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Abstract
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1 Introduction

In this paper we consider two general classes of maps (motivated from the
KLU [13], HLPY [14] and Scalzo [20] maps) which have a selection property
and we present new fixed point results. In particular we establish fixed point
theorems in a variety of settings for extension type spaces with respect to a
map. Our results improve and complement results in the literature; see [5,
9, 16-18] and the references therein. Note our theorems include as a special

case results for ES(compact) and AES(compact) spaces.
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First we describe the maps considered in this paper. Let H be the Cech
homology functor with compact carriers and coefficients in the field of ratio-
nal numbers K from the category of Hausdorff topological spaces and con-
tinuous maps to the category of graded vector spaces and linear maps of de-
gree zero. Thus H(X) = {Hy(X)} (here X is a Hausdorff topological space)
is a graded vector space, Hy(X) being the g-dimensional Cech homology
group with compact carriers of X. For a continuous map f : X — X,
H(f) is the induced linear map f, = {f.q} where f.,: Hy(X) — Hy(X).
A space X is acyclic if X is nonempty, H,(X) = 0 for every ¢ > 1, and
Hy(X)~ K.

Let X, Y and I' be Hausdorff topological spaces. A continuous single
valued map p:I' — X is called a Vietoris map (written p: I' = X) if the
following two conditions are satisfied:

(i). for each x € X, the set p~!(z) is acyclic
(ii). p is a perfect map, that is, p is closed and for every x € X the set
p~!(z) is nonempty and compact.

Let ¢: X — Y be a multivalued map (note for each z € X we assume
¢(z) is a nonempty subset of Y). A pair (p,q) of single valued continuous
maps of the form X L T 24 Y is called a selected pair of ¢ (written
(p,q) C ¢) if the following two conditions hold:

(i). p is a Vietoris map
and
(ii). q(p~Y(x)) C ¢(x) for any = € X.

Now we define the admissible maps of Gorniewicz [10]. An upper semi-
continuous map ¢ : X — 2¥ (nonempty subsets of Y') with compact values
is said to be admissible (and we write ¢ € Ad(X,Y’)) provided there exists
a selected pair (p,q) of ¢. An example of an admissible map is a Kakutani
map. An upper semicontinuous map ¢ : X — CK(Y) is said to be Kaku-
tani (and we write ¢ € Kak(X,Y')); here Y is a Hausdorff topological vector
space and C K (Y') denotes the family of nonempty, convex, compact subsets
of Y. Another example is an acyclic map which we now describe. Let X and
Z be subsets of Hausdorff topological spaces and let F': X — K(Z) i.e. F
has nonempty compact values. Recall a nonempty topological space is said
to be a acyclic if all its reduced Cech homology groups over the rationals
are trivial. Now we consider maps F' : X — Ac(Z) ie. F: X — K(Z)
with acyclic values (i.e. F' has nonempty acyclic compact values). We say
F € AC(X,Z) (ie. F is an acyclic map) if F : X — Ac(Z) is upper
semicontinuous.
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Next we consider a general class of maps, namely the PK maps of Park
(which include Kak and Ad maps). Let X and Y be Hausdorff topological
spaces. Given a class X of maps, X'(X,Y) denotes the set of maps F :
X — 2Y (nonempty subsets of Y') belonging to X', and X, the set of finite
compositions of maps in X. We let

F(X)={Z: FizF#0 forall FeX(Z,2)}

where Fix F' denotes the set of fixed points of F'.
The class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;
(ii). each F' € U, is upper semicontinuous and compact valued; and
(iii). B" € F(U,) for all n € {1,2,....}; here B" ={zx € R": ||z| < 1}.

We say F € PK(X,Y) if for any compact subset K of X there is a
G e U(K,Y) with G(z) C F(x) for each z € K.

Now we present some properties of PK maps which we will use in Section
2.

(i). PK is closed under compositions.

