

FIXED POINT THEORY FOR EXTENSION TYPE SPACES WITH RESPECT TO A SELECTION MAP*

Donal O'Regan†

*Dedicated with much admiration to Prof. Biagio Ricceri on the
occasion of his 70th birthday*

DOI 10.56082/annalsarscimath.2026.1.59

Abstract

In this paper, we present new fixed point results for multivalued maps on extension spaces with respect to a map.

Keywords: fixed points, set-valued maps, extension spaces.

MSC: 47H10, 54H25.

1 Introduction

In this paper we consider two general classes of maps (motivated from the *KLU* [13], *HLPY* [14] and *Scalzo* [20] maps) which have a selection property and we present new fixed point results. In particular we establish fixed point theorems in a variety of settings for extension type spaces with respect to a map. Our results improve and complement results in the literature; see [5, 9, 16–18] and the references therein. Note our theorems include as a special case results for *ES*(compact) and *AES*(compact) spaces.

* Accepted for publication on September 24, 2025

† donal.oregan@nuigalway.ie, School of Mathematical and Statistical Sciences, University of Galway, Ireland

First we describe the maps considered in this paper. Let H be the Čech homology functor with compact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus $H(X) = \{H_q(X)\}$ (here X is a Hausdorff topological space) is a graded vector space, $H_q(X)$ being the q -dimensional Čech homology group with compact carriers of X . For a continuous map $f : X \rightarrow X$, $H(f)$ is the induced linear map $f_\star = \{f_{\star q}\}$ where $f_{\star q} : H_q(X) \rightarrow H_q(X)$. A space X is acyclic if X is nonempty, $H_q(X) = 0$ for every $q \geq 1$, and $H_0(X) \approx K$.

Let X , Y and Γ be Hausdorff topological spaces. A continuous single valued map $p : \Gamma \rightarrow X$ is called a Vietoris map (written $p : \Gamma \Rightarrow X$) if the following two conditions are satisfied:

- (i). for each $x \in X$, the set $p^{-1}(x)$ is acyclic
- (ii). p is a perfect map, that is, p is closed and for every $x \in X$ the set $p^{-1}(x)$ is nonempty and compact.

Let $\phi : X \rightarrow Y$ be a multivalued map (note for each $x \in X$ we assume $\phi(x)$ is a nonempty subset of Y). A pair (p, q) of single valued continuous maps of the form $X \xleftarrow{p} \Gamma \xrightarrow{q} Y$ is called a selected pair of ϕ (written $(p, q) \subset \phi$) if the following two conditions hold:

- (i). p is a Vietoris map
and
- (ii). $q(p^{-1}(x)) \subset \phi(x)$ for any $x \in X$.

Now we define the admissible maps of Gorniewicz [10]. An upper semicontinuous map $\phi : X \rightarrow 2^Y$ (nonempty subsets of Y) with compact values is said to be admissible (and we write $\phi \in Ad(X, Y)$) provided there exists a selected pair (p, q) of ϕ . An example of an admissible map is a Kakutani map. An upper semicontinuous map $\phi : X \rightarrow CK(Y)$ is said to be Kakutani (and we write $\phi \in Kak(X, Y)$); here Y is a Hausdorff topological vector space and $CK(Y)$ denotes the family of nonempty, convex, compact subsets of Y . Another example is an acyclic map which we now describe. Let X and Z be subsets of Hausdorff topological spaces and let $F : X \rightarrow K(Z)$ i.e. F has nonempty compact values. Recall a nonempty topological space is said to be acyclic if all its reduced Čech homology groups over the rationals are trivial. Now we consider maps $F : X \rightarrow Ac(Z)$ i.e. $F : X \rightarrow K(Z)$ with acyclic values (i.e. F has nonempty acyclic compact values). We say $F \in AC(X, Z)$ (i.e. F is an acyclic map) if $F : X \rightarrow Ac(Z)$ is upper semicontinuous.

Next we consider a general class of maps, namely the PK maps of Park (which include Kak and Ad maps). Let X and Y be Hausdorff topological spaces. Given a class \mathcal{X} of maps, $\mathcal{X}(X, Y)$ denotes the set of maps $F : X \rightarrow 2^Y$ (nonempty subsets of Y) belonging to \mathcal{X} , and \mathcal{X}_c the set of finite compositions of maps in \mathcal{X} . We let

$$\mathcal{F}(\mathcal{X}) = \{Z : \text{Fix } F \neq \emptyset \text{ for all } F \in \mathcal{X}(Z, Z)\}$$

where $\text{Fix } F$ denotes the set of fixed points of F .

The class \mathcal{U} of maps is defined by the following properties:

- (i). \mathcal{U} contains the class C of single valued continuous functions;
- (ii). each $F \in \mathcal{U}_c$ is upper semicontinuous and compact valued; and
- (iii). $B^n \in \mathcal{F}(\mathcal{U}_c)$ for all $n \in \{1, 2, \dots\}$; here $B^n = \{x \in \mathbf{R}^n : \|x\| \leq 1\}$.

