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Abstract

In this paper, we extend two topological minimax theorems due to
Ricceri to the case of two functions.
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1 Introduction and statement of the main results

Let X,Y be two non-empty sets and let ϕ be a real-valued function on
X × Y . Set

ϕ∗ = sup
y∈Y

inf
x∈X

ϕ(x, y)

and

ϕ∗ = inf
x∈X

sup
y∈Y

ϕ(x, y).

It is clear that
ϕ∗ ≤ ϕ∗.
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This is called the trivial minimax inequality. The opposite inequality

ϕ∗ ≤ ϕ∗
is called non-trivial minimax inequality and, of course, it is equivalent to
the minimax equality

ϕ∗ = ϕ∗. (1)

Starting from the pioneristic work of von Neumann (see [8]), many results
ensuring (1) were established. For an introductory bibliography see, for
example, the classical survey of Simons (see [6]).

Now, let f, g : X×Y → R, with f(x, y) ≤ g(x, y) for every x ∈ X, y ∈ Y .
We call non-trivial minimax inequality involving f, g the following

f∗ ≤ g∗. (2)

So, if f = g, (2) is equivalent to (1). For a given minimax theorem for
one function ϕ, it is a common fact to see whether it is possible to find a
two-function version of it. The most natural way to obtain this is to divide
the hypotheses in ϕ to f and g. For example, the two-function version of
the most classical Fan-Sion’s theorem (see [7]) (Theorem A below) has been
obtained by Simons (see [5], Th. 1.4) (Theorem B below).

Theorem A. Let X be a nonempty compact convex subset of a topolog-
ical vector space, Y a nonempty convex subset of a topological vector space,
and let ϕ : X×Y → R be quasi-convex and lower semicontinuous in X, and
quasi-concave and upper semicontinuous in Y .

Then, (1) holds.

Theorem B. Let X be a nonempty compact convex subset of a topolog-
ical vector space, Y a nonempty convex subset of a topological vector space,
let f : X × Y → R be quasi-concave in Y and lower semicontinuous in X,
and let g : X × Y → R be upper semicontinuous in Y and quasi-convex in
X, with f ≤ g on X × Y .

Then, (2) holds.

First of all, for the reader’s convenience, we recall that, if U is a topolog-
ical space, a function h : U → [−∞,+∞[ is said to be relatively inf-compact
(see [4]) if, for each r ∈ R, there exists a compact set K ⊆ U such that
h−1(]−∞, r[⊆ K. We have the following.

Proposition 1. Let U be a topological space and h : U → [−∞,+∞[ a
lower semicontinuous and relatively inf-compact function.
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Then, there exists a minimum global point for h.

Proof. Let γ > infU h, then there exists a compact set K : {x ∈ U : h(x) <
γ} ⊆ K. Let x∗ be a global minimum point of h on K. If x ∈ U \K, one has
h(x) ≥ γ ≥ h(x∗), so we can conclude that x∗ is a minimum global point of
h on U .

In [4], Ricceri proved the following results:

Theorem C. Let X be a topological space, I ⊆ R an interval and Ψ :
X × I → R a continuous function satisfying the following conditions:

a) for each λ ∈ I, the set of all global minima of the function Ψ(·, λ) is
connected

b) there exists a non-decreasing sequence of compact intervals, {In}, with
I = ∪n∈NIn such that, for every n ∈ N, the following conditions are satisfied:

i) the function infλ∈In Ψ(·, λ) is relatively inf-compact;
ii) for each x ∈ X, the set of all global maxima of the restriction of the

function Ψ(x, ·) to In is connected.
Under such hypotheses, the function Ψ verifies the condition (1).

Theorem D. Let X be a topological space, I ⊆ R a compact interval and
Ψ : X × I → R an upper semicontinuous function satisfying the following
conditions:

c) for all λ ∈ I, the function Ψ(·, λ) is continuous
d) there exists a set D ⊆ I, dense in I, such that, for every λ ∈ D, the

function Ψ(·, λ) is inf-connected
e) for each x ∈ X, the set of all global maxima of the function Ψ(x, ·) is

connected
Under such hypotheses, the function Ψ verifies condition (1).

