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In this paper, we present new fixed point results for multivalued
maps on extension spaces with respect to a map.
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1 Introduction

In this paper we consider two general classes of maps (motivated from the
KLU [13], HLPY [14] and Scalzo [20] maps) which have a selection property
and we present new fixed point results. In particular we establish fixed point
theorems in a variety of settings for extension type spaces with respect to a
map. Our results improve and complement results in the literature; see [5,
9, 16–18] and the references therein. Note our theorems include as a special
case results for ES(compact) and AES(compact) spaces.
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First we describe the maps considered in this paper. Let H be the C̆ech
homology functor with compact carriers and coefficients in the field of ratio-
nal numbers K from the category of Hausdorff topological spaces and con-
tinuous maps to the category of graded vector spaces and linear maps of de-
gree zero. Thus H(X) = {Hq(X)} (here X is a Hausdorff topological space)
is a graded vector space, Hq(X) being the q–dimensional C̆ech homology
group with compact carriers of X. For a continuous map f : X → X,
H(f) is the induced linear map f? = {f? q} where f? q : Hq(X) → Hq(X).
A space X is acyclic if X is nonempty, Hq(X) = 0 for every q ≥ 1, and
H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single
valued map p : Γ→ X is called a Vietoris map (written p : Γ⇒ X) if the
following two conditions are satisfied:
(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a perfect map, that is, p is closed and for every x ∈ X the set
p−1(x) is nonempty and compact.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume
φ(x) is a nonempty subset of Y ). A pair (p, q) of single valued continuous

maps of the form X
p← Γ

q→ Y is called a selected pair of φ (written
(p, q) ⊂ φ) if the following two conditions hold:
(i). p is a Vietoris map
and
(ii). q (p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [10]. An upper semi-
continuous map φ : X → 2Y (nonempty subsets of Y ) with compact values
is said to be admissible (and we write φ ∈ Ad(X,Y )) provided there exists
a selected pair (p, q) of φ. An example of an admissible map is a Kakutani
map. An upper semicontinuous map φ : X → CK(Y ) is said to be Kaku-
tani (and we write φ ∈ Kak(X,Y )); here Y is a Hausdorff topological vector
space and CK(Y ) denotes the family of nonempty, convex, compact subsets
of Y . Another example is an acyclic map which we now describe. Let X and
Z be subsets of Hausdorff topological spaces and let F : X → K(Z) i.e. F
has nonempty compact values. Recall a nonempty topological space is said
to be a acyclic if all its reduced C̆ech homology groups over the rationals
are trivial. Now we consider maps F : X → Ac(Z) i.e. F : X → K(Z)
with acyclic values (i.e. F has nonempty acyclic compact values). We say
F ∈ AC(X,Z) (i.e. F is an acyclic map) if F : X → Ac(Z) is upper
semicontinuous.
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Next we consider a general class of maps, namely the PK maps of Park
(which include Kak and Ad maps). Let X and Y be Hausdorff topological
spaces. Given a class X of maps, X (X,Y ) denotes the set of maps F :
X → 2Y (nonempty subsets of Y ) belonging to X , and Xc the set of finite
compositions of maps in X . We let

F(X ) = {Z : FixF 6= ∅ for all F ∈ X (Z,Z)}

where FixF denotes the set of fixed points of F .
The class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;

(ii). each F ∈ Uc is upper semicontinuous and compact valued; and

(iii). Bn ∈ F(Uc) for all n ∈ {1, 2, ....}; here Bn = {x ∈ Rn : ‖x‖ ≤ 1}.

We say F ∈ PK(X,Y ) if for any compact subset K of X there is a
G ∈ Uc(K,Y ) with G(x) ⊆ F (x) for each x ∈ K.

Now we present some properties of PK maps which we will use in Section
2.

