded and I'(wy,) — 0 in X*,

admits a strongly convergent subsequence in X. Such a sequence {w,} is
called a PS sequence.

Lemma 4. ([4, Theorem 4]) Let X be a real Banach space with a direct sum
decomposition X =V & W with dimV < oco. Suppose that I € C'(X,R)
satisfies the PS condition and is bounded below, 1(0) = 0, and inf,cx I(w) <
0. Assume also that I has a local linking at 0, that is, for some p > 0,
I(w) <0 forw eV with ||w|| < p,
I(w) >0 forweW with ||w|| < p.

Then, I has at least two nontrivial critical points.

In what follows, let X be defined by (6) and let V' and W be given
as in Lemma 3. We also denote by I the functional given in (20). Then,
X =Va&W withdimV =1 < oco.

Lemma 5. Assume that (H1) holds. Then, for each \ € [O, P 5\], I has
a local linking at 0 with respect to the decomposition X =V & W.

Proof. Since V is finite-dimensional, all norms on V are equivalent. Hence,
there exists a constant Cy > 0 such that

[ell L (@) + [0l (@) < Coll(u,v)llx  for all (u,v) € V.

Taking p > 0 sufficiently small ensures that, for all (u,v) € V with ||(u,v)||x <
p, we have
lu(z)| < r and |v(x)| < r for all z € Q,

where 7 > 0 is as in assumption (H1).
Below, we fix A € [0, A — A]. Let (u,v) € V be such that ||(u,v)|x < p.
Note that o + 8+ 2 = p by (Al). Then, in view of (8) and (21), we have

O(u,v) = \¥(u,v)

—Al/Karuv



L. Kong 93

Thus, from (18), (20) and (H1), it follows that
I(u,v) = Al/glK(x,u,U)dx—)\\If(u,v) - /QF(w,u,v)dx
< / [ MK (z,u,v) — F(z,u,v) | do
<0
Now, let (u,v) € W be such that ||(u,v)|x < p. Define
S={x € Q|u(z)] <rand |v(z)] <r}
and denote by S¢ the complement of S in Q. From (16), we have
O (u,v) > X\If(u,v).
Then, from (20) and (H1), we derive that

I(u,v) = ®(u,v) — (A= A) ¥(u,v) = N(u,v) + A¥(u,v)
A=A .
> (1 - X) O (u,v) —/S [F(z,u,v) — AK (z,u,v)| dz
- /c [F(:r,u, v) — S\K(x,u,v)] dx

A=A -
> (1 — X) O (u,v) — /c [F(z,u,v) — AK (2, u,v)| dz. (25)

Note from (17) and (21) that there exist constants C5 > 0 and w € (p, NNfgp}
if p < %, and w € (p,00) if p > & such that

F(z,u,v — AK (2,u,v)) < O3 (Ju|” + [v|*) forall (u,v) € S°.
Thus, in view of the fact that

1—A:Azm
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from (7) and (25), it follows that

A=A\ fa+1 B+1
> _ p p
I(u,v)_<1 5 )( » | Aullh + , zHAva)

_ 03/5 (Jul® + [o]*) dx

A=A\ sa+1 B+1
> _ 2 p p
_<1 . )( Al = vl|av]p)

— G (Jlull + o)
A=A\ sa+1 B+1
> _ P P
_<1 A)( S ulldull + = v Al
— Cu(lAully + 1 Av]),

where
p = min |p(z)| >0, v=minlv(z)| >0, (26)
- e e
and Cy is a positive constant independent of (u,v).
Since w > p, we see that I(u,v) > 0 for p > 0 sufficiently small. Hence,
we have proved that I has a local linking at 0. This completes the proof of
the lemma. O

Lemma 6. Any bounded sequence {(up,vn)} C X such that I'(uy, vy) — 0
m X* has a convergent subsequence.

Proof. Let {(un,v,)} C X be bounded and satisfy I'(uy,,v,) — 0 in X*.
Then, by the reflexivity of X, passing to a subsequence if necessary (which
we do not relabel), we may assume that

(Un,vp) = (u,v) in X.

We shall show the convergence is actually strong in X. We need the
standard pointwise monotonicity estimate (see, for example (2.2) in [23]):
For every k > 1, there exists a constant Dy > 0 (depending only on k) such
that for all vectors £,7 € R™ (in our application m = 1) we have

|£_77’ka k 2 25

27
(1 + )2l -, 1<k<2 OD

(1172 = n[*2n) - (€ =n) > Dy {
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For any index n, we can write the identity

<<I>’(un,vn) — &' (u,v), (up — u, v, — v)>
= <I’(un,vn) — I'(u,v), (up — u, vy — v)>
+ )\<\Il’(un, vn) — V' (u,v), (un — u, v, — v))
+ <N’(un,vn) — N'(u,v), (up — u, vy — v)> (28)

Since I’ (up, vy) — 0in X* and (u, — u, v, — v) is uniformly bounded in
X, we have