We say $F \in PK(X, Y)$ if for any compact subset K of X there is a $G \in \mathcal{U}_c(K, Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$.

Now we present some properties of PK maps which we will use in Section 2.

- (i). PK is closed under compositions.

Let X, Y, Z be Hausdorff topological spaces. Let $F_1 \in PK(X, Y)$ and $F_2 \in PK(Y, Z)$. Suppose K is a compact subset of X . Then there exists a $G_1 \in \mathcal{U}_c(K, Y)$ with $G_1(x) \subseteq F_1(x)$ for each $x \in K$. Note $G_1(K)$ is compact so there exists a $G_2 \in \mathcal{U}_c(G_1(K), Z)$ with $G_2(y) \subseteq F_2(y)$ for each $y \in G_1(K)$. As a result $G_2 G_1(x) \subseteq F_2 G_1(x) \subseteq F_2 F_1(x)$ for $x \in K$ and note $G_2 G_1 \in \mathcal{U}_c(K, Z)$.

- (ii). Let $F \in PK(X, Y)$ and $Z \subseteq X$. Then $F \in PK(Z, Y)$.

This follows if we consider $F \circ i$ where $i : Z \rightarrow X$ is the inclusion. Alternatively, let K be compact in Z . Then K is compact in X so there exists a $G \in \mathcal{U}_c(K, Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$.

- (iii). Let $F \in PK(X, Y)$ and $F(X) \subseteq W \subseteq Y$. Then $F \in PK(X, W)$.

Suppose K is a compact subset of X . Then there exists a $G \in \mathcal{U}_c(K, Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$. Now since $F(K) \subseteq W$ then $G(K) \subseteq W$. Let $\Psi : K \rightarrow 2^W$ be obtained by restricting the range of G and let Ω be open in W . Then $\Omega = W \cap U$ for some open set U of Y . Now since $G(K) \subseteq W$ then $\{x \in K : \Psi(x) \subseteq \Omega\} = \{x \in K : G(x) \subseteq U\}$ which is open in K . Thus $\Psi : K \rightarrow 2^W$ is upper semicontinuous so $\Psi (= G) \in \mathcal{U}_c(K, W)$.

Next we recall the following fixed point result for PK maps (see [19]). Recall a nonempty subset W of a Hausdorff topological vector space E is said to be admissible if for any nonempty compact subset K of W and every

neighborhood V of 0 in E there exists a continuous map $h : K \rightarrow W$ with $x - h(x) \in V$ for all $x \in K$ and $h(K)$ is contained in a finite dimensional subspace of E (for example every nonempty convex subset of a locally convex space is admissible).

Theorem 1. *Let X be an admissible convex set in a Hausdorff topological vector space and $F \in PK(X, X)$ be a closed compact map. Then F has a fixed point in X .*

Recall the Tychonoff cube T is the Cartesian product of copies of the unit interval and T lies in an appropriate locally convex topological vector space E (i.e. the linear span of the Tychonoff cube) [8, 9] (recall the product of real lines that contain T equipped with the product topology is a locally convex topological vector space). Note since any convex subset of a locally convex topological vector space is admissible then T is a convex admissible subset of E . Now Theorem 1 guarantees the following theorem (see also [16] for another proof).

Theorem 2. *Let $F \in PK(T, T)$ be a closed map. Then F has a fixed point in T .*

For a subset K of a topological space X , we denote by $Cov_X(K)$ the directed set of all coverings of K by open sets of X (usually we write $Cov(K) = Cov_X(K)$). Given a map $F : X \rightarrow 2^X$ and $\alpha \in Cov(X)$, a point $x \in X$ is said to be an α -fixed point of F if there exists a member $U \in \alpha$ such that $x \in U$ and $F(x) \cap U \neq \emptyset$.

Given two maps $F, G : X \rightarrow 2^Y$ and $\alpha \in Cov(Y)$, F and G are said to be α -close if for any $x \in X$ there exists $U_x \in \alpha$, $y \in F(x) \cap U_x$ and $w \in G(x) \cap U_x$. Of course, given two single valued maps $f, g : X \rightarrow Y$ and $\alpha \in Cov(Y)$, then f and g are α -close if for any $x \in X$ there exists $U_x \in \alpha$ containing both $f(x)$ and $g(x)$. We now recall the following result from [3, 5].

Theorem 3. *Let X be a regular topological space, $F : X \rightarrow 2^X$ an upper semicontinuous map with closed values and suppose there exists a cofinal covering $\theta \subseteq \overline{Cov_X(F(X))}$ such that F has an α -fixed point for every $\alpha \in \theta$. Then F has a fixed point.*

Remark 1. *From Theorem 3 in proving the existence of fixed points in uniform spaces for upper semicontinuous compact maps with closed values it suffices [4, page 298] to prove the existence of approximate fixed points*

(since open covers of a compact set A admit refinements of the form $\{U[x] : x \in A\}$ where U is a member of the uniformity [12, page 199], so such refinements form a cofinal family of open covers). Note also that uniform spaces are regular (in fact completely regular [7]). Also note in Theorem 3 if F is compact valued, then the assumption that X is regular can be removed. We note here that when we apply Theorem 3 we will assume the space is uniform. Of course one could consider other appropriate spaces (like regular (Hausdorff) spaces) as well.

