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Abstract
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1 Introduction

For more than sixty years, there has been a lot of research activity concern-
ing the fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings.
See, for example, [2, 4, 5, 8–10,13, 15–20,24, 25] and references cited therein.
This activity stems from Banach’s classical theorem [1] regarding the exis-
tence of a unique fixed point for a strict contraction. It also concerns the
convergence of (inexact) iterates of a nonexpansive mapping to one of its
fixed points. Since that seminal result, many developments have taken place
in this field including, in particular, studies of feasibility, common fixed point

∗Accepted for publication on June 27, 2025
†sreich@technion.ac.il, Department of Mathematics, The Technion – Israel Institute

of Technology, 32000 Haifa, Israel
‡ajzasl@technion.ac.il, Department of Mathematics, The Technion – Israel Institute

of Technology, 32000 Haifa, Israel

9

https://doi.org/10.56082/annalsarscimath.2026.1.9


A fixed point result in generalized metric spaces 10

problems and variational inequalities, which find important applications in
engineering, medical and the natural sciences [3, 6, 7, 22–25].

One of the important directions in fixed point theory is the study of
operators on some spaces with distances which are not metrics. In particular,
an example of such a space is the modular space studied in [11, 12, 14]. In
our recent work [21] we have introduced certain generalized metric spaces
by extending the concept of a modular space studied in [11, 12, 14] and
have established a fixed point theorem for certain Rakotch type contractive
operators. In the present paper we introduce a new class of generalized
metric spaces with graphs which contains the class of spaces considered
in [21] and prove a fixed point result for Rakotch type contractive mappings.

To this end, we first recall the notion of a modular space.
Let X be a vector space. A functional ρ : X → [0,∞] is called a

modular [11, 12,14] if the following properties hold:
(1) ρ(x) = 0 if and only x = 0;
(2) ρ(−x) = ρ(x) for all x ∈ X;
(3) ρ(αx + βy) ≤ ρ(x) + ρ(y) for each x, y ∈ X and each α, β ≥ 0

satisfying α+ β = 1.
The vector space

Xρ := {x ∈ X : ρ(λx)→ 0 as λ→ 0}

is called a modular space.
Assume that ρ is a modular defined on a vector space X. We say that

the modular ρ satisfies a ∆2-type condition if there exists a number M > 0
such that

ρ(2x) ≤Mρ(x), x ∈ Xρ. (1)

The authors of [12] considered a modular function space Lρ (which is a
particular case of a modular space) with a modular ρ satisfying a ∆2-type
condition. They showed that if T is a self-mapping of a closed subset K of
Lρ such that for some c ∈ [0, 1),

ρ(T (x)− T (y)) ≤ cρ(x, y) for all x, y ∈ K

and such that there exists a point x0 ∈ K satisfying

sup{ρ(2T p(x0)) : p = 1, 2, . . . } <∞,

then T has a fixed point.
Assume now that ρ is a modular defined on the vector space X. For

each x, y ∈ X, define
d(x, y) := ρ(x− y).
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It is easy to see that for each x, y ∈ X, d(x, y) = 0 if and only if x = y and
that d(x, y) = d(y, x).

Assume that ρ satisfies the ∆2-type condition (1) with a number M > 0.
Then for each x, y, z ∈ Xρ, we have

d(x, z) = ρ(x− z) = ρ((x− y) + (y − z))

= ρ(2(2−1(x− y) + 2−1(y − z))) ≤Mρ(2−1(x− y) + 2−1(y − z))

≤M(ρ(x− y) + ρ(y − z)) ≤Md(x, y) +Md(y, z).

It is clear that d, the distance in Xρ associated with the modular ρ, is
not a metric in general. This leads us to the following definition, which was
introduced in [21].

Assume that X is a nonempty set, d : X×X → [0,∞], M > 0, and that
for each x, y, z ∈ X,

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x)

and
d(x, z) ≤Md(x, y) +Md(y, z).

We call the pair (X, d) a generalized metric space. For each point x ∈ X
and each number r > 0, set

Bd(x, r) := {y ∈ X : d(x, y) ≤ r}.