Let X, Y, Z be Hausdorff topological spaces. Let F} € PK(X,Y) and
F, € PK(Y,Z). Suppose K is a compact subset of X. Then there exists
a G1 € U(K,Y) with Gi(z) C Fi(z) for each z € K. Note Gi(K) is
compact so there exists a Go € U.(G1(K), Z) with Ga(y) C Fa(y) for each
y € Gi(K). As aresult GoGi(z) C FaGi(zx) C Fy Fi(z) for z € K and
note G2 G; € U.(K, Z).

(ii). Let F € PK(X,Y) and Z C X. Then F € PK(Z,Y).

This follows if we consider F o ¢ where ¢ : Z — X is the inclusion.
Alternatively, let K be compact in Z. Then K is compact in X so there
exists a G € U(K,Y) with G(z) C F(x) for each z € K.

(ii). Let F € PK(X,Y) and F(X)C W CY. Then F € PK(X,W).

Suppose K is a compact subset of X. Then there exists a G € U (K,Y)
with G(z) C F(z) for each z € K. Now since F(K) C W then G(K) C W.
Let ¥ : K — 2" be obtained by restricting the range of G and let 2 be open
in W. Then Q = W NU for some open set U of Y. Now since G(K) C W
then {x € K : ¥(z) CQ} ={z € K: G(x) C U} which is open in K. Thus
U : K — 2" is upper semicontinuous so ¥ (= G) € U.(K,W).

Next we recall the following fixed point result for PK maps (see [19]).

Recall a nonempty subset W of a Hausdorff topological vector space F is
said to be admissible if for any nonempty compact subset K of W and every
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neighborhood V of 0 in E there exists a continuous map h : K — W with
x — h(z) € V for all x € K and h(K) is contained in a finite dimensional
subspace of E (for example every nonempty convex subset of a locally convex
space is admissible).

Theorem 1. Let X be an admissible convex set in a Hausdorff topological
vector space and F € PK(X,X) be a closed compact map. Then F has a
fized point in X.

Recall the Tychonoff cube T is the Cartesian product of copies of the
unit interval and T lies in an appropriate locally convex topological vector
space E (i.e. the linear span of the Tychonoff cube) [8, 9] (recall the product
of real lines that contain T equipped with the product topology is a locally
convex topological vector space). Note since any convex subset of a locally
convex topological vector space is admissible then 7' is a convex admissible
subset of E. Now Theorem 1 guarantees the following theorem (see also [16]
for another proof).

Theorem 2. Let F € PK(T,T)) be a closed map. Then F has a fized point
inT.

For a subset K of a topological space X, we denote by Covy (K) the
directed set of all coverings of K by open sets of X (usually we write
Cov (K) = Covx (K)). Given amap F : X — 2% and a € Cov (X), a
point z € X is said to be an a—fixed point of F' if there exists a member
U € a such that € U and F(z)NU # 0.

Given two maps F, G : X — 2¥ and a € Cov (Y), F and G are said
to be a—close if for any = € X there exists U, € «, y € F(z) N U, and
w € G(x) NUy. Of course, given two single valued maps f, g : X — Y and
a € Cov(Y), then f and g are a—close if for any x € X there exists U, € «
containing both f(z) and g(x). We now recall the following result from [3,
5.

Theorem 3. Let X be a reqular topological space, F : X — 2% an upper
semicontinuous map with closed values and suppose there exists a cofinal
covering 0 C Covy (m) such that F' has an a—fized point for every a € 6.
Then F has a fixed point.

Remark 1. From Theorem 8 in proving the existence of fized points in
uniform spaces for upper semicontinuous compact maps with closed values
it suffices [4, page 298] to prove the existence of approrimate fized points
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(since open covers of a compact set A admit refinements of the form {U|[z] :
x € A} where U is a member of the uniformity [12, page 199], so such
refinements form a cofinal family of open covers). Note also that uniform
spaces are regular (in fact completely regular [7]). Also note in Theorem 3 if
F is compact valued, then the assumption that X is reqular can be removed.
We note here that when we apply Theorem 3 we will assume the space is
uniform. Of course one could consider other appropriate spaces (like reqular
(Hausdorff) spaces) as well.