Let Q be a class of topological spaces. A space Y is an extension space for Q (written $Y \in ES(Q)$) if for any pair (X, K) in Q with $K \subseteq X$ closed, any continuous function $f_0 : K \rightarrow Y$ extends to a continuous function $f : X \rightarrow Y$. A space Y is an approximate extension space for Q (written $Y \in AES(Q)$) if for any $\alpha \in Cov(Y)$ and any pair (X, K) in Q with $K \subseteq X$ closed, and any continuous function $f_0 : K \rightarrow Y$ there exists a continuous function $f : X \rightarrow Y$ such that $f|_K$ is α -close to f_0 .

Next we describe the maps due to Wu [21]. Let X and Y be subsets lying in Hausdorff topological vector spaces and we say $\Phi \in W(X, Y)$ if $\Phi : X \rightarrow 2^Y$ and there exists a lower semicontinuous map $\theta : X \rightarrow 2^Y$ with $\overline{co}(\theta(x)) \subseteq \Phi(x)$ for $x \in X$. Next, we recall a selection theorem [1] (see the proof in Theorem 1.1 there) for Wu maps.

Theorem 4. *Let X be a paracompact subset of a Hausdorff topological vector space and Y a metrizable complete subset of a Hausdorff locally convex linear topological space. Suppose $\Phi \in W(X, Y)$ and let $\theta : X \rightarrow 2^Y$ be a lower semicontinuous map with $\overline{co}(\theta(x)) \subseteq \Phi(x)$ for $x \in X$. Then there exists a upper semicontinuous map $\Psi : X \rightarrow CK(Y)$ (collection of nonempty convex compact subsets of Y) with $\Psi(x) \subseteq \overline{co}(\theta(x)) \subseteq \Phi(x)$ for $x \in X$.*

Remark 2. *Let X be paracompact and Y a metrizable subset of a complete Hausdorff locally convex linear topological space E and $\Phi \in W(X, Y)$ with $\theta : X \rightarrow 2^Y$ a lower semicontinuous map and $\overline{co}(\theta(x)) \subseteq \Phi(x)$ for $x \in X$. Note [15] that $\overline{co}\theta : X \rightarrow 2^Y$ (since $\overline{co}(\theta(x)) \subseteq \Phi(x) \subseteq Y$ for $x \in X$) is lower semicontinuous, so from Michael's selection theorem there exists a continuous (single valued) map $f : X \rightarrow Y$ with $f(x) \in \overline{co}(\theta(x))$ for $x \in X$, so consequently $f(x) \in \overline{co}(\theta(x)) \subseteq \Phi(x)$ for $x \in X$.*

Let Z be a subset of a Hausdorff topological space Y_1 and W a subset of a Hausdorff topological vector space Y_2 and G a multifunction. We say $F \in HLPY(Z, W)$ [14] if W is convex and there exists a map $S : Z \rightarrow W$

(i.e., $S : Z \rightarrow P(W)$ (collection of subsets of W) with $co(S(x)) \subseteq F(x)$ for $x \in Z$, $S(x) \neq \emptyset$ for each $x \in Z$ and $Z = \bigcup \{int S^{-1}(w) : w \in W\}$; here $S^{-1}(w) = \{z \in Z : w \in S(z)\}$ and note $S(x) \neq \emptyset$ for each $x \in Z$ is redundant since if $z \in Z$ then there exists a $w \in W$ with $z \in int S^{-1}(w) \subseteq S^{-1}(w)$ so $w \in S(z)$ i.e. $S(z) \neq \emptyset$. For the selection theorem below, see [14].

Theorem 5. *Let X be a paracompact subset of a Hausdorff topological space, Y a convex subset of a Hausdorff topological vector space and $F \in HLPY(X, Y)$ (let $S : X \rightarrow 2^Y$ with $co(S(x)) \subseteq F(x)$ for $x \in X$ and $X = \bigcup \{int S^{-1}(w) : w \in Y\}$). Then there exists a continuous (single-valued) map $f : X \rightarrow Y$ with $f(x) \in co S(x) \subseteq F(x)$ for all $x \in X$.*

Remark 3. *These maps are related to the DKT maps in the literature and $F \in DKT(Z, W)$ [6] if W is convex and there exists a map $S : Z \rightarrow W$ with $co(S(x)) \subseteq F(x)$ for $x \in Z$, $S(x) \neq \emptyset$ for each $x \in Z$ and the fibre $S^{-1}(w)$ is open (in Z) for each $w \in W$. Note these maps were motivated from the Fan maps.*

Let X be a subset of a Hausdorff topological space and Y a subset of a Hausdorff topological vector space. We say $T : X \rightarrow 2^Y$ has the strong continuous inclusion property (SCIP) [13] at $x \in X$ if there exists an open set $U(x)$ in X containing x and a $F^x : U(x) \rightarrow 2^Y$ such that $F^x(w) \subseteq T(w)$ for all $w \in U(x)$ and $co F^x : U(x) \rightarrow 2^Y$ is compact valued and upper semicontinuous. We write $T \in KLU(X, Y)$ if T has the SCIP at every $x \in X$.