(i). PK is closed under compositions.
Let X, Y, Z be Hausdorff topological spaces. Let F1 ∈ PK(X,Y ) and

F2 ∈ PK(Y, Z). Suppose K is a compact subset of X. Then there exists
a G1 ∈ Uc(K,Y ) with G1(x) ⊆ F1(x) for each x ∈ K. Note G1(K) is
compact so there exists a G2 ∈ Uc(G1(K), Z) with G2(y) ⊆ F2(y) for each
y ∈ G1(K). As a result G2G1(x) ⊆ F2G1(x) ⊆ F2 F1(x) for x ∈ K and
note G2Gi ∈ Uc(K,Z).

(ii). Let F ∈ PK(X,Y ) and Z ⊆ X. Then F ∈ PK(Z, Y ).
This follows if we consider F ◦ i where i : Z → X is the inclusion.

Alternatively, let K be compact in Z. Then K is compact in X so there
exists a G ∈ Uc(K,Y ) with G(x) ⊆ F (x) for each x ∈ K.

(iii). Let F ∈ PK(X,Y ) and F (X) ⊆W ⊆ Y . Then F ∈ PK(X,W ).
Suppose K is a compact subset of X. Then there exists a G ∈ Uc(K,Y )

with G(x) ⊆ F (x) for each x ∈ K. Now since F (K) ⊆W then G(K) ⊆W .
Let Ψ : K → 2W be obtained by restricting the range of G and let Ω be open
in W . Then Ω = W ∩ U for some open set U of Y . Now since G(K) ⊆ W
then {x ∈ K : Ψ(x) ⊆ Ω} = {x ∈ K : G(x) ⊆ U} which is open in K. Thus
Ψ : K → 2W is upper semicontinuous so Ψ (= G) ∈ Uc(K,W ).

Next we recall the following fixed point result for PK maps (see [19]).
Recall a nonempty subset W of a Hausdorff topological vector space E is
said to be admissible if for any nonempty compact subset K of W and every
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neighborhood V of 0 in E there exists a continuous map h : K → W with
x − h(x) ∈ V for all x ∈ K and h(K) is contained in a finite dimensional
subspace of E (for example every nonempty convex subset of a locally convex
space is admissible).

Theorem 1. Let X be an admissible convex set in a Hausdorff topological
vector space and F ∈ PK(X,X) be a closed compact map. Then F has a
fixed point in X.

Recall the Tychonoff cube T is the Cartesian product of copies of the
unit interval and T lies in an appropriate locally convex topological vector
space E (i.e. the linear span of the Tychonoff cube) [8, 9] (recall the product
of real lines that contain T equipped with the product topology is a locally
convex topological vector space). Note since any convex subset of a locally
convex topological vector space is admissible then T is a convex admissible
subset of E. Now Theorem 1 guarantees the following theorem (see also [16]
for another proof).

Theorem 2. Let F ∈ PK(T, T )) be a closed map. Then F has a fixed point
in T .

For a subset K of a topological space X, we denote by CovX (K) the
directed set of all coverings of K by open sets of X (usually we write
Cov (K) = CovX (K)). Given a map F : X → 2X and α ∈ Cov (X), a
point x ∈ X is said to be an α–fixed point of F if there exists a member
U ∈ α such that x ∈ U and F (x) ∩ U 6= ∅.

Given two maps F, G : X → 2Y and α ∈ Cov (Y ), F and G are said
to be α–close if for any x ∈ X there exists Ux ∈ α, y ∈ F (x) ∩ Ux and
w ∈ G(x) ∩ Ux. Of course, given two single valued maps f, g : X → Y and
α ∈ Cov (Y ), then f and g are α–close if for any x ∈ X there exists Ux ∈ α
containing both f(x) and g(x). We now recall the following result from [3,
5].

Theorem 3. Let X be a regular topological space, F : X → 2X an upper
semicontinuous map with closed values and suppose there exists a cofinal
covering θ ⊆ CovX (F (X)) such that F has an α–fixed point for every α ∈ θ.
Then F has a fixed point.