Let @ be a class of topological spaces. A space Y is an extension space
for @ (written Y € ES(Q)) if for any pair (X, K) in @ with K C X closed,
any continuous function fp : K — Y extends to a continuous function
f:X =Y. A space Y is an approximate extension space for @) (written
Y € AES(Q)) if for any o € Cov (V') and any pair (X, K) in Q with K C X
closed, and any continuous function fo : K — Y there exists a continuous
function f: X — Y such that f|x is a—close to fo.

Next we describe the maps due to Wu [21]. Let X and Y be subsets
lying in Hausdorff topological vector spaces and we say ® € W(X,Y) if
d : X — 2¥ and there exists a lower semicontinuous map 6 : X — 2¥ with
co(0(x)) C ®(z) for x € X. Next, we recall a selection theorem [1] (see the
proof in Theorem 1.1 there) for Wu maps.

Theorem 4. Let X be a paracompact subset of a Hausdorff topological vector
space and 'Y a metrizable complete subset of a Hausdorff locally convex linear
topological space. Suppose ® € W(X,Y) and let 6 : X — 2V be a lower
semicontinuous map with o (0(x)) C ®(z) for v € X. Then there exists a
upper semicontinuous map ¥V : X — CK(Y) (collection of nonempty convex
compact subsets of Y ) with ¥(z) C o (0(x)) C ®(x) forz € X.

Remark 2. Let X be paracompact and 'Y a metrizable subset of a complete
Hausdorff locally convex linear topological space E and ® € W (X,Y) with
0: X — 2Y a lower semicontinuous map and @o (6(z)) C ®(z) for v € X.
Note [15] that @66 : X — 2Y (since co(0(z)) C ®(x) C Y forz € X)
18 lower semicontinuous, so from Michael’s selection theorem there exists a
continuous (single valued) map f: X — Y with f(x) € ¢o (0(zx)) for x € X,
so consequently f(x) € co(0(x)) C ®(z) forx € X.

Let Z be a subset of a Hausdorff topological space Y7 and W a subset
of a Hausdorff topological vector space Yo and G a multifunction. We say
F e HLPY (Z,W) [14] if W is convex and there exists a map S : Z — W
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(i.e., S : Z — P(W) (collection of subsets of W)) with co(S(z)) C F(x)
for z € Z, S(z) # 0 for each z € Z and Z = J{int S~ (w) : w € W};
here S~'(w) = {# € Z : w € S(z)} and note S(z) # ) for each x € Z is
redundant since if z € Z then there exists a w € W with z € int S~} (w) C
S~1(w) sow € S(z) i.e. S(z) # (). For the selection theorem below, see [14].

Theorem 5. Let X be a paracompact subset of a Hausdorff topological
space, Y a convex subset of a Hausdorff topological vector space and F €
HLPY(X,Y) (let S : X — 2Y with co(S(x)) C F(x) for x € X and
X =J{intSH(w) : w € Y}). Then there exists a continuous (single—
valued) map f: X — Y with f(z) € coS(x) C F(x) for allxz € X.

Remark 3. These maps are related to the DK'T maps in the literature and
F € DKT(Z,W) [6] if W is convex and there exists a map S : Z — W with
co(S(x)) C F(x) forxz € Z, S(z) # 0 for each x € Z and the fibre S~ (w)
is open (in Z) for each w € W. Note these maps were motivated from the
Fan maps.

Let X be a subset of a Hausdorff topological space and Y a subset of
a Hausdorff topological vector space. We say T : X — 2¥ has the strong
continuous inclusion property (SCIP) [13] at € X if there exists an open
set U(x) in X containing = and a F* : U(z) — 2¥ such that F%(w) C T(w)
for all w € U(x) and coF* : U(z) — 2Y is compact valued and upper
semicontinuous. We write 7' € KLU(X,Y) if T has the SCIP at every
z e X.

In this paper our map T will be a compact map so T has the SCIP is
equivalent to T has the CIP [11].