In this paper our map T will be a compact map so T has the SCIP is equivalent to T has the CIP [11].

Remark 4. *These maps contain as a special case the Scalzo maps [20] in the literature (see [13 pg12]).*

Next we recall a selection theorem [13].

Theorem 6. *Let X be a paracompact subset of a Hausdorff topological space, Y a subset of a Hausdorff topological vector space and $T \in KLU(X, Y)$. Then there exists an upper semicontinuous map $G : X \rightarrow CK(Y)$ with $G(w) \subseteq co T(w)$ for all $w \in X$.*

2 Fixed point theory

We begin by describing the two general classes of maps. Let X be a subset of a Hausdorff topological space, and Y a subset of a Hausdorff topological

vector space. We say $F \in HYPK(X, Y)$ if $F : X \rightarrow 2^Y$ and there exists an upper semicontinuous map $\Phi \in PK(X, Y)$ with compact values and with $\Phi(x) \subseteq co(F(x))$ for $x \in X$.

Let X be a subset of a Hausdorff topological space, and Y a subset of a Hausdorff topological space. We say $F \in HYPKC(X, Y)$ if $F : X \rightarrow 2^Y$ and there exists an upper semicontinuous map $\Phi \in PK(X, Y)$ with compact values and with $\Phi(x) \subseteq F(x)$ for $x \in X$.

Now we describe one of the spaces considered in this paper. Let X be a subset of a Hausdorff topological space, and $\Phi : X \rightarrow 2^X$ (to be described later).

Definition 1. *We say $X \in GES(compact)$ (w.r.t. Φ) if for any compact subset Z of a Hausdorff topological space and $A \subseteq Z$ closed in Z , and any homeomorphism $g : \overline{\Phi(X)} \rightarrow A$ there exists an upper semicontinuous map $\Psi \in PK(Z, \overline{\Phi(X)})$ with compact values and with $\Psi(x) \subseteq \Phi g^{-1}(x)$ for $x \in A$.*

Remark 5. *We note that we could replace $\overline{\Phi(X)}$ everywhere in this paper by a set K where $\overline{\Phi(X)} \subseteq K \subseteq X$. In particular, if X was compact in our theorems, one could replace $\overline{\Phi(X)}$ with X throughout.*

Example 1. *Let X be a subset of a Hausdorff topological space and $\Phi \in PK(X, X)$ be an upper semicontinuous map with compact values. Assume either (i). $\overline{\Phi(X)} \in ES(compact)$ or (ii). $X \in ES(compact)$. Then $X \in GES(compact)$ (w.r.t. Φ).*

To see this, let Z be a compact subset of a Hausdorff topological space and $A \subseteq Z$ closed in Z and let $g : \overline{\Phi(X)} \rightarrow A$ be a homeomorphism. Then $g^{-1} : A \rightarrow \overline{\Phi(X)}$ is continuous.

(i). Suppose $\overline{\Phi(X)} \in ES(compact)$.

Then g^{-1} extends to a continuous function $h : Z \rightarrow \overline{\Phi(X)}$ (note $h|_A = g^{-1}$) i.e. $h \in C(Z, \overline{\Phi(X)})$. Let $\Psi = \Phi h$. Note $\Phi \in PK(X, X)$ and (see Section 1) so $\Phi \in PK(\overline{\Phi(X)}, \overline{\Phi(X)})$ and as a result $\Psi \in PK(Z, \overline{\Phi(X)})$ is an upper semicontinuous map with compact values. Also, since $h|_A = g^{-1}$, for $x \in A$ we have $\Psi(x) = \Phi h(x) = \Phi g^{-1}(x)$.

(ii). Suppose $X \in ES(compact)$.

Note $g^{-1} : A \rightarrow X$ is continuous. Now, since $X \in ES(compact)$ then g^{-1} extends to a continuous function $h : Z \rightarrow X$ (note $h|_A = g^{-1}$), i.e. $h \in C(Z, X)$. Let $\Psi = \Phi h$. Note $\Phi \in PK(X, X)$ and (see Section 1) so $\Phi \in PK(X, \overline{\Phi(X)})$ and as a result $\Psi \in PK(Z, \overline{\Phi(X)})$ is an upper semicontinuous map with compact values. Also, since $h|_A = g^{-1}$, for $x \in A$ we have $\Psi(x) = \Phi h(x) = \Phi g^{-1}(x)$.