Remark 1. From Theorem 3 in proving the existence of fixed points in
uniform spaces for upper semicontinuous compact maps with closed values
it suffices [4, page 298] to prove the existence of approximate fixed points
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(since open covers of a compact set A admit refinements of the form {U [x] :
x ∈ A} where U is a member of the uniformity [12, page 199], so such
refinements form a cofinal family of open covers). Note also that uniform
spaces are regular (in fact completely regular [7]). Also note in Theorem 3 if
F is compact valued, then the assumption that X is regular can be removed.
We note here that when we apply Theorem 3 we will assume the space is
uniform. Of course one could consider other appropriate spaces (like regular
(Hausdorff) spaces) as well.

Let Q be a class of topological spaces. A space Y is an extension space
for Q (written Y ∈ ES(Q)) if for any pair (X,K) in Q with K ⊆ X closed,
any continuous function f0 : K → Y extends to a continuous function
f : X → Y . A space Y is an approximate extension space for Q (written
Y ∈ AES(Q)) if for any α ∈ Cov (Y ) and any pair (X,K) in Q with K ⊆ X
closed, and any continuous function f0 : K → Y there exists a continuous
function f : X → Y such that f |K is α–close to f0.

Next we describe the maps due to Wu [21]. Let X and Y be subsets
lying in Hausdorff topological vector spaces and we say Φ ∈ W (X,Y ) if
Φ : X → 2Y and there exists a lower semicontinuous map θ : X → 2Y with
co (θ(x)) ⊆ Φ(x) for x ∈ X. Next, we recall a selection theorem [1] (see the
proof in Theorem 1.1 there) for Wu maps.

Theorem 4. Let X be a paracompact subset of a Hausdorff topological vector
space and Y a metrizable complete subset of a Hausdorff locally convex linear
topological space. Suppose Φ ∈ W (X,Y ) and let θ : X → 2Y be a lower
semicontinuous map with co (θ(x)) ⊆ Φ(x) for x ∈ X. Then there exists a
upper semicontinuous map Ψ : X → CK(Y ) (collection of nonempty convex
compact subsets of Y ) with Ψ(x) ⊆ co (θ(x)) ⊆ Φ(x) for x ∈ X.

Remark 2. Let X be paracompact and Y a metrizable subset of a complete
Hausdorff locally convex linear topological space E and Φ ∈ W (X,Y ) with
θ : X → 2Y a lower semicontinuous map and co (θ(x)) ⊆ Φ(x) for x ∈ X.
Note [15] that co θ : X → 2Y (since co (θ(x)) ⊆ Φ(x) ⊆ Y for x ∈ X)
is lower semicontinuous, so from Michael’s selection theorem there exists a
continuous (single valued) map f : X → Y with f(x) ∈ co (θ(x)) for x ∈ X,
so consequently f(x) ∈ co (θ(x)) ⊆ Φ(x) for x ∈ X.

Let Z be a subset of a Hausdorff topological space Y1 and W a subset
of a Hausdorff topological vector space Y2 and G a multifunction. We say
F ∈ HLPY (Z,W ) [14] if W is convex and there exists a map S : Z → W
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(i.e., S : Z → P (W ) (collection of subsets of W )) with co (S(x)) ⊆ F (x)
for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and Z =

⋃
{ int S−1(w) : w ∈ W};

here S−1(w) = {z ∈ Z : w ∈ S(z)} and note S(x) 6= ∅ for each x ∈ Z is
redundant since if z ∈ Z then there exists a w ∈ W with z ∈ int S−1(w) ⊆
S−1(w) so w ∈ S(z) i.e. S(z) 6= ∅. For the selection theorem below, see [14].

Theorem 5. Let X be a paracompact subset of a Hausdorff topological
space, Y a convex subset of a Hausdorff topological vector space and F ∈
HLPY (X,Y ) (let S : X → 2Y with co (S(x)) ⊆ F (x) for x ∈ X and
X =

⋃
{ int S−1(w) : w ∈ Y }). Then there exists a continuous (single–

valued) map f : X → Y with f(x) ∈ co S(x) ⊆ F (x) for all x ∈ X.