Clearly, the concept of a generalized metric space is a generalization of both
a modular space and a metric space. It allows us to unify the study of these
two important classes of spaces. For specific examples of modular spaces
see, for instance, [11,14].

We equip the space X with the uniformity determined by the base

U(ε) := {(x, y) ∈ X ×X : d(x, y) ≤ ε}, ε > 0.

This uniform space is metrizable (by a metric d̃). We also equip the space X
with the topology induced by this uniformity and assume that the uniform
space X is complete.

Let {xn}∞n=1 ⊂ X and x ∈ X. Clearly, limn→∞ xn = x if and only if
limn→∞ d(xn, x) = 0 and {xn}∞n=1 is a Cauchy sequence if and only if for
each ε > 0, there exists a natural number n(ε) such that d(xn, xm) ≤ ε for
every pair of integers n,m ≥ n(ε).
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A set E ⊂ X is said to be bounded if

sup{d(x, y) : x, y ∈ E} <∞.

Assume that φ : [0,∞)→ [0, 1] is a decreasing function such that

φ(t) < 1 for all t > 0.

In [21] we proved the following fixed point result for Rakotch type contractive
operators.

Theorem 1. Let K be a nonempty closed subset of X and let T : K → X
satisfy

d(T (x), T (y)) ≤ φ(d(x, y))d(x, y)

for each x, y ∈ K satisfying d(x, y) < ∞. Assume that for each integer
n ≥ 1, there exists a point xn ∈ K such that

Tn(xn) exists and belongs to K

and that the set

E := {T i(xn) : n = 1, 2, . . . and i ∈ {0, . . . , n}}

is bounded. Then there exists a point x∗ ∈ K such that T (x∗) = x∗. More-
over, this fixed point is unique if d(x, y) <∞ for each pair x, y ∈ K.

2 Generalized metric spaces with graphs

Let X be a nonempty set and let a mapping d : X ×X → [0,∞) be given.
Assume that for each x, y ∈ X, d(x, y) = 0 if and only if x = y and that the
following properties hold.

(P1) For each ε > 0, there exists δ > 0 such that if x, y ∈ X satisfy
d(x, y) ≤ δ, then d(y, x) ≤ ε.

(P2) For each ε > 0, there exists δ > 0 such that for each x, y, z ∈ X
satisfying d(x, y), d(y, z) ≤ δ, we have d(x, z) ≤ ε.

For each ε > 0, define

U(ε) = {(x, y) ∈ X ×X : d(x, y), d(y, x) ≤ ε}. (2)

It is not difficult to see that U(ε), ε > 0, is a base of a uniformity which
is metrizable by a metric d1. We assume that the metric space (X, d1) is
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complete and that it is endowed with a graph G. We denote by V (G) the
set of vertices of G and by E(G) the set of its edges.

Let a nonempty set K ⊂ X be closed, assume that

sup{d(x, y) : x, y ∈ K} <∞ (3)

and that there exists a natural number n0 such that the following property
holds.

(P3) for each x, y ∈ K, there exists a natural number n ≤ n0 and points
xi ∈ K, i = 0, . . . , n, such that

x0 = x, xn = y

and for each i ∈ {0, . . . , n−1}, at least one of the following inclusions holds:

(xi, xi+1) ∈ E(G), (xi+1, xi) ∈ E(G).

Assume that T : K → K, φ : [0,∞)→ [0, 1) is a decreasing function,

φ(t) < 1, t > 0, (4)

and for each (x, y) ∈ E(G),

(T (x), T (y)) ∈ E(G), (5)

d(T (x), T (y)) ≤ φ(d(x, y))d(x, y). (6)

Set T 0(x) = x, x ∈ K.

Theorem 2. There exists a point x∗ ∈ K such that Tn(x) → x∗ in K as
n→∞.

3 Proof of Theorem 2

We begin with the following auxiliary result.

Lemma 1. Assume that x, y ∈ K, (x, y) ∈ E(G), ε > 0, and

d(x, y) > ε. (7)

Then
d(T (x), T (y)) ≤ d(x, y)− ε(1− φ(ε)).
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Proof. By (4), (6) and (7),

d(x, y)−d(T (x), T (y)) ≥ d(x, y)(1−φ(d(x, y))) ≥ d(x, y)(1−φ(ε)) ≥ ε(1−φ(ε)).

