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Abstract

We introduce the notion of α-ψ-R contractive mappings that act
on a metric space. We establish the existence and uniqueness of fixed
points for this class of mappings and provide a sequence of iterates
which approximate their fixed points. Some examples are presented
and the relationships with some previous results are described.
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1 Introduction

For over a century and counting, fixed point theory has continued to draw
the attention of many researchers due to its many applications. Fixed point
methods have thus been applied in diverse areas of studies such as variational
inequality problems and complementarity problems. Many studies in this
direction go back to the classical contraction principle [4] which remains
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an indispensable tool in this theory. Since then, there have been many
extensions and generalizations of this principle. These extensions have taken
place, for instance, in the form of generalizing the metric spaces or weakening
the contraction assumption.

In 2012, Samet et al. [10] introduced the notion of an α-ψ contrac-
tion. They established existence and uniqueness results regarding the fixed
points of such mappings in complete metric spaces. Alam and Imdad [2]
extended the classical Banach contraction principle to a complete metric
space equipped with a binary relation. As reported by [2], this is a weaker
contractive condition; unlike the usual condition, it is only required to hold
on those elements that are related by the underlying relation and not on the
whole space.

In this paper, we introduce α-ψ-R contraction mappings in the wake
of the works of Samet et al. [10] and Alam and Imdad [2]. We establish
some existence and uniqueness results regarding fixed points of the said
mappings in a complete metric space. This class of mappings is of particular
interest because these mappings offer a robust framework for examining the
convergence and stability of mathematical systems. These mappings operate
on a complete metric space equipped with arbitrary binary relations. These
binary relations are extensions of various previously studied binary relations
such as partial order, preorder and transitive relations. We also present the
relationship of these new mappings with previously studied mappings.

2 Preliminaries

Throughout this paper, we denote by N, N0, Q and R the sets of positive
integers, nonnegative integers, rational numbers and real numbers, respec-
tively.

Definition 1. [6]. Let X be a nonempty set. A subset R of X×X is called
a binary relation on X. For each pair x, y ∈ X, exactly one of the following
conditions holds:

(i) (x, y) ∈ R, which amounts to saying that x is R-related to y or that x
relates to y under R.

(ii) (x, y) /∈ R, which means that x is not R-related to y or that x does
not relate to y under R.

It is trivial to see that X × X and ∅, which are subsets of X × X, are
binary relations on X which are respectively referred to as the universal
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relation (or the full relation) and the empty relation. The identity relation
(or the diagonal relation) is given by

4X = {(x, x) : x ∈ X}.

In what follows, R stands for a nonempty binary relation. To keep
things simple, we only write “binary relation” instead of “nonempty binary
relation”.

Definition 2. [2]. Let R be a binary relation defined on a nonempty set
X. The points x and y are called R-comparable if either (x, y) ∈ R or
(y, x) ∈ R. Whenever this is the case, we denote it by [x, y] ∈ R.

Definition 3. [6, 9]. A binary relation R defined on a nonempty set X is
said to be

(i) reflexive, if (x, x) ∈ R ∀ x ∈ X;

(ii) irreflexive, if (x, x) /∈ R ∀ x ∈ X;

(iii) symmetric, if (x, y) ∈ R ⇒ (y, x) ∈ R;

(iv) antisymmetric, if (x, y) ∈ R and (y, x) ∈ R imply that x = y;

(v) transitive, if (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R;

(vi) complete, connected or dichotomous, if [x, y] ∈ R ∀ x, y ∈ X;

(vii) weakly complete, weakly connected or trichotomous if [x, y] ∈ R or
x = y for all x, y ∈ X.

Definition 4. [5, 6, 9, 12]. A binary relation R defined on a nonempty set
X is called

(i) a strict order (or a sharp order), if R is irreflexive and transitive;

(ii) a near-order, if R antisymmetric and transitive;

(iii) a pseudo-order, if R is reflexive and antisymmetric;

(iv) a quasi-order or a preorder, if R is reflexive and transitive;

(v) a partial order, if R is reflexive, antismmetric and transitive;

(vi) a simple order, if R is a weakly complete strict order;
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(vii) a weak order, if R is a complete preorder;

(viii) a total order, a linear order or a chain order, if R is a complete partial
order;

(ix) a tolerance, if R is reflexive and symmetric;

(x) an equivalence, if R is reflexive, symmetric and transitive.

It is obvious that the universal relation X ×X defined on a nonempty
set X is a complete equivalence relation.

Definition 5. [6]. Let X be a nonempty set and let R be a binary relation
on X.

(a) The inverse, transpose or dual relation of R, denoted by R−1, is de-
fined by

R−1 = {(x, y) ∈ X ×X : (y, x) ∈ R}.