Remark 3. These maps are related to the DKT maps in the literature and
F ∈ DKT (Z,W ) [6] if W is convex and there exists a map S : Z →W with
co (S(x)) ⊆ F (x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and the fibre S−1(w)
is open (in Z) for each w ∈ W . Note these maps were motivated from the
Fan maps.

Let X be a subset of a Hausdorff topological space and Y a subset of
a Hausdorff topological vector space. We say T : X → 2Y has the strong
continuous inclusion property (SCIP) [13] at x ∈ X if there exists an open
set U(x) in X containing x and a F x : U(x)→ 2Y such that F x(w) ⊆ T (w)
for all w ∈ U(x) and co F x : U(x) → 2Y is compact valued and upper
semicontinuous. We write T ∈ KLU(X,Y ) if T has the SCIP at every
x ∈ X.

In this paper our map T will be a compact map so T has the SCIP is
equivalent to T has the CIP [11].

Remark 4. These maps contain as a special case the Scalzo maps [20] in
the literature (see [13 pg12]).

Next we recall a selection theorem [13].

Theorem 6. Let X be a paracompact subset of a Hausdorff topological space,
Y a subset of a Hausdorff topological vector space and T ∈ KLU(X,Y ).
Then there exists an upper semicontinuous map G : X → CK(Y ) with
G(w) ⊆ co T (w) for all w ∈ X.

2 Fixed point theory

We begin by describing the two general classes of maps. Let X be a subset
of a Hausdorff topological space, and Y a subset of a Hausdorff topological
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vector space. We say F ∈ HY PK(X,Y ) if F : X → 2Y and there exists an
upper semicontinuous map Φ ∈ PK(X,Y ) with compact values and with
Φ(x) ⊆ co (F (x)) for x ∈ X.

Let X be a subset of a Hausdorff topological space, and Y a subset of
a Hausdorff topological space. We say F ∈ HY PKC(X,Y ) if F : X → 2Y

and there exists an upper semicontinuous map Φ ∈ PK(X,Y ) with compact
values and with Φ(x) ⊆ F (x) for x ∈ X.

Now we describe one of the spaces considered in this paper. Let X be a
subset of a Hausdorff topological space, and Φ : X → 2X (to be described
later).

Definition 1. We say X ∈ GES(compact) (w.r.t. Φ) if for any compact
subset Z of a Hausdorff topological space and A ⊆ Z closed in Z, and any
homeomorphism g : Φ(X) → A there exists an upper semicontinuous map
Ψ ∈ PK(Z,Φ(X)) with compact values and with Ψ(x) ⊆ Φ g−1(x) for x ∈ A.

Remark 5. We note that we could replace Φ(X) everywhere in this paper
by a set K where Φ(X) ⊆ K ⊆ X. In particular, if X was compact in our
theorems, one could replace Φ(X) with X throughout.

Example 1. Let X be a subset of a Hausdorff topological space and Φ ∈
PK(X,X) be an upper semicontinuous map with compact values. Assume
either (i). Φ(X) ∈ ES(compact) or (ii). X ∈ ES(compact). Then X ∈
GES(compact) (w.r.t. Φ).

To see this, let Z be a compact subset of a Hausdorff topological space
and A ⊆ Z closed in Z and let g : Φ(X) → A be a homeomorphism. Then
g−1 : A→ Φ(X) is continuous.

(i). Suppose Φ(X) ∈ ES(compact).
Then g−1 extends to a continuous function h : Z → Φ(X) (note h|A =

g−1) i.e. h ∈ C(Z,Φ(X)). Let Ψ = Φh. Note Φ ∈ PK(X,X) and (see
Section 1) so Φ ∈ PK(Φ(X),Φ(X)) and as a result Ψ ∈ PK(Z,Φ(X)) is
an upper semicontinuous map with compact values. Also, since h|A = g−1,
for x ∈ A we have Ψ(x) = Φh(x) = Φ g−1(x).