Theorem 7. *Let X be a subset of a Hausdorff topological vector space and $F \in HYPK(X, X)$ with $\text{co } F$ a compact map (so in particular there exists an upper semicontinuous compact map $\Phi \in PK(X, X)$ with compact values and with $\Phi(x) \subseteq \text{co}(F(x))$ for $x \in X$). Also assume $X \in GES(\text{compact})$ (w.r.t. Φ). Then Φ (so consequently $\text{co } F$) has a fixed point.*

Proof. Let Φ be as in the statement of Theorem 7. Recall [9] every compact space is homeomorphic to a closed subset of the Tychonoff cube T , so as a result $K = \overline{\Phi(X)}$ can be embedded as a closed subset K^* of T ; let $s : K \rightarrow K^*$ be a homeomorphism. Since $X \in GES(\text{compact})$ (w.r.t. Φ) then there exists an upper semicontinuous map $\Psi \in PK(T, K)$ with compact values and with $\Psi(x) \subseteq \Phi s^{-1}(x)$ for $x \in K^*$. Let $G = j s \Psi$, where $j : K^* \hookrightarrow T$ is an inclusion. Note $G \in PK(T, T)$ is an upper semicontinuous compact map with compact values, so a closed map [2]. Now, Theorem 2 guarantees an $x \in T$ with $x \in G(x)$. Thus, there exists a $y \in \Psi(x)$ with $x = j s(y)$. Note $s(y) \in K^*$ so $\Psi(x) \subseteq \Phi s^{-1}(x) = \Phi(y)$. As a result $y \in \Psi(x) \subseteq \Phi(y)$, i.e. $y \in \Phi(y) \subseteq \text{co } F(y)$.

The analogue of Theorem 7 for $HYPKC(X, X)$ maps is now immediate (note here we do not need to assume that X is a subset of a Hausdorff topological vector space but merely that X is a subset of a Hausdorff topological space).

Theorem 8. *Let X be a subset of a Hausdorff topological space and $F \in HYPKC(X, X)$ with F a compact map (so, in particular, there exists an upper semicontinuous compact map $\Phi \in PK(X, X)$ with compact values and with $\Phi(x) \subseteq F(x)$ for $x \in X$). Also assume $X \in GES(\text{compact})$ (w.r.t. Φ). Then Φ (consequently, F) has a fixed point.*

Proof. Let Φ be as in the statement of Theorem 8. Now exactly the same argument as in Theorem 7 yields $y \in \Phi(y)$ so $y \in \Phi(y) \subseteq F(y)$.

A special case of Theorem 8 is the following (take $\Phi = F$).

Theorem 9. *Let X be a subset of a Hausdorff topological space and let $F \in PK(X, X)$ be an upper semicontinuous compact map with compact values. Also assume $X \in GES(\text{compact})$ (w.r.t. F). Then F has a fixed point.*

Let X be a subset of a Hausdorff topological space and $\Phi : X \rightarrow 2^X$.

Definition 2. We say $X \in GAES(compact)$ (w.r.t. Φ) if for any compact subset Z of a Hausdorff topological space and $A \subseteq Z$ closed in Z , any homeomorphism $g : \overline{\Phi(X)} \rightarrow A$, and any $\alpha \in Cov_X(\overline{\Phi(X)})$, there exists an upper semicontinuous map $\Psi_\alpha \in PK(Z, \overline{\Phi(X)})$ with compact values such that if $x \in A$ with $x \in g\Psi_\alpha(x)$ then Φ has an α -fixed point.

Example 2. Let X be a subset of a Hausdorff topological space and $\Phi \in PK(X, X)$ be an upper semicontinuous map with compact values. Assume either (i). $X \in AES(compact)$ or (ii). $\overline{\Phi(X)} \in AES(compact)$. Then $X \in GAES(compact)$ (w.r.t. Φ).

To see this, let Z be a compact subset of a Hausdorff topological space and $A \subseteq Z$ closed in Z . Let $\alpha \in Cov_X(\overline{\Phi(X)})$ and let $g : \overline{\Phi(X)} \rightarrow A$ be a homeomorphism. Note $g^{-1} : A \rightarrow \overline{\Phi(X)}$ is continuous.

(i). Suppose $X \in AES(compact)$.

Now, $g^{-1} : A \rightarrow X$ is continuous. Let $\alpha' = \alpha \cup \{X \setminus \overline{\Phi(X)}\}$. Now, since $X \in AES(compact)$ there exists a continuous function $h_\alpha : Z \rightarrow X$ with $h_\alpha|_A$ α' -close to g^{-1} . Then $h_\alpha g : \overline{\Phi(X)} \rightarrow X$ and $i : \overline{\Phi(X)} \rightarrow X$ are α -close. To see this, let $x \in \overline{\Phi(X)} = K$. Now, let $y = g(x)$ and note $y \in A$. Then there exists a $V \in \alpha'$ with $g^{-1}(y) \in V$ and $h_\alpha(y) \in V$, i.e. $x \in V$ and $h_\alpha g(x) \in V$. Now, since $x \in K$ and $\alpha' = \alpha \cup \{X \setminus \overline{\Phi(X)}\}$ then $V \in \alpha$. Now let $\Psi_\alpha = \Phi h_\alpha$ and since $h_\alpha \in C(Z, X)$ and $\Phi \in PK(X, \overline{\Phi(X)})$ then $\Psi_\alpha \in PK(Z, \overline{\Phi(X)})$ is an upper semicontinuous map with compact values. Now suppose we had $x \in A$ and $x \in g\Psi_\alpha(x)$. Then $x \in g\Phi h_\alpha(x)$. Let $y = h_\alpha(x)$ so $y \in h_\alpha g\Phi(y)$, i.e. $y = h_\alpha g(w)$ for some $w \in \Phi(y)$. Now, since $y \in \overline{\Phi(X)}$ then there exists a $U \in \alpha$ with $h_\alpha g(w) \in U$ and $w \in U$, i.e. $y (= h_\alpha g(w)) \in U$ and $w \in U$. Thus $y \in U$ and $\Phi(y) \cap U \neq \emptyset$ (since $w \in U$ and $w \in \Phi(y)$). Thus, Φ has an α -fixed point.

