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Abstract

In this paper, we extend two topological minimax theorems due to
Ricceri to the case of two functions.

Keywords: minimax, semicontinuity, global minimum points.
MSC: 90C47, 49K35.

1 Introduction and statement of the main results

Let X,Y be two non-empty sets and let ¢ be a real-valued function on
X xY. Set

v, =sup inf o(z,
and

QO* = mf su »w\x, .

zeX yeyp ( y)

It is clear that
s < @
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This is called the trivial minimax inequality. The opposite inequality

" < pu
is called non-trivial minimax inequality and, of course, it is equivalent to
the minimax equality

Px =" (1)
Starting from the pioneristic work of von Neumann (see [8]), many results
ensuring (1) were established. For an introductory bibliography see, for
example, the classical survey of Simons (see [6]).
Now, let f,g: X xY — R, with f(x,y) < g(x,y) foreveryz € X,y € Y.
We call non-trivial minimax inequality involving f, g the following

f* < Gx- (2)

So, if f =g, (2) is equivalent to (1). For a given minimax theorem for
one function ¢, it is a common fact to see whether it is possible to find a
two-function version of it. The most natural way to obtain this is to divide
the hypotheses in ¢ to f and ¢g. For example, the two-function version of
the most classical Fan-Sion’s theorem (see [7]) (Theorem A below) has been
obtained by Simons (see [5], Th. 1.4) (Theorem B below).

Theorem A. Let X be a nonempty compact convexr subset of a topolog-
ical vector space, Y a nonempty convex subset of a topological vector space,
and let p : X XY — R be quasi-convex and lower semicontinuous in X, and
quasi-concave and upper semicontinuous i Y .

Then, (1) holds.

Theorem B. Let X be a nonempty compact convex subset of a topolog-
ical vector space, Y a nonempty convex subset of a topological vector space,
let f: X xY — R be quasi-concave in Y and lower semicontinuous in X,
and let g : X XY — R be upper semicontinuous in Y and quasi-conver in
X, with f<gon X xY .

Then, (2) holds.

First of all, for the reader’s convenience, we recall that, if U is a topolog-
ical space, a function h : U — [—o00, +00] is said to be relatively inf-compact
(see [4]) if, for each r € R, there exists a compact set K C U such that
h=Y(] — oo, 7[C K. We have the following.

Proposition 1. Let U be a topological space and h : U — [—o00, +00[ a
lower semicontinuous and relatively inf-compact function.
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Then, there exists a minimum global point for h.

Proof. Let v > infy h, then there exists a compact set K : {x € U : h(x) <
v} € K. Let z* be a global minimum point of h on K. If x € U\ K, one has
h(z) > v > h(z*), so we can conclude that z* is a minimum global point of
honU.

In [4], Ricceri proved the following results:

Theorem C. Let X be a topological space, I C R an interval and ¥ :
X x I = R a continuous function satisfying the following conditions:

a) for each \ € I, the set of all global minima of the function V(-, \) is
connected

b) there exists a non-decreasing sequence of compact intervals, {I,}, with
I = Upeniy such that, for everyn € N, the following conditions are satisfied:

i) the function infyey, U(-, \) is relatively inf-compact;

ii) for each x € X, the set of all global mazima of the restriction of the
function ¥(x,-) to I, is connected.

Under such hypotheses, the function VU verifies the condition (1).

Theorem D. Let X be a topological space, I C R a compact interval and
U : X x I — R an upper semicontinuous function satisfying the following
conditions:

c) for all X € I, the function V(-, \) is continuous

d) there exists a set D C I, dense in I, such that, for every A\ € D, the
function W(-,\) is inf-connected

e) for each x € X, the set of all global mazxima of the function ¥(x,-) is
connected

Under such hypotheses, the function VU verifies condition (1).

The aim of the present paper is to establish Theorems 1 and 2 below
that represent the extensions of Theorems C and D, respectively, to two
functions.

Theorem 1. Let X be a topological space, I C R an interval, and
f,9: X xI— R two functions satisfying the following conditions:

H1) for every (x,\) € X x I one has f(x,\) < g(x,\);

H2) the function f is upper semicontinuous in X x Iand, for every A € I,
f(-, ) is continuous;

H3) the function g is lower semicontinuous in X x Iand, for every x € X,
g(z,-) is continuous;

HY) for every A € I, the set {y € X : g(y,\) = infrex gz, A\)} is
connected;
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H5) there exists a non-decreasing sequence of compact intervals, {I,},
with I = UpenlIy, such that, for every n € N, the following conditions are
satisfied:

j) the function x — infyer g(x, A) is relatively inf-compact;

Jj) for every x € X, the set {p € I, : f(x,pu) = supygey, f(x,\)} is
connected.

Under such hypotheses, (2) holds.

To realize that when f = g = W Theorem 1 gives Theorem C, one
has to observe that conditions H3), H4) of Theorem 1 immediately imply
conditions a), b) of Theorem C.

Theorem 2. Let X be a topological space, I C R a compact real interval
and f,g: X x I — R two functions satisfying the following conditions:

K1) for every (x,\) € X x I one has f(x,\) < g(z,\);

K2) the functions f is upper semicontinuous in X x I, and, for every
A € I, the function f(-,\) is continuous in X ;

K3) for every x € X, the function g(x,-) is upper semicontinuous;

KY) for each x € X, the set {u € I, : f(x,p) = supyer f(z, N)} is
connected;

Kb5) there exist a dense subset D of I such that, for every A € D and for
every k € R, the set {x € X : g(x,\) < k} is connected.