(ii). Suppose X ∈ ES(compact).
Note g−1 : A → X is continuous. Now, since X ∈ ES(compact) then

g−1 extends to a continuous function h : Z → X (note h|A = g−1), i.e.
h ∈ C(Z,X). Let Ψ = Φh. Note Φ ∈ PK(X,X) and (see Section 1) so Φ ∈
PK(X,Φ(X)) and as a result Ψ ∈ PK(Z,Φ(X)) is an upper semicontinuous
map with compact values. Also, since h|A = g−1, for x ∈ A we have Ψ(x) =
Φh(x) = Φ g−1(x).
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Theorem 7. Let X be a subset of a Hausdorff topological vector space and
F ∈ HY PK(X,X) with co F a compact map (so in particular there exists
an upper semicontinuous compact map Φ ∈ PK(X,X) with compact values
and with Φ(x) ⊆ co (F (x)) for x ∈ X). Also assume X ∈ GES(compact)
(w.r.t. Φ). Then Φ (so consequently co F ) has a fixed point.

Proof. Let Φ be as in the statement of Theorem 7. Recall [9] every compact
space is homeomorphic to a closed subset of the Tychonoff cube T , so as
a result K = Φ(X) can be embedded as a closed subset K? of T ; let
s : K → K? be a homeomorphism. Since X ∈ GES(compact) (w.r.t.
Φ) then there exists an upper semicontinuous map Ψ ∈ PK(T,K) with
compact values and with Ψ(x) ⊆ Φ s−1(x) for x ∈ K?. Let G = j sΨ, where
j : K? ↪→ T is an inclusion. Note G ∈ PK(T, T ) is an upper semicontinuous
compact map with compact values, so a closed map [2]. Now, Theorem 2
guarantees an x ∈ T with x ∈ G(x). Thus, there exists a y ∈ Ψ(x) with
x = j s(y). Note s(y) ∈ K? so Ψ(x) ⊆ Φ s−1(x) = Φ(y). As a result
y ∈ Ψ(x) ⊆ Φ(y), i.e. y ∈ Φ(y) ⊆ co F (y).

The analogue of Theorem 7 for HY PKC(X,X) maps is now immediate
(note here we do not need to assume that X is a subset of a Hausdorff topo-
logical vector space but merely that X is a subset of a Hausdorff topological
space).

Theorem 8. Let X be a subset of a Hausdorff topological space and F ∈
HY PKC(X,X) with F a compact map (so, in particular, there exists an
upper semicontinuous compact map Φ ∈ PK(X,X) with compact values and
with Φ(x) ⊆ F (x) for x ∈ X). Also assume X ∈ GES(compact) (w.r.t. Φ).
Then Φ (consequently, F ) has a fixed point.

Proof. Let Φ be as in the statement of Theorem 8. Now exactly the same
argument as in Theorem 7 yields y ∈ Φ(y) so y ∈ Φ(y) ⊆ F (y).

A special case of Theorem 8 is the following (take Φ = F ).

Theorem 9. Let X be a subset of a Hausdorff topological space and let
F ∈ PK(X,X) be an upper semicontinuous compact map with compact
values. Also assume X ∈ GES(compact) (w.r.t. F ). Then F has a fixed
point.

Let X be a subset of a Hausdorff topological space and Φ : X → 2X .
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Definition 2. We say X ∈ GAES(compact) (w.r.t. Φ) if for any compact
subset Z of a Hausdorff topological space and A ⊆ Z closed in Z, any home-
omorphism g : Φ(X)→ A, and any α ∈ CovX (Φ(X)), there exists an upper
semicontinuous map Ψα ∈ PK(Z,Φ(X)) with compact values such that if
x ∈ A with x ∈ gΨα(x) then Φ has an α–fixed point.