(b) The reflexive closure of R, denoted by R◦, is defined to be the set
R∪4X (that is, R◦ := R∪4X). Indeed, R◦ is the smallest reflexive
relation on X containing R.

(c) The symmetric closure of R, denoted by Rs, is defined to be the set R∪
R−1 (that is, Rs := R ∪R−1). Indeed, Rs is the smallest symmetric
relation on X containing R.

Proposition 1. [2]. For a binary relation R defined on a nonempty set
X,

(x, y) ∈ Rs ⇔ [x, y] ∈ R.

Definition 6. [2]. A sequence {xn} ⊂ X is called R-preserving if we have
(xn, xn+1) ∈ R, for all n ∈ N0.

Definition 7. [1, 2]. Let S be a self-mapping on a nonempty set X. A
binary relation R defined on X is called S-closed if, for any x, y ∈ X, we
have

(x, y) ∈ R ⇒ (Sx, Sy) ∈ R.

Proposition 2. [1]. If R is S-closed, then, for all n ∈ N0, R is also
Sn-closed, where Sn denotes the nth iterate of S.

Definition 8. [11]. Let R be a binary relation on a nonempty set X. A
subset K is called R-directed if for each x, y ∈ K, there exists z ∈ X such
that (x, z) ∈ R and (y, z) ∈ R.
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Definition 9. [7]. Let R be a binary relation on a nonempty set X. For
x, y ∈ X, a path of length k (k is a natural number) in R from x to y is a
finite sequence {wi}ki=0 ⊂ X satisfying the following conditions:

(i) x = w0 and y = wk;

(ii) (wi, wi+1) ∈ R for each i ∈ [0, k − 1].

Observe that a path of length k consists of k + 1 elements, which are not
necessarily distinct.

Definition 10. [3]. The metric space (X, d) is said to be R-complete if
every R-preserving Cauchy sequence in X converges.

Every complete metric space is R-complete for any binary relation R. In
particular, the notion of R-completeness coincides with usual completeness
under the universal relation.

Definition 11. [3]. The mapping S is R-continuous at x ∈ X if for any

R-preserving sequence {xn} such that xn
d−−→ x, we have Sxn

d−−→ Sx.
The mapping S is called R-continuous if it is R-continuous at every point
x ∈ X.

Every continuous mapping is R-continuous for any binary relation. In
particular, the notion of R-continuity coincides with usual continuity under
the universal relation.

We also use the following notations.

(i) F (S) denotes the set of fixed points of S. That is F (S) = {x ∈ S : x =
Sx}.

(ii) X(S,R) := {x ∈ X : (x, Sx) ∈ R}.

(iii) Υ(x, y,R) is the class of all paths in R from x to y.

3 Main results

We now present our main results. First, we introduce the notion of an
α-ψ-R-preserving contractive mapping.

Let Ψ be the family of increasing functions ψ : [0,+∞)→ [0,+∞) that

satisfy
+∞∑
n=1

ψn(t) < +∞ for each t > 0, where ψn is the nth iterate of ψ.
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Lemma 1. For every function ψ : [0,+∞) → [0,+∞) the following state-
ment holds: If ψ is increasing, then for each t ≥ 0, we have

lim
n→∞

ψn(t) = 0⇒ ψ(t) < t,

Definition 12. A mapping S : X → X is said to be an α-ψ-R-preserving
contractive mapping if there exist two functions, α : X ×X → [0,+∞) and
ψ ∈ Ψ, such that

α(x, y)d(Sx, Sy) ≤ ψ(d(x, y)) ∀ (x, y) ∈ R.

Remark 1. If S : X → X is an α-ψ-R-preserving contractive mapping,
where R is the universal relation, α(x, y) = 1 for all (x, y) ∈ R and ψ(t) =
βt for some β ∈ [0, 1) and all t ≥ 0, then S reduces to a Banach strict
contraction.

Definition 13. Let S : X → X and α : X ×X → [0,+∞). Then S is said
to be R α-admissible if

(x, y) ∈ R, α(x, y) ≥ 1⇒ α(Sx, Sy) ≥ 1.

Example 1. Let X = (0,+∞). Define a binary relation R = {(x, y) ∈
X2 : x ≥ y, x ∈ Q} on X. Define S : X → X and α : X × X → [0,∞)
by Sx = lnx for all x ∈ X and α(x, y) = 2 for (x, y) ∈ R. Then S is R
α-admissible.

We are now in position to state and prove our first main result.

Theorem 1. Let (X, d) be a metric space, R be a binary relation on X and
S be an α-ψ-R-preserving contractive mapping such that

(1) (X, d) is R-complete.

(2) X(S,R) 6= ∅.

(3) S is α-admissible.

(4) R is S-closed.

(5) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

(6) S is R continuous.