Remark 4. These maps contain as a special case the Scalzo maps [20] in
the literature (see [13 pg12]).
Next we recall a selection theorem [13].

Theorem 6. Let X be a paracompact subset of a Hausdorff topological space,
Y a subset of a Hausdorff topological vector space and T € KLU(X,Y).
Then there exists an upper semicontinuous map G : X — CK(Y) with
G(w) CcoT(w) for allw € X.

2 Fixed point theory

We begin by describing the two general classes of maps. Let X be a subset
of a Hausdorff topological space, and Y a subset of a Hausdorff topological



D. O’Regan 65

vector space. We say F' € HY PK(X,Y) if F: X — 2V and there exists an
upper semicontinuous map ¢ € PK(X,Y) with compact values and with
®(x) C co(F(x)) for x € X.

Let X be a subset of a Hausdorff topological space, and Y a subset of
a Hausdorff topological space. We say F € HY PKC(X,Y) if F: X — 2Y
and there exists an upper semicontinuous map ® € PK(X,Y’) with compact
values and with ®(z) C F(z) for z € X.

Now we describe one of the spaces considered in this paper. Let X be a
subset of a Hausdorff topological space, and ® : X — 2% (to be described
later).

Definition 1. We say X € GES(compact) (w.r.t. ®) if for any compact
subset Z of a Hausdorff topological space and A C Z closed in Z, and any

homeomorphism g : ®(X) — A there exists an upper semicontinuous map
U € PK(Z,®(X)) with compact values and with ¥(x) C ® g~!(x) forx € A.

Remark 5. We note that we could replace ®(X) everywhere in this paper
by a set K where ®(X) C K C X. In particular, if X was compact in our

theorems, one could replace ®(X) with X throughout.

Example 1. Let X be a subset of a Hausdorff topological space and ® €
PK(X,X) be an upper semicontinuous map with compact values. Assume
either (i). ®(X) € ES(compact) or (ii). X € ES(compact). Then X €
GES(compact) (w.r.t. ®).

To see this, let Z be a compact subset of a Hausdorff topological space
and A C Z closed in Z and let g : ®(X) — A be a homeomorphism. Then
g1 A— ®(X) is continuous.

(i). Suppose ®(X) € ES(compact).

Then g~ extends to a continuous function h : Z — ®(X) (note h|y =

g ')ie heC(Z®X)). Let UV = ®h. Note ® € PK(X,X) and (see

Section 1) so ® € PK(®(X),®(X)) and as a result ¥ € PK(Z,®(X)) is

an upper semicontinuous map with compact values. Also, since h|a = g7,

for x € A we have ¥(x) = ® h(x) = ®g~!(x).

(ii). Suppose X € ES(compact).

Note g71 : A — X is continuous. Now, since X € ES(compact) then
g~ extends to a continuous function h : Z — X (note hla = g~ 1), i.e.
heC(Z,X). Let W = ®h. Note® € PK(X,X) and (see Section 1) so ® €
PK(X,®(X)) and as a result V € PK(Z,®(X)) is an upper semicontinuous
map with compact values. Also, since h|x = g~', for € A we have ¥(z) =

®h(z)=dg ().
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Theorem 7. Let X be a subset of a Hausdorff topological vector space and
F e HYPK(X,X) with coF a compact map (so in particular there exists
an upper semicontinuous compact map ® € PK (X, X) with compact values
and with ®(x) C co(F(x)) for x € X). Also assume X € GES(compact)
(w.r.t. ®). Then ® (so consequently co F') has a fixed point.

Proof. Let ® be as in the statement of Theorem 7. Recall [9] every compact
space is homeomorphic to a closed subset of the Tychonoff cube T, so as
a result K = ®(X) can be embedded as a closed subset K* of T; let
s : K — K* be a homeomorphism. Since X € GES(compact) (w.r.t.
®) then there exists an upper semicontinuous map ¥ € PK(T,K) with
compact values and with ¥(z) C ® s~!(z) for z € K*. Let G = j s ¥, where
j: K* < T is an inclusion. Note G € PK(T,T) is an upper semicontinuous
compact map with compact values, so a closed map [2]. Now, Theorem 2
guarantees an x € T with # € G(x). Thus, there exists a y € ¥(z) with
r = js(y). Note s(y) € K* so ¥(z) C ®s 1(z) = ®(y). As a result
y € ¥(z) C O(y), Le. y € 2(y) C coF(y).

