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Abstract

We introduce a new class of generalized metric spaces with graphs
and prove a fixed point result for Rakotch type contractive mappings.
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1 Introduction

For more than sixty years, there has been a lot of research activity concern-
ing the fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings.
See, for example, [2,4,5,8-10,13,15-20,24,25] and references cited therein.
This activity stems from Banach’s classical theorem [1] regarding the exis-
tence of a unique fixed point for a strict contraction. It also concerns the
convergence of (inexact) iterates of a nonexpansive mapping to one of its
fixed points. Since that seminal result, many developments have taken place
in this field including, in particular, studies of feasibility, common fixed point
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problems and variational inequalities, which find important applications in
engineering, medical and the natural sciences [3,6,7,22-25].

One of the important directions in fixed point theory is the study of
operators on some spaces with distances which are not metrics. In particular,
an example of such a space is the modular space studied in [11,12,14]. In
our recent work [21] we have introduced certain generalized metric spaces
by extending the concept of a modular space studied in [11, 12, 14] and
have established a fixed point theorem for certain Rakotch type contractive
operators. In the present paper we introduce a new class of generalized
metric spaces with graphs which contains the class of spaces considered
in [21] and prove a fixed point result for Rakotch type contractive mappings.

To this end, we first recall the notion of a modular space.

Let X be a vector space. A functional p : X — [0,00] is called a
modular [11,12,14] if the following properties hold:

(1) p(z) = 0 if and only = = 0;

(2) p(—x) = p(x) for all z € X;

(3) plaz + By) < p(x) + p(y) for each x,y € X and each o, > 0
satisfying a + 5 = 1.

The vector space

X, ={reX: p(Ar) = 0as A = 0}

is called a modular space.

Assume that p is a modular defined on a vector space X. We say that
the modular p satisfies a As-type condition if there exists a number M > 0
such that

p(2z) < Mp(z), = € X,. (1)

The authors of [12] considered a modular function space L, (which is a
particular case of a modular space) with a modular p satisfying a As-type
condition. They showed that if T is a self-mapping of a closed subset K of
L, such that for some ¢ € [0,1),

p(T(x) = T(y)) < cp(a,y) for all v,y € K
and such that there exists a point xg € K satisfying
sup{p(2TP(x0)) : p=1,2,...} < o0,

then T has a fixed point.
Assume now that p is a modular defined on the vector space X. For
each x,y € X, define

d(z,y) = p(z —y).
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It is easy to see that for each z,y € X, d(x,y) = 0 if and only if x = y and
that d(z,y) = d(y, x).

Assume that p satisfies the As-type condition (1) with a number M > 0.
Then for each z,y,z € X,, we have

d(z,2) = p(x — 2) = p((z —y) + (y — 2))

=p(22 7 (z—y)+27(y—2)) < Mp(2 (z—y) +27 ' (y — 2))
< M(p(z —y) + ply — 2)) < Md(z,y) + Md(y, 2).

It is clear that d, the distance in X, associated with the modular p, is
not a metric in general. This leads us to the following definition, which was
introduced in [21].

Assume that X is a nonempty set, d : X x X — [0,00], M > 0, and that
for each z,y, z € X,

d(z,y) = 0 if and only if z =y,

d(z,y) = d(y, )

and
d(z,z) < Md(z,y) + Md(y, z).

We call the pair (X, d) a generalized metric space. For each point z € X
and each number r > 0, set

By(z,r) :={y e X : d(z,y) <r}.

Clearly, the concept of a generalized metric space is a generalization of both
a modular space and a metric space. It allows us to unify the study of these
two important classes of spaces. For specific examples of modular spaces
see, for instance, [11,14].

We equip the space X with the uniformity determined by the base

U(e) :={(z,y) € X x X : d(x,y) <€}, e>0.

This uniform space is metrizable (by a metric d). We also equip the space X
with the topology induced by this uniformity and assume that the uniform
space X is complete.

Let {z,}32; € X and € X. Clearly, lim, oz, = z if and only if
lim,, o0 d(zpn, ) = 0 and {z,}>2 is a Cauchy sequence if and only if for
each € > 0, there exists a natural number n(e) such that d(x,,z,,) < € for
every pair of integers n,m > n(e).
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A set E C X is said to be bounded if
sup{d(z,y) : z,y € E} < 0.
Assume that ¢ : [0,00) — [0, 1] is a decreasing function such that
o(t) <1 forall t > 0.

In [21] we proved the following fixed point result for Rakotch type contractive
operators.

Theorem 1. Let K be a nonempty closed subset of X and let T : K — X
satisfy

d(T(x), T(y)) < d(d(z,y))d(z,y)

for each z,y € K satisfying d(z,y) < oo. Assume that for each integer
n > 1, there exists a point x,, € K such that

T"(xy,) exists and belongs to K
and that the set
E:={TYz,): n=1,2,... andi € {0,...,n}}

is bounded. Then there exists a point x, € K such that T(xy) = x.. More-
over, this fized point is unique if d(x,y) < oo for each pair x,y € K.

2 Generalized metric spaces with graphs

Let X be a nonempty set and let a mapping d : X x X — [0,00) be given.
Assume that for each z,y € X, d(z,y) = 0 if and only if x = y and that the
following properties hold.