This completes the proof of Lemma 1.

Set
D0 = sup{d(x, y) : x, y ∈ K}. (8)

Proof. (of Theorem 2) Let ε > 0. Property (P2) implies that there exists a
number ε0 ∈ (0, ε) such that the following property holds:

(P4) for each natural number n ≤ n0 and each ξi ∈ K, i = 0, . . . , n0,
satisfying d(ξi, ξi+1) ≤ ε0, i = 0, . . . , n0 − 1, we have

d(ξ0, ξn) ≤ ε.

Fix an integer
k0 > D0ε

−1
0 (1− φ(ε0))

−1. (9)

Assume that
ξ, η ∈ K, (ξ, η) ∈ E(G). (10)

We claim that there exists an integer n ∈ [0, k0] such that

d(Tn(ξ), Tn(η)) ≤ ε0.

Suppose to the contrary that this is not true. Then for each integer n ∈
{0, . . . , k0},

d(Tn(ξ), Tn(η)) > ε0

and in view of (10) and Lemma 1,

d(Tn+1(ξ), Tn+1(η)) ≤ d(Tn(ξ), Tn(η))− ε0(1− φ(ε0)). (11)

By (8) and (11), we have

D0 ≥ d(ξ, η) ≥ d(ξ, η)− d(T k0(ξ), T k0(η))

=

k0−1∑
i=0

(d(T i(ξ), T i(η))− d(T i+1(ξ), T i+1(η)) ≥ k0ε0(1− φ(ε0)),

k0 ≤ D0ε
−1
0 (1− φ(ε0))

−1.
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This, however, contradicts (9). The contradiction we have reached proves
that there does exist an integer n ∈ [0, k0] such that

d(Tn(ξ), Tn(η)) ≤ ε0,

as claimed.
Thus the following property holds:
(P5) For each ξ, η ∈ K satisfying (ξ, η) ∈ E(G), the inequality

d(Tn(ξ), Tn(η)) ≤ ε0

holds true for each integer n ≥ k0.
Assume now that x, y ∈ K. Property (P3) implies that there exist a

natural number q ≤ n0 and points ξi ∈ K, i = 0, . . . , q, such that

ξ0 = x, ξq = y,

(ξi, ξi+1) ∈ E(G), i = 0, . . . , q − 1.

Property (P5) and the above relations imply that for each integer n ≥ k0,

d(Tn(ξi), T
n(ξi+1)) ≤ ε0, i = 0, . . . , q − 1.

When combined with property (P5), this implies that

d(T k0(x), T k0(y)) ≤ ε (12)

for each x, y ∈ K.
Fix ξ0 ∈ K. By (12),

d(T k0(ξ), T k0(y)) ≤ ε, for each y ∈ K.

This implies that

d(T k0(ξ), Tn(y)) ≤ ε for each integer n ≥ k0 and for each point y ∈ K.

Since ε is an arbitrary positive number, this implies that for each x ∈ K,
{Tn(x)}∞n=1 is a Cauchy sequence and there exists

lim
n→∞

Tn(x).

Let δ > 0. Since ε is an arbitrary positive number, in view of (12), there
exists a natural number nδ such that

d1(T
nδ(x), Tnδ(y)) ≤ δ, x, y ∈ K.



A fixed point result in generalized metric spaces 16

This implies that for each x, y ∈ K and each integer n ≥ nδ, we have

d1(T
nδ(x), Tn(y)) ≤ δ

and
d1(T

nδ(x), lim
n→∞

Tn(y)) ≤ δ.

Since δ is an arbitrary positive number, we conclude that

lim
n→∞

Tn(y1) = lim
n→∞

Tn(y2)

for each y1, y2 ∈ K, and that for each x, y ∈ K and each integer n ≥ nδ, we
have

d1( lim
n→∞

Tn(x), Tn(y)) ≤ d1( lim
n→∞

Tn(x), Tnδ(x)) + d1(T
nδ(x), Tn(y)) ≤ 2δ.

Since δ is an arbitrary positive number, this completes the proof of Theorem
2.
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