The analogue of Theorem 7 for HY PKC(X, X) maps is now immediate
(note here we do not need to assume that X is a subset of a Hausdorff topo-
logical vector space but merely that X is a subset of a Hausdorff topological
space).

Theorem 8. Let X be a subset of a Hausdorff topological space and F €
HYPKC(X,X) with F a compact map (so, in particular, there exists an
upper semicontinuous compact map ® € PK (X, X) with compact values and
with ®(x) C F(x) for x € X ). Also assume X € GES(compact) (w.r.t. ®).
Then ® (consequently, F') has a fixed point.

Proof. Let ® be as in the statement of Theorem 8. Now exactly the same
argument as in Theorem 7 yields y € ®(y) so y € ®(y) C F(y).

A special case of Theorem 8 is the following (take & = F).

Theorem 9. Let X be a subset of a Hausdorff topological space and let
F € PK(X,X) be an upper semicontinuous compact map with compact
values. Also assume X € GES(compact) (w.r.t. F). Then F has a fized
point.

Let X be a subset of a Hausdorff topological space and ® : X — 2%,
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Definition 2. We say X € GAES(compact) (w.r.t. ®) if for any compact
subset Z of a Hausdorff topological space and A C Z closed in Z, any home-
omorphism g : ®(X) — A, and any a € Covx (®(X)), there exists an upper
semicontinuous map V¥, € PK(Z,®(X)) with compact values such that if
x € A with x € gV, (x) then ® has an a—fized point.

Example 2. Let X be a subset of a Hausdorff topological space and & €
PK(X,X) be an upper semicontinuous map with compact values. Assume
either (i). X € AES(compact) or (ii). ®(X) € AES(compact). Then
X € GAES(compact) (w.r.t. ®).

To see this, let Z be a compact subset of a Hausdorff topological space
and A C Z closed in Z. Let a € Covx (®(X)) and let g : ®(X) — A be a
homeomorphism. Note g~ : A — ®(X) is continuous.

(i). Suppose X € AES(compact).

Now, g=' 1 A — X is continuous. Let o/ = a U {X\®(X)}. Now, since
X € AES(compact) there exists a continuous function hy : Z — X with
hala o —close to g~'. Then hag: ®(X) = X and i : ®(X) — X are a—
close. To see this, let x € ®(X) = K. Now, let y = g(x) and note y € A.
Then there exists a V € o with g7 (y) € V and ho(y) €V, ie. x €V
and he g(x) € V. Now, since z € K and o/ = a U{X\®(X)} then V € a.
Now let ¥, = ® h, and since ho, € C(Z,X) and ® € PK(X,®(X)) then
U, € PK(Z, W) s an upper semicontinuous map with compact values.
Now suppose we had x € A and x € gVy(z). Then v € gPhy(x). Let
Yy = ha(x) soy € hag®(y), i.e. y = hag(w) for some w € ®(y). Now,
since y € ®(X) then there exists a U € a with hog(w) € U and w € U, i.e.
y(= hag(w)) €U and w € U. Thusy € U and ®(y) NU # O (since w € U
and w € ®(y)). Thus, ® has an a—fizved point.

(ii). Suppose ®(X) € AES(compact).

Then there exists a continuous function hy : Z — ®(X) with hala o
close to g='. Then, hog: ®(X) = ®(X) andi: ®(X) — &(X) are aclose.
Now let ¥, = ® hy and note ¥, € PK(Z, ®(X)) is an upper semicontinuous
map with compact values. Now suppose we had x € A and x € gV (x). Let
y = ha(x) so y = hag(w) for some w € ®(y). Then there exists a U € «
with hag(w) € U and w € U, i.e. y € U and w € U. Thus, y € U and

O(y)NU # 0, i.e. ® has an a-fized point.