(I'(un,vn) = I'(w,v), (up —u,vp —v)) =0 asn — oco. (29)
Under our standing hypotheses the maps
U X — X¥ N :X - X*

are compact (Nemytskii operators built from a,b,c¢ € L>*(£2) and from the
F-data (F' € A)). Concretely:

e Boundedness of {(uy,v,)} in X implies, by the Rellich-Kondrachov
theorem, that (up to a subsequence) u, — u strongly in L"({2) and v, — v
strongly in L*(2) for every exponent r, s strictly below the Sobolev critical
exponents associated to W2P(€).

e The pointwise (or strong L"(2)) convergence together with the growth
assumptions on the nonlinearities yields, by dominated convergence and
standard continuity of Nemytskii maps, that each of the coefficient-type
terms

a()|un P 2un,  b(@) v [P vp,

nl* g fon | TH, [+ o |

c(x)|u Up|v c(x)|uy, Un,

converges strongly in the appropriate Lebesgue spaces which embed con-
tinuously into X* via the standard duality pairings with ¢, ¥. Therefore,
U’ (uy, vy,) has a strongly convergent subsequence in X*. The same reasoning
applies to N'(up,vy,) (using the growth/regularity of F,, F,).

Hence, by passing to a further subsequence if necessary, we may assume

U (up,vp) =T in X* and N'(up,v,) — S in X*

for some T,S € X*. Then, since (u, — u, v, — v) is uniformly bounded in
X, it follows that

(V' (un, vy) — ¥'(u,v), (up — u, vy —v)) =0 (30)
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and
(N'(un,vn) — N'(u,v), (uy —u,vp, —v)) =0 (31)

as n — 00.
Now, from (28)—(31) we obtain that

(@ (un,vy) — @' (u,v), (un — u,v, —v)) =0 as n — oo. (32)
From (9), we see that
<<I>’(un, vp) — @ (u,v), (up — u, v, — v)>

=(a+ 1)/ ,u(a:)(|Aun|p_2Aun - |Au|p_2Au) - (Auy, — Au) dz
Q
+ (B + 1)/ v(2) (|Av, P72 Av, — |AvP2Av) - (Av, — Av) da.
Q

Therefore, by (27), (32), and the fact that v € C(Q2) with p,v > 0 on Q, we
deduce that

/ Op(Aup, Au)dr — 0 and / Op(Avy,, Av)dr — 0 (33)
Q Q

as n — 0o, where

‘f_n’p7 p227
(€l + P2l —nl?, 1<p<2.

Op(&;m) = {

We analyze two cases:

Case A: p > 2. Then ©p(Auy, Au) = |Au, — AulP. From (33), we see
that {Au,} converges strongly in LP(Q2) to Au. Thus Awu, — Au strongly
in LP(€2). The same argument gives Av,, — Awv in LP(2).

Case B: 1 < p < 2. In this case, ©,(¢,n) = (€] + [7])P~2|¢ — n/?. From
(33), we know that
A, = /(\Aun\ + |Au|)P"2| Au, — Aul? dz — 0 as n — oo.
Q

We claim that this implies Au,, — Au strongly in LP(2). To see this, write

Aty — AufP = ((| At + [Au])P~2| Auy, — Auf?)?? - (|Aun| + |Au]) 2"
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Use Holder’s inequality with the conjugate exponents g = % and ¢ = ﬁ

(note ¢ > 1 because p < 2) to get

2
Au, — Aul|h, < Auy| + |Au))P72|Au, — Aul? da v/
L Q

(2-9)/2
.(/(\Aunumnpda;) e
Q

The second factor is uniformly bounded because {Auw,} is bounded in LP.
Hence, there exists C5 > 0 such that

| Au, — Aul?, < C5 AP/2.

Since A,, — 0, we have ||Au,, — Aul|r» — 0. This proves strong convergence
also in the subquadratic case 1 < p < 2.

Finally, since the norm on X is equivalent to the sum of the LP-norm of
Awu and the LP-norm of Awv, the strong convergence of Au, — Au in LP(2)
and Av, — Av in LP(Q) yields

(Un,vp) = (u,v) in X.
This completes the proof of the lemma. O

Lemma 7. Assume that either (H2) or (H3) holds. Then, for any \ €
[0, A— )\] , the following assertions are true:

(a) I is coercive on X, that is, I(u,v) — oo as ||(u,v)]|x — 0o;
(b) I satisfies the PS condition.

Proof. (a) We first assume that (H2) holds. From (17) and (22), there exist
e > 0 and Cg > 0 such that

F(z,s,t) < ()\1+;\—//\\—€)K(x,s,t)—|—06

for a.e. x € Q and all (s,t) € R2.
Also, in view of (11), it is clear that

O (u,v) > \¥(u,v) forall (u,v) € X. (34)
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Thus, for any (u,v) € X, from (8), (20), and (21), we obtain

I(u,v)
> B(u,v) — ;lcp(u,v) VIS S S /QK(:E,U, o) dz — CylQ|
— B(u,v) — )f\l@(u,v) S (A A= X ) W(u,v) — ColQ
> (1_ A+ A\ —i—)\i\—X—a) (u, v) — Cl )

(1- 25 @) - colol,
A1

where | - | denotes the Lebesgue measure of a set.
Then, by (7), we have

Al —¢€ a+1 +1
o) 2 (1= 255) (S aug + T jag) - ool

where p and v are defined in (26). This shows that I(u,v) — oo as
I, 0)llx — oo.