(ii). Suppose $\overline{\Phi(X)} \in AES(compact)$.

Then there exists a continuous function $h_\alpha : Z \rightarrow \overline{\Phi(X)}$ with $h_\alpha|_A$ α -close to g^{-1} . Then, $h_\alpha g : \overline{\Phi(X)} \rightarrow \overline{\Phi(X)}$ and $i : \overline{\Phi(X)} \rightarrow \overline{\Phi(X)}$ are α -close. Now let $\Psi_\alpha = \Phi h_\alpha$ and note $\Psi_\alpha \in PK(Z, \overline{\Phi(X)})$ is an upper semicontinuous map with compact values. Now suppose we had $x \in A$ and $x \in g\Psi_\alpha(x)$. Let $y = h_\alpha(x)$ so $y = h_\alpha g(w)$ for some $w \in \Phi(y)$. Then there exists a $U \in \alpha$ with $h_\alpha g(w) \in U$ and $w \in U$, i.e. $y \in U$ and $w \in U$. Thus, $y \in U$ and $\Phi(y) \cap U \neq \emptyset$, i.e. Φ has an α -fixed point.

Remark 6. In Definition 2 if we assume (a). for each $x \in A$ there exists a $U \in \alpha$ with $\Psi_\alpha(x) \subseteq U$ and $\Phi g^{-1}(x) \cap U \neq \emptyset$, then we immediately have (b). if $x \in A$ with $x \in g\Psi_\alpha(x)$ then Φ has an α -fixed point.

To see this, let $x \in A$ with $x \in g\Psi_\alpha(x)$. Then there exists a $y \in \Psi_\alpha(x)$ with $x = g(y)$ and note $g(y) \in A$ so $x \in A$. Now, (a) implies that there exists

a $U \in \alpha$ with $\Psi_\alpha(x) \subseteq U$ and $\Phi g^{-1}(x) \cap U \neq \emptyset$. Thus, since $y \in \Psi_\alpha(x)$ we have $y \in U$ and $\Phi(y) \cap U \neq \emptyset$ (recall $g^{-1}(x) = y$), so Φ has an α -fixed point.

In fact, in the above proof we just need a condition to guarantee "for each $x \in A$ and each $y \in X$ with $y \in \Psi_\alpha(x)$ and $x = g(y)$ there exists a $U \in \alpha$ with $y \in U$ and $\Phi g^{-1}(x) \cap U \neq \emptyset$ ".

(ii). In (i) if $\Phi = \phi$ and $\Psi_\alpha = \psi_\alpha$ are single valued maps then (a) reads " ψ_α and ϕg^{-1} are α -close".

Theorem 10. Let X be a subset of a Hausdorff topological vector space and $F \in HYPK(X, X)$ with $\text{co } F$ a compact map (so in particular there exists an upper semicontinuous compact map $\Phi \in PK(X, X)$ with compact values and with $\Phi(x) \subseteq \text{co}(F(x))$ for $x \in X$). Also assume $X \in GAES(\text{compact})$ (w.r.t. Φ). Then Φ (so consequently $\text{co } F$) has a fixed point.

Proof. Let Φ be as in the statement of Theorem 10. Let $\alpha \in Cov_X(K)$ where $K = \overline{\Phi(X)}$. Now K can be embedded as a closed subset K^* of T and let $s : K \rightarrow K^*$ be a homeomorphism. Since $X \in GAES(\text{compact})$ (w.r.t. Φ), then there exists an upper semicontinuous map $\Psi_\alpha \in PK(T, K)$ with compact values such that if $x \in K^*$ with $x \in s\Psi_\alpha(x)$ then Φ has an α -fixed point. Let $G_\alpha = j s \Psi_\alpha$, where $j : K^* \hookrightarrow T$ is an inclusion. Note $G_\alpha \in PK(T, T)$ is an upper semicontinuous compact map with compact values, so a closed map. Now, Theorem 2 guarantees an $x \in T$ with $x \in G_\alpha(x)$, i.e. $x \in s\Psi_\alpha(x)$. From the above Φ has an α -fixed point (for each $\alpha \in Cov_X(K)$). Now, Theorem 3 and Remark 1 (note Hausdorff topological vector spaces are uniform spaces) guarantee that Φ (so consequently $\text{co } F$) has a fixed point.

The analogue of Theorem 10 for $HYPKC(X, X)$ maps is now immediate.