(P1) For each € > 0, there exists 6 > 0 such that if z,y € X satisfy
d(z,y) <9, then d(y,z) <e.

(P2) For each € > 0, there exists § > 0 such that for each z,y,z € X
satisfying d(x,y), d(y, z) < §, we have d(x, z) < e.

For each € > 0, define

U(e) ={(z,y) € X x X : d(x,y),d(y,x) < €}. (2)

It is not difficult to see that U(e), € > 0, is a base of a uniformity which
is metrizable by a metric d;. We assume that the metric space (X,d;) is
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complete and that it is endowed with a graph G. We denote by V(G) the
set of vertices of G and by E(G) the set of its edges.
Let a nonempty set K C X be closed, assume that

sup{d(z,y) : =,y € K} < 00 (3)

and that there exists a natural number ng such that the following property
holds.

(P3) for each x,y € K, there exists a natural number n < ng and points
z; € K,9=0,...,n, such that

o=, Tn =Y
and for each i € {0,...,n— 1}, at least one of the following inclusions holds:
(i, wit1) € B(G), (Ti+1,7i) € E(G).

Assume that T : K — K, ¢ : [0,00) — [0,1) is a decreasing function,

o(t) <1, t>0, (4)

and for each (z,y) € E(G),
(T'(x), T(y)) € E(G), ()
d(T'(x),T(y)) < ¢(d(z,y))d(z, y). (6)

Set T%(z) =z, x € K.

Theorem 2. There exists a point x, € K such that T"(x) — z. in K as
n — 0o.

3 Proof of Theorem 2

We begin with the following auxiliary result.
Lemma 1. Assume that x,y € K, (z,y) € E(G), € >0, and
d(z,y) > e. (7)

Then
d(T(z),T(y)) < d(z,y) — e(1 = $(e)).
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Proof. By (4), (6) and (7),
d(z,y)—d(T(2), T(y)) = d(z,y)(1-¢(d(z,y))) = d(z,y)(1-¢(€)) = e(1—¢(e)).
This completes the proof of Lemma 1. 0
Set
Do = sup{d(z,y) : =,y € K}. (8)

Proof. (of Theorem 2) Let e > 0. Property (P2) implies that there exists a
number ¢y € (0, €) such that the following property holds:

(P4) for each natural number n < ny and each & € K, i = 0,...,ng,
satisfying d(&;,&iv1) < €, i1 =0,...,n9 — 1, we have
d(fO, é-n) S €.
Fix an integer
ko > D()Eal(l — ¢(€0))_1. (9)
Assume that
§&ne K, (&n) € EG). (10)

We claim that there exists an integer n € [0, ko] such that

d(T™(€),T"(n)) < €o.

Suppose to the contrary that this is not true. Then for each integer n €
{0,...,ko},
d(T™(£),T"(n)) > €0

and in view of (10) and Lemma 1,
d(T"TH(E), T () < d(T™(€),T"(n)) — eo(1 — ¥(e0)). (11)
By (8) and (11), we have

Dy > d(&,m) > d(&,n) — d(T™(£), T™ (n))

ko—1

= > (dT(E),T'(n) — d(T™(€), T () = koeo(1 — (<o),

=0
ko < Dofal(l — (25(60))71.
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This, however, contradicts (9). The contradiction we have reached proves
that there does exist an integer n € [0, ko] such that

d(T™(€),T"(n)) < €o,

as claimed.
Thus the following property holds:
(P5) For each &,m € K satisfying (£,7n) € E(G), the inequality

d(T™(€),T"(n)) < €0

holds true for each integer n > k.
Assume now that x,y € K. Property (P3) implies that there exist a
natural number ¢ < ng and points §; € K, ¢ =0,...,q, such that

50:377 gq:yv

(&,&+1) € E(G), i=0,...,q— 1.
Property (P5) and the above relations imply that for each integer n > ko,

d(T”(&Z),T”(@H)) § €0, 1= O, NN 1.
When combined with property (P5), this implies that
d(T™ (x), T (y)) < e (12)

for each z,y € K.
Fix § € K. By (12),

d(T*(€), T* (y)) < e, for each y € K.
This implies that
d(T* (&), T™(y)) < e for each integer n > ko and for each point y € K.

Since € is an arbitrary positive number, this implies that for each =z € K,
{T™(2)}5°, is a Cauchy sequence and there exists

lim T"(x).

Let 06 > 0. Since € is an arbitrary positive number, in view of (12), there
exists a natural number ns such that

di(T™ (x), T (y)) <6, z,y € K.



A fized point result in generalized metric spaces 16

This implies that for each x,y € K and each integer n > ng, we have
di(T™ (x), T"(y)) < 6

and
di(T™ (z), lim T"(y)) < 6.

n—o0

Since § is an arbitrary positive number, we conclude that
lim T"(y1) = lim T"(y2)
n—o0 n—oo

for each y1,y2 € K, and that for each x,y € K and each integer n > ns, we
have
di(lim T"(x), T"(y)) < dy ( lim T"(x), T (2)) + da (T (), T" (1)) < 25,

Since ¢ is an arbitrary positive number, this completes the proof of Theorem
2. O
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