Next, we assume that (H3) holds. Suppose, by contradiction, that J is
not coercive. Then there exist a sequence {(uy,v,)} C X and a constant
C'7 > 0 such that

[ (unsva)lx =00 and  J(un,vn) < C.

Define the normalized sequence

N (unavn) i _
(un,vn) = ||( ”( n; n)”X 1.

Un, 0n) | x
By reflexivity and compact embeddings, up to a subsequence, we have
(ﬂnaﬁn) - (aov ’DO) in Xa
(Up, Un) — (1o, 09) in LP(Q2) x LP(Q),
(U, Op) () — (G0, Vo) (z) for a.e. x € Q.

For any p > 0, write

F(z, ply, pt,) = ()\1 + - X) K (z, pln, pty) + G(x, ply, piy), (35)
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where K is defined by (21) and
G(zx, ptiy, poy) = F(x, ptiy, pOn) — ()\1 + - X) K (x, ply, piy,).

Then, we have

dF (z, ply, pUy)
dp
dG(xv Pﬂm pﬁn)

=p i — pG(, piin, pin). (36)

Moreover, for a.e. x € Q, in view of (23), (24), and (36), we derive that

G(x, piin, pin)

li =0 37
0350 K (1, plin, piin) (37)
and e ~ ~
lim <p (& plin; p5n) —pG(x,pﬂmpﬁn)> = o0. (38)
pP—>00 dp

Note from (A1) and (21) that

(G, plin, pta) \ _ d (G2 plin; pin)
dp \ K(, piin, ptn) ) dp \ pPK(x, iy, n)
PP ARG, pit, pBn) — ppP G, i, piin)
B PP K (, iy, Oy

_ ’OdiPG(l"pﬂ"’p,D") _pG(fL‘apﬂn7p'Dn)
N PPHK (2, T, O '

For any M > 0, (38) implies that there exists Ry > 0 such that for all
p > RM7

pdG(ﬂs,pﬁn, POn)

a0 — pG(z, pliy, piyn) > M.

Then, we have

d ([ G(z, pn, pin) M
dp \ K (z, plin, pn) ) = pPH1K (2, U, Oy)

Integrating the above inequality over the interval [p, T| C [Rps,00) yields
that

G(z, Ty, Tv,)  G(z, ply, piy,) N M < 1 1 >

K(z,Tuy, Tv,) K(x,ply, pon) — pK(x, Uy, Op)

pp Tp
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Let T — oo. Using (37), we obtain that

G(z, ptiy, poy) - M _ M
K (z, plin, ptn) —  ppPK(, i, Un) pK(z, ptin, pin)

Thus,
L M
G(z, ptiy, po,) < —— for all p > Ryy.
p
By the arbitrariness of M > 0, we have

lim G(z, pty, pn) = —00 (39)

p—00

Choosing p = ||(un, vn)||x in (35) and (39), we obtain that
F(x,up,vy) = ()\1 + A X) K(z,un,vn) + G(, un, vy)

and

lim G(z,up,v,) = —00.
pP—00

Hence, in view of (34) and the fact that A € [0, A — A], we sce thst
I(tp,vpn) = P(uUn,vn) — AV (Up, vn) — N (up, vp)

> O (up,vn) — AV (up, vy) — ()\1 + - X) / K(x,up,v,) dx
Q
— / G(z, Up, vy) dx
Q
= O (up, vy) — ()\ + M+ /):) U (U, vp) — / G(z,up,vy) dz
Q
> D (up, vyn) — MY (up, vn) — / G(x, up,vy) dx
Q
> —/ G(x,up,vy)dr — 00 as n — oo.
Q

This contradicts I(uy,v,) < C7. Therefore, I is coercive.
(b) The conclusion follows directly from part (a) and Lemma 6. This
completes the proof of the lemma. ]

Proof of Theorem 1. Let \ € [0, - Al. By Lemma 5, I has a local linking
at 0 with respect to the decomposition X =V @ W, where dimV =1 < oo.
Lemma 7 ensures that I satisfies the Palais—Smale condition and is bounded
below. From (20), we have I(0) = 0.

We consider two cases:
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e Ifinf(, ,)ex I(u,v) <0, then by Lemma 4, I has at least two nontrivial
critical points, which correspond to nontrivial weak solutions of (1).

o If inf(, )ex I(u,v) > 0, then I(u,v) = 0 for all (u,v) € V with
|(u,v)||x < p, where p > 0 is as in the proof of Lemma 5. In this
case, I has infinitely many critical points, so (1) has infinitely many
weak solutions.

This completes the proof. O
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