Then S has a fixed point.
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Proof. Since the set X(S,R) is nonempty, we can choose an arbitrary point
x0 ∈ X(S,R). Now, define a sequence of successive points with x0 as its
initial point as follows:

xn+1 = Sn+1x0 = Sxn, n = 0, 1, · · · . (1)

Since (x0, Sx0) ∈ R, using the S-closedness of R and Proposition 2, we have
(Snx0, S

n+1x0) ∈ R, which by (1) implies that (xn, xn+1) ∈ R for all n ≥ 0.
Consequently, the sequence {xn} is R-preserving. Since S is α-admissible,
we have

α(x0, x1) = α(x0, Sx0) ≥ 1⇒ α(Sx0, Sx1) = α(x1, x2) ≥ 1.

Using mathematical induction, we get

α(xn, xn+1) ≥ 1, n = 0, 1, · · · . (2)

Now, from the definition of an α-ψ-R-preserving contractive mapping, it
follows that

d(xn+1, xn+2) = d(Sxn, Sxn+1)

≤ α(xn, xn+1)d(Sxn, Sxn+1)

≤ ψ(d(xn, xn+1))

...

≤ ψn+1d(x0, Sx0), n = 0, 1, · · · . (3)

Assume that ε > 0 and n(ε) are such that
∑

n≥n(ε)
ψn(d(x0, Sx0)) < ε.

Let n,m ∈ N with m > n ≥ n(ε). Then it follows from (3) and the
triangle inequality that

d(xn, xm) ≤
m−1∑
j=n

d(xj , xj+1)

≤
m−1∑
j=n

ψj(d(x0, Sx0))

≤
∑

n≥n(ε)

ψn(d(x0, Sx0)) < ε,

which implies that the sequence {xn} is Cauchy in X. Hence {xn} is an
R-preserving Cauchy sequence. Since X is R complete, there exists x∗ ∈ X
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such that xn
d−−→ x∗. Next, we show, using (6), that x∗ is a fixed point of

S. Since {xn} is R-preserving, the R continuity of S, when combined with

xn
d−−→ x∗, implies that xn+1 = Sxn

d−−→ Sx∗. Using the uniqueness of
limits, we get Sx∗ = x∗. Thus, x∗ is a fixed point of S, as asserted.

In the following theorem we remove the assumption of the R continuity
of S. First, we prove the following important proposition.

Proposition 3. Let (X, d) be a metric space, R be a binary relation on X
and let S be a self-mapping of X. Let ψ ∈ Ψ and α : X ×X → [0,+∞) be
such that α(x, y) = α(y, x). Then the following conditions are equivalent:

(I) α(x, y)d(Sx, Sy) ≤ ψ(d(x, y)) ∀x, y ∈ X with (x, y) ∈ R;

(II) α(x, y)d(Sx, Sy) ≤ ψ(d(x, y)) ∀x, y ∈ X with [x, y] ∈ R.

Proof. The implication (II) ⇒ (I) is trivial. Conversely, suppose that (I)
holds. Take x, y ∈ X with [x, y] ∈ R. If (x, y) ∈ R, then (II) directly follows
from (I). Otherwise, if (y, x) ∈ R, then using the symmetry of d and I, we
obtain

α(x, y)d(Sx, Sy) = α(y, x)d(Sy, Sx) ≤ ψ(d(y, x)) = ψ(d(x, y)).

This shows that (I)⇒ (II).

Theorem 2. Let (X, d) be a metric space, R be a binary relation on X and
let S be an α-ψ-R-preserving contractive mapping such that

(1) (X, d) is R-complete.

(2) X(S,R) 6= ∅.

(3) S is α-admissible.

(4) R is S-closed.

(5) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.

(6) R is d-self closed.

If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn
d−−→ x∗

as n→∞, then α(xn, x
∗) ≥ 1. Then S has a fixed point.
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Proof. We have already shown that {xn} is a R-Cauchy sequence. Now
suppose R is d-self closed. Since the sequence {xn} is R-preserving and

xn
d−−→ x∗, there exists a subsequence {xnk

} of {xn} with [xnk
, x∗] ∈ R for

all k ∈ N.Using the definition of S, Proposition 3, the facts that [xnk
, x∗] ∈ R

and xnk

d−−→ x∗, we find that

d(xnk+1, Sx
∗) = d(Sxnk

, Sx∗)

≤ α(xnk
, x)d(Sxnk

, Sx∗)

≤ ψ(d(xnk
, x∗))→ 0 as k →∞,

which implies that xnk+1
d−−→ Sx∗. It follows from the uniqueness of the

limit that Sx∗ = x∗. Thus, x∗ is a fixed point of S.

We now show that the point x∗ in the previous results is the unique fixed
point of S.