Theorem 11. Let X be a subset of a Hausdorff topological space and $F \in HYPKC(X, X)$ with F a compact map (so in particular there exists an upper semicontinuous compact map $\Phi \in PK(X, X)$ with compact values and with $\Phi(x) \subseteq F(x)$ for $x \in X$). Also, assume $X \in GAES(\text{compact})$ (w.r.t. Φ). Then Φ (consequently, F) has a fixed point.

A special case of Theorem 11 is the following (take $\Phi = F$).

Theorem 12. Let X be a subset of a Hausdorff topological space and let $F \in PK(X, X)$ be an upper semicontinuous compact map with compact

values. Also assume $X \in GAES(compact)$ (w.r.t. F). Then F has a fixed point.

Now we generalize the above results by considering admissible sets as in Section 1. Let W be a subset of a Hausdorff topological space and $\Phi : W \rightarrow 2^W$.

Definition 3. We say W is *GES admissible* (w.r.t. Φ) if for all compact subsets K of W , all $\alpha \in Cov_W(K)$, there exists a continuous function $\pi_\alpha : K \rightarrow W$ such that

- (i). π_α and $i : K \hookrightarrow W$ are α -close;
- (ii). $\pi_\alpha(K)$ is contained in a subset $C_\alpha \subseteq W$ and $C_\alpha \in GES(compact)$ (w.r.t. Φ).

Definition 4. We say W is *GAES admissible* (w.r.t. Φ) if for all compact subsets K of W , all $\alpha \in Cov_W(K)$, there exists a continuous function $\pi_\alpha : K \rightarrow W$ such that

- (i). π_α and $i : K \hookrightarrow W$ are α -close;
- (ii). $\pi_\alpha(K)$ is contained in a subset $C_\alpha \subseteq W$, $C_\alpha \in GAES(compact)$ (w.r.t. Φ) and C_α is a uniform space.

Remark 7. In Definition 4 if W is a subset of a Hausdorff topological vector space then W is a uniform space and so automatically C_α is a uniform space (recall a subset of a uniform space is a uniform space). Thus C_α is a uniform space is redundant in Definition 4 if W is a subset of a Hausdorff topological vector space or more generally if W is a uniform space.

Theorem 13. Let X be a subset of a Hausdorff topological vector space and $F \in HYPK(X, X)$ with $co F$ a compact map (so in particular there exists an upper semicontinuous compact map $\Phi \in PK(X, X)$ with compact values and with $\Phi(x) \subseteq co(F(x))$ for $x \in X$). Also assume X is GES admissible (w.r.t. Φ). Then Φ (so consequently $co F$) has a fixed point.

Proof. Let Φ be as in the statement of Theorem 13. Let $\alpha \in Cov_X(K)$ where $K = \overline{\Phi(X)}$. There exists a $\pi_\alpha \in C(K, C_\alpha)$ and $C_\alpha \in GES(compact)$ (w.r.t. Φ) as described in Definition 3 (with $W = X$). Note (see Section 1) that $\Phi \in PK(C_\alpha, K)$ so $\Phi_\alpha = \pi_\alpha \Phi \in PK(C_\alpha, C_\alpha)$ is an upper semicontinuous compact map with compact values. Now (see the proof of Theorem 7 or alternatively see Theorem 8 or Theorem 9) guarantees that there exists an $x \in C_\alpha$ with $x \in \Phi_\alpha(x) = \pi_\alpha \Phi(x)$, i.e. $x = \pi_\alpha w$ for some $w \in \Phi(x)$.

Since π_α and i are α -close then there exists a $U \in \alpha$ with $\pi_\alpha(w) \in U$ and $i(w) \in U$, i.e. $w \in U$ and $x \in U$. As a result $x \in U$ and $\Phi(x) \cap U \neq \emptyset$ (since $w \in \Phi(x)$). Thus, Φ has an α -fixed point (for each $\alpha \in \text{Cov}_X(K)$) so Theorem 3 and Remark 1 guarantee that Φ (so consequently $\text{co } F$) has a fixed point.

The same analysis as above guarantees the following results.

Theorem 14. *Let X be a subset of a Hausdorff topological space, let X be a uniform space and let $F \in \text{HYPKC}(X, X)$ with F a compact map (so in particular there exists an upper semicontinuous compact map $\Phi \in \text{PK}(X, X)$ with compact values and with $\Phi(x) \subseteq F(x)$ for $x \in X$). Also assume X is GES admissible (w.r.t. Φ). Then Φ (so consequently F) has a fixed point.*

Theorem 15. *Let X be a subset of a Hausdorff topological space, let X be a uniform space and let $F \in \text{PK}(X, X)$ be an upper semicontinuous compact map with compact values. Also, assume X is GES admissible (w.r.t. F). Then F has a fixed point.*

Theorem 16. *Let X be a subset of a Hausdorff topological vector space and $F \in \text{HYPK}(X, X)$ with $\text{co } F$ a compact map (so in particular there exists an upper semicontinuous compact map $\Phi \in \text{PK}(X, X)$ with compact values and with $\Phi(x) \subseteq \text{co}(F(x))$ for $x \in X$). Also assume X is GAES admissible (w.r.t. Φ). Then Φ (so consequently $\text{co } F$) has a fixed point.*