Example 2. Let X be a subset of a Hausdorff topological space and Φ ∈
PK(X,X) be an upper semicontinuous map with compact values. Assume
either (i). X ∈ AES(compact) or (ii). Φ(X) ∈ AES(compact). Then
X ∈ GAES(compact) (w.r.t. Φ).

To see this, let Z be a compact subset of a Hausdorff topological space
and A ⊆ Z closed in Z. Let α ∈ CovX (Φ(X)) and let g : Φ(X) → A be a
homeomorphism. Note g−1 : A→ Φ(X) is continuous.

(i). Suppose X ∈ AES(compact).
Now, g−1 : A→ X is continuous. Let α′ = α ∪ {X\Φ(X)}. Now, since

X ∈ AES(compact) there exists a continuous function hα : Z → X with
hα|A α′–close to g−1. Then hα g : Φ(X) → X and i : Φ(X) → X are α–
close. To see this, let x ∈ Φ(X) = K. Now, let y = g(x) and note y ∈ A.
Then there exists a V ∈ α′ with g−1(y) ∈ V and hα(y) ∈ V , i.e. x ∈ V
and hα g(x) ∈ V . Now, since x ∈ K and α′ = α ∪ {X\Φ(X)} then V ∈ α.
Now let Ψα = Φhα and since hα ∈ C(Z,X) and Φ ∈ PK(X,Φ(X)) then
Ψα ∈ PK(Z,Φ(X)) is an upper semicontinuous map with compact values.
Now suppose we had x ∈ A and x ∈ gΨα(x). Then x ∈ gΦhα(x). Let
y = hα(x) so y ∈ hαgΦ(y), i.e. y = hαg(w) for some w ∈ Φ(y). Now,
since y ∈ Φ(X) then there exists a U ∈ α with hαg(w) ∈ U and w ∈ U , i.e.
y(= hαg(w)) ∈ U and w ∈ U . Thus y ∈ U and Φ(y) ∩ U 6= ∅ (since w ∈ U
and w ∈ Φ(y)). Thus, Φ has an α–fixed point.

(ii). Suppose Φ(X) ∈ AES(compact).
Then there exists a continuous function hα : Z → Φ(X) with hα|A α–

close to g−1. Then, hα g : Φ(X)→ Φ(X) and i : Φ(X)→ Φ(X) are α–close.
Now let Ψα = Φhα and note Ψα ∈ PK(Z,Φ(X)) is an upper semicontinuous
map with compact values. Now suppose we had x ∈ A and x ∈ gΨα(x). Let
y = hα(x) so y = hαg(w) for some w ∈ Φ(y). Then there exists a U ∈ α
with hαg(w) ∈ U and w ∈ U , i.e. y ∈ U and w ∈ U . Thus, y ∈ U and
Φ(y) ∩ U 6= ∅, i.e. Φ has an α-fixed point.

Remark 6. In Definition 2 if we assume (a). for each x ∈ A there exists
a U ∈ α with Ψα(x) ⊆ U and Φ g−1(x) ∩ U 6= ∅, then we immediately have
(b). if x ∈ A with x ∈ gΨα(x) then Φ has an α–fixed point.

To see this,let x ∈ A with x ∈ gΨα(x). Then there exists a y ∈ Ψα(x)
with x = g(y) and note g(y) ∈ A so x ∈ A. Now, (a) implies that there exists
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a U ∈ α with Ψα(x) ⊆ U and Φ g−1(x) ∩ U 6= ∅. Thus, since y ∈ Ψα(x)
we have y ∈ U and Φ(y) ∩ U 6= ∅ (recall g−1(x) = y), so Φ has an α–fixed
point.

In fact, in the above proof we just need a condition to guarantee ”for
each x ∈ A and each y ∈ X with y ∈ Ψα(x) and x = g(y) there exists a
U ∈ α with y ∈ U and Φ g−1(x) ∩ U 6= ∅”.