Under such hypotheses, (2) holds.

To realize that when f = g = W Theorem 2 gives Theorem D, one has
to observe that conditions K2), K3), K4), K5) of Theorem 2 immediately
imply the conditions c), d), e) of Theorem D.

Finally, we recall two results, Theorem E end F below, that will be used
to prove our theorems.

Theorem E. ([4], Th. A) Let X be a topological space, I C R a compact
interval and S C X x I. Assume that S is connected and its projection on
I is the whole of I. Then, for every upper semicontinuous multifunction
® . X — 21, with non-empty, closed and connected values, the graph of ®
intersects S.

Theorem F. ([4], Prop. 1.1) Let X,Y be two topological spaces and
let f: X xY — R be a lower semicontinuous function such that f(z,-)
is continuous for all x € X. Moreover, assume that, for each y € Y, there
exists a neighborhood V' of y such that the function inf,cy f(-,v) is relatively
inf-compact.
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Then, the multifunction F : Y — X defined by
F(z)={ue€ X : f(u,y) = inf f(z,y)}

1S upper Semicontinuous.

2 Proof of Theorem 1

For every n € N, let us set

* = i f 7)\
g+(n) sup inf g(z, )

and

*(n) = inf su T, \).
Fi(n) = inf sup f(z.)

Fixed n € N, let us prove that

f*(n) < g«(n). (3)
Let us define a multifunction G : I,, — 2% by setting, for A € I,,,

G\ ={uve X :g(u\) = mlg)f( g(xz, \)}.

Observe that, for each A € I, the function g(-,\) is relatively inf-
compact. In fact, fixed A € I, and r € R, consider the sets A = {z €
X :g(x,\) <r}and B={r € X :inf,es, g(x,n) < r} and observe that
A C B. Thanks to H5), there exists a compact set K such that B C K,
so, A C K. So, g(-,A) is relatively inf-compact, hence, taking into account
H3) and Proposition 1, it admits a global minimum point: so, the values of
multifunction G are non-empty. Moreover, they are compact and connected
thanks to H4). From Theorem F it follows that G is upper semicontinuous:
so, its graph is connected (see [1]) . Hence, the set

S=gr(G7) ={(u,A\) € X x I : g(u, \) = xlg)f(g(x, A}

is also connected. Observe that, since all values of G are non-empty, the
projection of S on I, is the whole I,,.
Now, let us define a multifunction F : X — 27 by setting, for z € X,

F(z)={p € In: f(z,p) = Sup f(@, M)}
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The values of F' are evidently non-empty, and they are compact and
connected thanks to jj). From Theorem F it follows that F' is upper semi-

continuous. B B
Hence, from Theorem E, there exists (Z,\) € S : A € F(z), that is

— Y — . f Y
g(z, \) xlgxg(m, A)

and

f(q_:’ )‘) = Sup f('fv )‘)
el

So, we have

f*(n) = inf sup f(x,A) < sup f(z,)) = f(z,)) < g(z,A)
zeX \el, el

wlgxg(:a )—félﬁ Inf 9(z,\) = g«(n)

So, (3) is proved. Now, to conclude the proof, arguing by contradiction,
suppose that there exists r : g. < r < f* and, for every n € N, let us put
Cp={ze X :sup f(z,\) <r}.
Aely,
The sets (), are non-empty: otherwise, one would have, for some n € N,
r < supyey, f(x,A) for every x € X, and so

r < inf sup f(z,A) = f*(n) < g«(n)
zeX )¢,

= /\sglpi xlg)f{g(:r,)\) < g« <.

Since the sequence {I,,} is increasing, the sequence {C),} is decreasing.
Summarizing, taking into account H2), {C,} is a decreasing sequence of
non-empty closed and compact sets. So, there exists * € Nyeny Cp. Then,
for every n € N, one has f(z*, \) < r for every A € I, and, since I = Upenp,
one has f(z*,\) < r for every A € I, so sup,c; f(z*,A) < r and, finally,
f* <r, that is absurd.

3 Proof of Theorem 2

Arguing by contradiction, let us fix » € R satisfying ¢g. < r < f*: so,
for every A € I, there exists z € X such that g(x,\) < r. Then, the
multifunction G : I — 2% defined by

G\ ={re X :g(z,\) <r}
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has non-empty values; and, thanks to K3), G is lower semicontinuous; more-
over, for every A € D, G(\) is connected by K5). Then, by Proposition 5.7
of [3], its graph is connected. Hence, the set

S=gr(G7)={(z,\) € X xI:g(z,\) <r}

is also connected.
Let us introduce the multifunction ® : X — 2! by putting

O(x)={pel: flz,p)= i‘é?f(x’A)}‘

The values of ® are non-empty and closed by K2) and connected by K4).

From K2) again, it follows that & is upper semicontinuous thanks to Theo-
rem F. So, by Theorem E, there exists (Z,A) : A € ®(Z) and so

g(i’,)\) <r< f* < Supf(:fv)‘) = f(i‘aA)’
Ael

that is absurd.
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