Proof. Let Φ be as in the statement of Theorem 16. Let $\alpha \in \text{Cov}_X(K)$ where $K = \overline{\Phi(X)}$. There exists a $\pi_\alpha \in C(K, C_\alpha)$ and $C_\alpha \in \text{GAES}(\text{compact})$ (w.r.t. Φ) as described in Definition 4. Let $\Phi_\alpha = \pi_\alpha \Phi$ and note $\Phi_\alpha \in \text{PK}(C_\alpha, C_\alpha)$ is an upper semicontinuous compact map with compact values. Now (see the proof of Theorem 10 or alternatively see Theorem 11 or Theorem 12) guarantees that there exists an $x \in C_\alpha$ with $x \in \Phi_\alpha(x) = \pi_\alpha \Phi(x)$. The same reasoning as in Theorem 13 guarantees that Φ has an α -fixed point (for each $\alpha \in \text{Cov}_X(K)$). Now, apply Theorem 3 and Remark 1.

The same analysis as above guarantees the following results.

Theorem 17. *Let X be a subset of a Hausdorff topological space, let X be a uniform space and let $F \in \text{HYPKC}(X, X)$ with F a compact map (so in particular there exists an upper semicontinuous compact map $\Phi \in \text{PK}(X, X)$ with compact values and with $\Phi(x) \subseteq F(x)$ for $x \in X$). Also assume X is GAES admissible (w.r.t. Φ). Then Φ (so consequently F) has a fixed point.*

Theorem 18. *Let X be a subset of a Hausdorff topological space, let X be a uniform space and let $F \in \text{PK}(X, X)$ be an upper semicontinuous compact*

map with compact values. Also, assume X is GAES admissible (w.r.t. F). Then F has a fixed point.

References

- [1] R.P. Agarwal and D. O'Regan, Fixed point theory for maps with lower semicontinuous selections and equilibrium theory for abstract economies, *J. Nonlinear Convex Anal.* 2 (2001), 31-46.
- [2] C.D. Aliprantis and K.C. Border, *Infinite Dimensional Analysis*, Springer Verlag, Berlin, 1994.
- [3] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued maps, *Bull. Austral. Math. Soc.* 41 (1990), 421-434.
- [4] H. Ben-El-Mechaiekh, Spaces and maps approximation and fixed points, *J. Comput. Appl. Math.* 113 (2000), 283-308.
- [5] H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed point for non-convex set-valued maps, *J. Math. Anal. Appl.* 170 (1992), 477-500.
- [6] X.P. Ding, W.K. Kim and K.K. Tan, A selection theorem and its applications, *Bull. Austral. Math. Soc.* 46 (1992), 205-212.
- [7] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.
- [8] G. Fournier and L. Gorniewicz, The Lefschetz fixed point theorem for multi-valued maps of non metrizable spaces, *Fundamenta Math.* 92 (1976), 213-222.
- [9] G. Fournier and A. Granas, The Lefschetz fixed point theorem for some classes of non metrizable spaces, *J. Math. Pures Appl.* 52 (1973), 271-283.
- [10] L. Gorniewicz, *Topological Fixed Point Theory of Multivalued Mappings*, Kluwer Acad. Publishers, Dordrecht, 1991.
- [11] W. He and N.C. Yannelis, Equilibria with discontinuous preferences: new fixed point theorems, *J. Math. Anal. Appl.* 450 (2017), 1421-1433.
- [12] J.L. Kelley, *General Topology*, D.Van Nostrand, New York, 1955.

- [13] M.A. Khan, R.P. McLean and M. Uyanik, On equilibria in constrained generalized games with the weak continuous inclusion property, *J. Math. Anal. Appl.* 537 (2024), 128258.
- [14] L.J. Lin, S. Park and Z.T. Yu, Remarks on fixed points, maximal elements and equilibria of generalized games, *J. Math. Anal. Appl.* 233 (1999), 581-596.
- [15] E. Michael, Continuous selections I, *Ann. Math.* 63 (1956), 361-382.
- [16] D. O'Regan, Fixed point theory for extension type spaces and essential maps on topological spaces, *Fixed Point Theory Appl.* 1 (2004), 13-20.
- [17] D. O'Regan, Fixed point theory for compact absorbing contractions in extension type spaces, *CUBO - Math. J.* 12 (2010), 199-215.
- [18] D. O'Regan, Fixed point theory for extension type maps in topological spaces, *Appl. Anal.* 88 (2009), 301-308.
- [19] S. Park, Coincidence theorems for the better admissible multimaps and their applications, *Nonlinear Anal.* 30 (1997), 4183-4191.
- [20] V. Scalzo, Existence of doubly strong equilibria in generalized games and quasi-Ky Fan minimax inequalities, *J. Math. Anal. Appl.* 514 (2022), 126258.
- [21] X. Wu, A new fixed point theorem and its applications, *Proc. Amer. Math. Soc.* 125 (1997), 1779-1783.