(ii). In (i) if Φ = φ and Ψα = ψα are single valued maps then (a) reads
”ψα and φ g−1 are α–close”.

Theorem 10. Let X be a subset of a Hausdorff topological vector space and
F ∈ HY PK(X,X) with co F a compact map (so in particular there exists
an upper semicontinuous compact map Φ ∈ PK(X,X) with compact values
and with Φ(x) ⊆ co (F (x)) for x ∈ X). Also assume X ∈ GAES(compact)
(w.r.t. Φ). Then Φ (so consequently co F ) has a fixed point.

Proof. Let Φ be as in the statement of Theorem 10. Let α ∈ CovX (K)
where K = Φ(X). Now K can be embedded as a closed subset K? of T
and let s : K → K? be a homeomorphism. Since X ∈ GAES(compact)
(w.r.t. Φ), then there exists an upper semicontinuous map Ψα ∈ PK(T,K)
with compact values such that if x ∈ K? with x ∈ sΨα(x) then Φ has an
α–fixed point. Let Gα = j sΨα, where j : K? ↪→ T is an inclusion. Note
Gα ∈ PK(T, T ) is an upper semicontinuous compact map with compact
values, so a closed map. Now, Theorem 2 guarantees an x ∈ T with x ∈
Gα(x), i.e. x ∈ sΨα(x). From the above Φ has an α– fixed point (for each
α ∈ CovX (K)). Now, Theorem 3 and Remark 1 (note Hausdorff topological
vector spaces are uniform spaces) guarantee that Φ (so consequently co F )
has a fixed point.

The analogue of Theorem 10 for HY PKC(X,X) maps is now immedi-
ate.

Theorem 11. Let X be a subset of a Hausdorff topological space and F ∈
HY PKC(X,X) with F a compact map (so in particular there exists an
upper semicontinuous compact map Φ ∈ PK(X,X) with compact values
and with Φ(x) ⊆ F (x) for x ∈ X). Also, assume X ∈ GAES(compact)
(w.r.t. Φ). Then Φ (consequently, F ) has a fixed point.

A special case of Theorem 11 is the following (take Φ = F ).

Theorem 12. Let X be a subset of a Hausdorff topological space and let
F ∈ PK(X,X) be an upper semicontinuous compact map with compact
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values. Also assume X ∈ GAES(compact) (w.r.t. F ). Then F has a fixed
point.

Now we generalize the above results by considering admissible sets as in
Section 1. Let W be a subset of a Hausdorff topological space and Φ : W →
2W .

Definition 3. We say W is GES admissible (w.r.t. Φ) if for all compact
subsets K of W , all α ∈ CovW (K), there exists a continuous function
πα : K →W such that

(i). πα and i : K ↪→W are α–close;

(ii). πα(K) is contained in a subset Cα ⊆ W and Cα ∈ GES(compact)
(w.r.t. Φ).

Definition 4. We say W is GAES admissible (w.r.t. Φ) if for all compact
subsets K of W , all α ∈ CovW (K), there exists a continuous function
πα : K →W such that

(i). πα and i : K ↪→W are α–close;

(ii). πα(K) is contained in a subset Cα ⊆ W , Cα ∈ GAES(compact)
(w.r.t. Φ) and Cα is a uniform space.

Remark 7. In Definition 4 if W is a subset of a Hausdorff topological vector
space then W is a uniform space and so automatically Cα is a uniform space
(recall a subset of a uniform space is a uniform space). Thus Cα is a uniform
space is redundent in Definition 4 if W is a subset of a Hausdorff topological
vector space or more generally if W is a uniform space.

Theorem 13. Let X be a subset of a Hausdorff topological vector space and
F ∈ HY PK(X,X) with co F a compact map (so in particular there exists
an upper semicontinuous compact map Φ ∈ PK(X,X) with compact values
and with Φ(x) ⊆ co (F (x)) for x ∈ X). Also assume X is GES admissible
(w.r.t. Φ). Then Φ (so consequently co F ) has a fixed point.