The aim of the present paper is to establish Theorems 1 and 2 below
that represent the extensions of Theorems C and D, respectively, to two
functions.

Theorem 1. Let X be a topological space, I ⊆ R an interval, and
f, g : X × I → R two functions satisfying the following conditions:

H1) for every (x, λ) ∈ X × I one has f(x, λ) ≤ g(x, λ);
H2) the function f is upper semicontinuous in X×Iand, for every λ ∈ I,

f(·, λ) is continuous;
H3) the function g is lower semicontinuous in X×Iand, for every x ∈ X,

g(x, ·) is continuous;
H4) for every λ ∈ I, the set {y ∈ X : g(y, λ) = infx∈X g(x, λ)} is

connected;
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H5) there exists a non-decreasing sequence of compact intervals, {In},
with I = ∪n∈NIn such that, for every n ∈ N, the following conditions are
satisfied:

j) the function x→ infλ∈In g(x, λ) is relatively inf-compact;
jj) for every x ∈ X, the set {µ ∈ In : f(x, µ) = supλ∈In f(x, λ)} is

connected.
Under such hypotheses, (2) holds.

To realize that when f = g = Ψ Theorem 1 gives Theorem C, one
has to observe that conditions H3), H4) of Theorem 1 immediately imply
conditions a), b) of Theorem C.

Theorem 2. Let X be a topological space, I ⊆ R a compact real interval
and f, g : X × I → R two functions satisfying the following conditions:

K1) for every (x, λ) ∈ X × I one has f(x, λ) ≤ g(x, λ);
K2) the functions f is upper semicontinuous in X × I, and, for every

λ ∈ I, the function f(·, λ) is continuous in X;
K3) for every x ∈ X, the function g(x, ·) is upper semicontinuous;
K4) for each x ∈ X, the set {µ ∈ In : f(x, µ) = supλ∈I f(x, λ)} is

connected;
K5) there exist a dense subset D of I such that, for every λ ∈ D and for

every k ∈ R, the set {x ∈ X : g(x, λ) < k} is connected.
Under such hypotheses, (2) holds.

To realize that when f = g = Ψ Theorem 2 gives Theorem D, one has
to observe that conditions K2), K3), K4), K5) of Theorem 2 immediately
imply the conditions c), d), e) of Theorem D.

Finally, we recall two results, Theorem E end F below, that will be used
to prove our theorems.

Theorem E. ([4], Th. A) Let X be a topological space, I ⊆ R a compact
interval and S ⊆ X × I. Assume that S is connected and its projection on
I is the whole of I. Then, for every upper semicontinuous multifunction
Φ : X → 2I , with non-empty, closed and connected values, the graph of Φ
intersects S.

Theorem F. ([4], Prop. 1.1) Let X,Y be two topological spaces and
let f : X × Y → R be a lower semicontinuous function such that f(x, ·)
is continuous for all x ∈ X. Moreover, assume that, for each y ∈ Y , there
exists a neighborhood V of y such that the function infv∈V f(·, v) is relatively
inf-compact.
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Then, the multifunction F : Y → X defined by

F (x) = {u ∈ X : f(u, y) = inf
x∈X

f(x, y)}

is upper semicontinuous.

2 Proof of Theorem 1

For every n ∈ N, let us set

g∗(n) = sup
λ∈In

inf
x∈X

g(x, λ)

and
f∗(n) = inf

x∈X
sup
λ∈In

f(x, λ).

Fixed n ∈ N, let us prove that

f∗(n) ≤ g∗(n). (3)

Let us define a multifunction G : In → 2X by setting, for λ ∈ In,

G(λ) = {u ∈ X : g(u, λ) = inf
x∈X

g(x, λ)}.