Remark 6. In Definition 2 if we assume (a). for each x € A there exists
a U € a with Yo(x) CU and ® g~ () NU # 0, then we immediately have
(b). if x € A with v € gV, (z) then ® has an a—fized point.

To see this,let x € A with x € gV, (x). Then there exists a y € ¥, (x)
with x = g(y) and note g(y) € A sox € A. Now, (a) implies that there exists
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a U € a with Vo(z) CU and ®g~ ' (x) NU # 0. Thus, since y € Wo(x)
we have y € U and ®(y) NU # 0 (recall g~1(x) = y), so ® has an a—fized
point.

In fact, in the above proof we just need a condition to guarantee ”for
each x € A and each y € X with y € Vo(x) and x = g(y) there exists a
UcawithycU and ®g  (z)NU # 07,

(ii). In (i) if ® = ¢ and V. = 1, are single valued maps then (a) reads
"the and ¢ g~ are a—close”.

Theorem 10. Let X be a subset of a Hausdorff topological vector space and
F e HYPK(X,X) with coF a compact map (so in particular there exists
an upper semicontinuous compact map ® € PK (X, X) with compact values
and with ®(xz) C co(F(x)) for x € X). Also assume X € GAES(compact)
(w.r.t. ®). Then ® (so consequently coF') has a fixed point.

Proof. Let ® be as in the statement of Theorem 10. Let o € Covy (K)
where K = ®(X). Now K can be embedded as a closed subset K* of T
and let s : K — K* be a homeomorphism. Since X € GAFES(compact)
(w.r.t. ®), then there exists an upper semicontinuous map ¥, € PK(T, K)
with compact values such that if z € K* with € s¥,(z) then ® has an
a—fixed point. Let G, = js¥,, where j : K* — T is an inclusion. Note
G, € PK(T,T) is an upper semicontinuous compact map with compact
values, so a closed map. Now, Theorem 2 guarantees an x € T with = €
Gq(x), ie. € s¥q(x). From the above ® has an a— fixed point (for each
a € Covx (K)). Now, Theorem 3 and Remark 1 (note Hausdorff topological
vector spaces are uniform spaces) guarantee that ® (so consequently co F')
has a fixed point.

The analogue of Theorem 10 for HY PKC(X, X) maps is now immedi-
ate.

Theorem 11. Let X be a subset of a Hausdorff topological space and F €
HYPKC(X,X) with F a compact map (so in particular there erists an
upper semicontinuous compact map ® € PK(X,X) with compact values
and with ®(x) C F(x) for x € X). Also, assume X € GAES(compact)
(w.r.t. ®). Then ® (consequently, F') has a fixed point.

A special case of Theorem 11 is the following (take ® = F).

Theorem 12. Let X be a subset of a Hausdorff topological space and let
F € PK(X,X) be an upper semicontinuous compact map with compact
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values. Also assume X € GAES(compact) (w.r.t. F'). Then F has a fized
point.

Now we generalize the above results by considering admissible sets as in

Section 1. Let W be a subset of a Hausdorff topological space and & : W —
2V,

Definition 3. We say W is GES admissible (w.r.t. ®) if for all compact
subsets K of W, all a € Covw(K), there exists a continuous function
T : K — W such that

(i). T and i: K — W are a—close;

(ii). wo(K) is contained in a subset Co, € W and C, € GES(compact)
(w.r.t. ®).

Definition 4. We say W is GAES admissible (w.r.t. ®) if for all compact
subsets K of W, all a € Covw(K), there exists a continuous function
Ty : K — W such that

(i). 7o and i: K — W are a—close;

(ii). 7o(K) is contained in a subset C, C W, C, € GAES(compact)
(w.r.t. ®) and Cy is a uniform space.