Theorem 3. In addition to the hypotheses of Theorem 1 and Theorem 2,
assume that S(X) is Rs-connected and for each i ∈ [0, k − 1], we have
α(Snwi, S

nwi+1) ≥ 1. Then the fixed point x∗ is unique.

Proof. Assume that x∗, y∗ ∈ F (S). Then

Snx∗ = x∗ and Sny∗ = y∗. (4)

Since x∗, y∗ ∈ S(X) and S(X) is Rs-connected, there exists a path connect-
ing x∗ to y∗ such that

x∗ = w0, y∗ = wk and [wi, wi+1] ∈ R for each i ∈ [0, k − 1]. (5)

Using Proposition 2 and the fact that R is S-closed, we find that

[Snwi, S
nwi+1] ∈ R for each i ∈ [0, k − 1].

For each n ∈ N0, we have

d(Snwi, S
nwi+1) = d(S(Sn−1wi), S(Sn−1wi+1))

≤ α(Sn−1wi, S
n−1wi+1)d(Snwi, S

nwi+1)

≤ ψ(d(Sn−1wi, S
n−1wi+1)).

Also,

d(Sn−1wi, S
n−1wi+1) = d(S(Sn−2wi), S(Sn−2wi+1))

≤ α(Sn−2wi, S
n−2wi+1)d(Sn−1wi, S

n−1wi+1)

≤ ψ(d(Sn−2wi, S
n−2wi+1)).
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Proceeding in the same manner, we arrive at

d(Snwi, S
nwi+1) ≤ ψn(d(wi, wi+1)). (6)

Now, using the triangle inequality, we obtain

d(x∗, y∗) = d(Snw0, S
nwk)

≤ d(Snw0, S
nw1) + d(Snw1, S

nw2) + · · ·+ d(Snwk−1, S
nwk)

=

n∑
i=0

d(Snwi, S
nwi+1)

≤
n∑

i=0

ψn(d(wi, wi+1))→ 0 as n→∞. (7)

Therefore, x∗ = y∗, which implies that the fixed point of S is indeed unique,
as asserted.

We now present some special cases of our main result.

(1) Under the universal relation (that is, R = X2), Theorem 1 and Theo-
rem 2 coincide with the results of [11, Theorem 2.1] and [11, Theorem
2.2], respectively.

(2) Suppose that α(x, y) = 1 for all x, y ∈ X with (x, y) ∈ R and that
ψ(t) = βt for some β ∈ [0, 1). Then Theorems 1 and 2 are the results
established in [2].

(3) Assume in (2) above that the relationR is the universal relation. Then
the result reduces to the celebrated Banach contraction principle.

4 Illustrative example

In this section, we illustrate our results by presenting the following example:

Example 2. Let X = R be endowed with the standard metric d(x, y) =
|x − y| for all x, y ∈ R. Define the binary relation R = {(x, y) ∈ R :
x − y ≥ 0, x ∈ Q} on X. Consider the mapping S : X → X defined by
Sx := 7

16 + x
8 . Next, define the mapping α : X×X → [0,+∞) by α(x, y) := 1

for all x, y ∈ X with (x, y) ∈ R. We claim that S is an α-ψ-R contractive
mapping with ψ(t) = t

4 for all t ≥ 0. Indeed, for all x, y ∈ X with (x, y) ∈ R,
we have

α(x, y)d(Tx, Ty) = 1

∣∣∣∣ 7

16
+
x

8
−
(

7

16
+
y

8

)∣∣∣∣ =
1

8
|x− y| ≤ 1

4
d(x, y).
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Also, R is S-closed and S is continuous. In addition, there exists x0 ∈ X
such that α(x0, Sx0) ≥ 1. In fact, for x0 = 1,

α(1, S1) = α

(
1,

9

16

)
= 1.

Now, let x, y ∈ X with (x, y) ∈ R be such that α(x, y) ≥ 1. By the definitions
of S and α, we have

Sx =
7

16
+
x

8
, Sy =

7

16
+
y

8
, Sx ≥ Sy and α(Sx, Sy) = 1.

Therefore, all the hypotheses of Theorem 1 are satisfied and there exists a
fixed point of S, namely 1

2 . Since the range of T (X) is the entire set of real
numbers, S(X) is Rs-connected and thus the fixed point is unique.

References

[1] A. Alam and M. Imdad, Nonlinear contractions in metric spaces under
locally T-transitive binary relations, Fixed Point Theory 19 (2018), 13-
24.

[2] A. Alam and M. Imdad, Relation-theoretic contraction principle, J.
Fixed Point Theory Appl. 17 (2015), 693-702.

[3] A. Alam and M. Imdad, Relation-theoretic metrical coincidence theo-
rems, Filomat 31 (2017), 4421-4439.

[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur ap-
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