Proof. Let Φ be as in the statement of Theorem 13. Let α ∈ CovX (K) where
K = Φ(X). There exists a πα ∈ C(K,Cα) and Cα ∈ GES(compact) (w.r.t.
Φ) as described in Definition 3 (with W = X). Note (see Section 1) that
Φ ∈ PK(Cα,K) so Φα = πα Φ ∈ PK(Cα, Cα) is an upper semicontinuous
compact map with compact values. Now (see the proof of Theorem 7 or
alternatively see Theorem 8 or Theorem 9) guarantees that there exists an
x ∈ Cα with x ∈ Φα(x) = πα Φ (x), i.e. x = παw for some w ∈ Φ(x).
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Since πα and i are α–close then there exists a U ∈ α with πα(w) ∈ U and
i(w) ∈ U , i.e. w ∈ U and x ∈ U . As a result x ∈ U and Φ(x) ∩ U 6= ∅
(since w ∈ Φ(x)). Thus, Φ has an α– fixed point (for each α ∈ CovX (K))
so Theorem 3 and Remark 1 guarantee that Φ (so consequently co F ) has a
fixed point.

The same analysis as above guarantees the following results.

Theorem 14. Let X be a subset of a Hausdorff topological space, let X be
a uniform space and let F ∈ HY PKC(X,X) with F a compact map (so in
particular there exists an upper semicontinuous compact map Φ ∈ PK(X,X)
with compact values and with Φ(x) ⊆ F (x)) for x ∈ X). Also assume X is
GES admissible (w.r.t. Φ). Then Φ (so consequently F ) has a fixed point.

Theorem 15. Let X be a subset of a Hausdorff topological space, let X be a
uniform space and let F ∈ PK(X,X) be an upper semicontinuous compact
map with compact values. Also, assume X is GES admissible (w.r.t. F ).
Then F has a fixed point.

Theorem 16. Let X be a subset of a Hausdorff topological vector space and
F ∈ HY PK(X,X) with co F a compact map (so in particular there exists
an upper semicontinuous compact map Φ ∈ PK(X,X) with compact values
and with Φ(x) ⊆ co (F (x)) for x ∈ X). Also assume X is GAES admissible
(w.r.t. Φ). Then Φ (so consequently co F ) has a fixed point.

Proof. Let Φ be as in the statement of Theorem 16. Let α ∈ CovX (K) where
K = Φ(X). There exists a πα ∈ C(K,Cα) and Cα ∈ GAES(compact)
(w.r.t. Φ) as described in Definition 4 ). Let Φα = πα Φ and note Φα ∈
PK(Cα, Cα) is an upper semicontinuous compact map with compact values.
Now (see the proof of Theorem 10 or alternatively see Theorem 11 or Theo-
rem 12) guarantees that there exists an x ∈ Cα with x ∈ Φα(x) = πα Φ (x).
The same reasoning as in Theorem 13 guarantees that Φ has an α-fixed
point (for each α ∈ CovX (K)). Now, apply Theorem 3 and Remark 1.

The same analysis as above guarantees the following results.

Theorem 17. Let X be a subset of a Hausdorff topological space, let X be
a uniform space and let F ∈ HY PKC(X,X) with F a compact map (so in
particular there exists an upper semicontinuous compact map Φ ∈ PK(X,X)
with compact values and with Φ(x) ⊆ F (x)) for x ∈ X). Also assume X is
GAES admissible (w.r.t. Φ). Then Φ (so consequently F ) has a fixed point.

Theorem 18. Let X be a subset of a Hausdorff topological space, let X be a
uniform space and let F ∈ PK(X,X) be an upper semicontinuous compact
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map with compact values. Also, assume X is GAES admissible (w.r.t. F ).
Then F has a fixed point.
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