Remark 7. In Definition 4 if W is a subset of a Hausdorff topological vector
space then W is a uniform space and so automatically Cy, is a uniform space
(recall a subset of a uniform space is a uniform space). Thus Cy is a uniform
space is redundent in Definition 4 if W is a subset of a Hausdorff topological
vector space or more generally if W is a uniform space.

Theorem 13. Let X be a subset of a Hausdorff topological vector space and
F € HYPK(X,X) with coF a compact map (so in particular there erists
an upper semicontinuous compact map ® € PK (X, X) with compact values
and with ®(z) C co (F(x)) for x € X). Also assume X is GES admissible
(w.r.t. ®). Then ® (so consequently co F') has a fixed point.

Proof. Let ® be as in the statement of Theorem 13. Let o € Covx (K') where
K = ®(X). There exists a 7, € C(K,Cy) and C, € GES(compact) (w.r.t.
®) as described in Definition 3 (with W = X). Note (see Section 1) that
¢ € PK(Cy,K) so &, = 1, ® € PK(C,,C,) is an upper semicontinuous
compact map with compact values. Now (see the proof of Theorem 7 or
alternatively see Theorem 8 or Theorem 9) guarantees that there exists an
x € Cy with z € O(x) = 1o ®(2), i.e. z = myw for some w € P(z).
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Since m, and i are a—close then there exists a U € a with 7, (w) € U and
i(w) € U,ie. we Uandz e U. Asaresult z € U and ®(z)NU # 0
(since w € ®(x)). Thus, ® has an o fixed point (for each a € Covy (K))
so Theorem 3 and Remark 1 guarantee that ® (so consequently co F') has a
fixed point.

The same analysis as above guarantees the following results.

Theorem 14. Let X be a subset of a Hausdorff topological space, let X be
a uniform space and let F € HY PKC(X, X) with F' a compact map (so in
particular there exists an upper semicontinuous compact map ® € PK (X, X)
with compact values and with ®(x) C F(x)) for x € X). Also assume X is
GES admissible (w.r.t. ®). Then ® (so consequently F') has a fixed point.

Theorem 15. Let X be a subset of a Hausdorff topological space, let X be a
uniform space and let F € PK (X, X) be an upper semicontinuous compact
map with compact values. Also, assume X is GES admissible (w.r.t. F).
Then F has a fized point.

Theorem 16. Let X be a subset of a Hausdorff topological vector space and
F € HYPK(X, X) with coF a compact map (so in particular there exists
an upper semicontinuous compact map ® € PK (X, X) with compact values
and with ®(x) C co (F(x)) forx € X). Also assume X is GAES admissible
(w.r.t. ®). Then ® (so consequently co F') has a fixed point.

Proof. Let ® be as in the statement of Theorem 16. Let o € Covx (K') where
K = ®(X). There exists a 7, € C(K,C,) and C, € GAES(compact)
(w.r.t. @) as described in Definition 4 ). Let ®, = 7, ® and note ¢, €
PK(C,,Cy) is an upper semicontinuous compact map with compact values.
Now (see the proof of Theorem 10 or alternatively see Theorem 11 or Theo-
rem 12) guarantees that there exists an x € C, with = € ¢, (z) = 7, © ().
The same reasoning as in Theorem 13 guarantees that ® has an a-fixed
point (for each a € Covy (K)). Now, apply Theorem 3 and Remark 1.

The same analysis as above guarantees the following results.

Theorem 17. Let X be a subset of a Hausdorff topological space, let X be
a uniform space and let F € HY PKC(X, X) with F a compact map (so in
particular there exists an upper semicontinuous compact map ® € PK (X, X)
with compact values and with ®(x) C F(x)) for x € X ). Also assume X ‘s
GAES admissible (w.r.t. ®). Then ® (so consequently F') has a fized point.

Theorem 18. Let X be a subset of a Hausdorff topological space, let X be a
uniform space and let F € PK (X, X) be an upper semicontinuous compact
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map with compact values. Also, assume X is GAES admissible (w.r.t. F).
Then F has a fixed point.
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