Observe that, for each λ ∈ In, the function g(·, λ) is relatively inf-
compact. In fact, fixed λ ∈ In and r ∈ R, consider the sets A = {x ∈
X : g(x, λ) < r} and B = {x ∈ X : infµ∈In g(x, µ) < r} and observe that
A ⊆ B. Thanks to H5), there exists a compact set K such that B ⊆ K,
so, A ⊆ K. So, g(·, λ) is relatively inf-compact, hence, taking into account
H3) and Proposition 1, it admits a global minimum point: so, the values of
multifunction G are non-empty. Moreover, they are compact and connected
thanks to H4). From Theorem F it follows that G is upper semicontinuous:
so, its graph is connected (see [1]) . Hence, the set

S = gr(G−) = {(u, λ) ∈ X × In : g(u, λ) = inf
x∈X

g(x, λ)}

is also connected. Observe that, since all values of G are non-empty, the
projection of S on In is the whole In.

Now, let us define a multifunction F : X → 2In by setting, for x ∈ X,

F (x) = {µ ∈ In : f(x, µ) = sup
λ∈In

f(x, λ)}.
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The values of F are evidently non-empty, and they are compact and
connected thanks to jj). From Theorem F it follows that F is upper semi-
continuous.

Hence, from Theorem E, there exists (x̄, λ̄) ∈ S : λ̄ ∈ F (x̄), that is

g(x̄, λ̄) = inf
x∈X

g(x, λ̄)

and
f(x̄, λ̄) = sup

λ∈In
f(x̄, λ).

So, we have

f∗(n) = inf
x∈X

sup
λ∈In

f(x, λ) ≤ sup
λ∈In

f(x̄, λ) = f(x̄, λ̄) ≤ g(x̄, λ̄)

= inf
x∈X

g(x, λ̄) ≤ sup
λ∈In

inf
x∈X

g(x, λ) = g∗(n).

So, (3) is proved. Now, to conclude the proof, arguing by contradiction,
suppose that there exists r : g∗ < r < f∗ and, for every n ∈ N, let us put

Cn = {x ∈ X : sup
λ∈In

f(x, λ) < r}.

The sets Cn are non-empty: otherwise, one would have, for some n ∈ N,
r < supλ∈In f(x, λ) for every x ∈ X, and so

r ≤ inf
x∈X

sup
λ∈In

f(x, λ) = f∗(n) ≤ g∗(n)

= sup
λ∈In

inf
x∈X

g(x, λ) ≤ g∗ < r.

Since the sequence {In} is increasing, the sequence {Cn} is decreasing.
Summarizing, taking into account H2), {Cn} is a decreasing sequence of
non-empty closed and compact sets. So, there exists x∗ ∈ ∩n∈N Cn. Then,
for every n ∈ N, one has f(x∗, λ) ≤ r for every λ ∈ In and, since I = ∪n∈NIn,
one has f(x∗, λ) ≤ r for every λ ∈ I, so supλ∈I f(x∗, λ) ≤ r and, finally,
f∗ ≤ r, that is absurd.

3 Proof of Theorem 2

Arguing by contradiction, let us fix r ∈ R satisfying g∗ < r < f∗: so,
for every λ ∈ I, there exists x ∈ X such that g(x, λ) < r. Then, the
multifunction G : I → 2X defined by

G(λ) = {x ∈ X : g(x, λ) < r}
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has non-empty values; and, thanks to K3), G is lower semicontinuous; more-
over, for every λ ∈ D, G(λ) is connected by K5). Then, by Proposition 5.7
of [3], its graph is connected. Hence, the set

S = gr(G−) = {(x, λ) ∈ X × I : g(x, λ) < r}

is also connected.
Let us introduce the multifunction Φ : X → 2I by putting

Φ(x) = {µ ∈ I : f(x, µ) = sup
λ∈I

f(x, λ)}.

The values of Φ are non-empty and closed by K2) and connected by K4).
From K2) again, it follows that Φ is upper semicontinuous thanks to Theo-
rem F. So, by Theorem E, there exists (x̄, λ̄) : λ̄ ∈ Φ(x̄) and so

g(x̄, λ̄) < r < f∗ < sup
λ∈I

f(x̄, λ) = f(x̄, λ̄),

that is absurd.
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