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Abstract

In this paper, we study existence and main properties of weak so-
lutions for a class of boundary value problems.
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1 Introduction

In this paper, we study the the boundary value problem (1) (and (6)) below;
the main results are existence of solutions (Theorem 1) and positivity of
solutions (Theorem 2). This last result does not imply uniqueness, due
to the presence of the nonlinear term b(u); now, we have no feeling about
uniqueness or multiplicity. In order to investigate multiplicity, a useful tool
can be the result by B. Ricceriin [12].
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Consider

{@wmﬂ@Dm+E@y0Hmy+u:ﬂ@,mQ, O

u =0, on 0f,

where the set {2 is a bounded, open subset of RY (N > 3).
M : QxR — RY is a bounded and measurable matrix such that (for
0<a<p)

alg? < M(x)¢-¢,  [M(2)| <8, aezeQ VEeRY (2)

feL=(Q). (3)
The vector field E(z) is very singular:

E e (L*(Q)N (4)
and H is a function such that:

h(s) is a continuous increasing real function with h(0) = 0, |h(s)| = h(]s|),

H@ﬁiéh@M&
(5)

We prove the existence of weak (bounded) solutions of the boundary value
problem (1), that is

ue Wy2(Q) N LX) :

[ M@)DuDy+ /Q olE(z) - Dulh(u) + /Q wep = /Q f@) (), (6)
Ve Wy () N Le(Q).

We point out that the transport part E(z)- DH(u) = [E(x) - Du]h(u)
is very singular. In particular, the assumption (4) on the drift term E(x)
is weaker than the boundedness assumption used in some papers and also
weaker than the assumption £ € (LY (Q))" used in [3]; on the other hand,
we assume that the right hand side f(x) is a bounded function.

We follow the nonlinear duality approach of [4], [3] and, despite the
presence of E(x) (which only belongs to L?) and the nonlinear advection
term DH (u), we will prove the existence of a solution u € VVO1 2(€2), thanks
to the impact of the zero order term. Another possible way could be the use
of the method of [10].
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We observe that in several papers the vector field is less singular than
in (4); moreover, it often has constant components. Of course, the case
where F(z) has constant components (or, more generally, is divergence-
free) simplifies the proofs of a priori estimates, thanks to the Divergence
Theorem applied to our boundary value problem with zero boundary data
(see also [6]). We recall that there are papers with advection terms, but
right hand side of (1) function of the solution u (e.g. [8], [9]), instead of
external force f(x).

Moreover, we emphasize that the boundary value problem (1) has a
surprising aspect: there exists a finite energy solution (u € WO1 ’2(9)), despite
the fact that the term E(x)- DH(u) € L.

Our approach hinges on a duality approach, even if the differential op-
erator is nonlinear in the first order term.

2 Existence

The main result of this paper is the following theorem.

Theorem 1. Under the assumptions (2), (3), (4), (5), there exists a weak
(bounded) solution u of the boundary value problem (1), that is of (6). More-
over u satisfies the following a priori estimates

lull <A1

12w R o)’ 7
[z ® MW O
Q o? Q

(07

In order to prove the above theorem, we define a sequence of approxi-
mating problems and we prove two a priori estimates on the sequence of the
solutions of these problems.

2.1 Approximating problems
Our starting point is the following nonlinear Dirichlet problem, for a given
n?

Un € Wy (Q) :

—div(M () Duy) + E(z) - Du, h(uy,)

(14 2B+ 2un]) 1+ L|A(uy)]

+ up = f(x).
(8)
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For our study, we need to start with bounded weak solutions w,, whose
existence will be established below.

To this end, we consider the following equivalent Dirichlet problem,
where the equivalence holds for fixed n and is understood in the sense of

a simple rewriting of the equation upon setting j = %, B = _H%IEI and
~ N h n
h= 1+11n|

[B(x) - Du;]

uj € Wo(Q) : —div(M(z)Duj) + u; = h(u;) +b(z),  (9)

(14 Jlujl)
where j € RT, h(s) is a bounded continuous function, B € (L>(Q))V,
b € L*>(f) and the matrix M still satisfies (2).

Here we follow the Appendix of [3]. Due to the properties of the differ-
ential operator L(v) = —div(M (z)Dv), (9) can be rewritten as a fixed point
problem

B(x) - Duj%

uj € Wy (Q) 1 uj = L—1< (u;) + b(m)). (10)

Define the operator
T(v) = L~ <Wﬁ(v) + b(x)).

Since T : W& 2(Q) — VVO1 2(Q) is well defined and compact, in order to
apply the Schaefer fixed point theorem ( [13]; see also Theorem 4 in 9.2.2
of [11]), we only need to prove that the set

X ={ve W, Q) :v=1tT(v), for some t € [0,1]}

is bounded in order to prove that T has a fixed point.
If v e X, then

B(z) - Dv~ >
Lv)=t ——%——h(v) +b(z 11
) =t (G o) + b0 (1)
Now we use v as test function in the weak formulation of (11) and we have

(using t € [0, 1], (14‘—% 1 and the Holder inequality)

o [1DoR <1181, [ Dol s 1+ | SH(0) bl [ 1o

<|Bll, oosup\h( )!/ | Dol + 10l /Q!v\

(1 +J\v!) (1 +]|UD

1
5
< 181, sup ) ] [ Do 4 ol [ 1ol
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which proves that ||11||W172(Q < C(j,a, B, b,B,ﬁ); this implies that X is
0

)
bounded when j, B, b and h(s) are fixed). Hence problem (10) has a fixed
point and (9) has a solution.
Now we prove that the function u; € L*°(§). We take Gj(u;) as test
function in (9) and we have

o [ 1DG(w)P < 1B, sup )] [ 100Gl + 18], [ 1Gi(u)l
Q s€R Q Q

1
~ 2
<|I|B sup |h(s)]||u; Gr(u)?| + b /Gu-.
< 1Bl 50 sl 500 | [ 1600|101, [ 1Gu)
Here the Stampacchia method (see [14]) gives the boundedness of the func-
tion u; (of course for j, B, b, h fixed). Thus it follows that (8) has a bounded
weak solution.
2.2 Estimates
The second tool is the following nonlinear auxiliary Dirichlet problem
Un € Wo2(9) :
—div(M*(x) Dipy,) — div <¢n

= Un|un|q_27

(14 51BN+ 5 un]) 1+ i|h(un)> + ¥n

(12)
where ¢ > 2. Note that a weak solution v, € W,"*(2) of (8) exists thanks
to Schauder fixed point theorem and that 1), is a bounded function (or
see [1], [2)).

Since every solution u,, and v, is a bounded function, we will use, in the
following proofs, nonlinear compositions of u, and 1, as test functions.

We point out that, even if the Dirichlet problems (8) and (12) are nonlin-
ear, we can adapt a duality method in order to prove our a priori estimates.

Now we prove an L' estimate on v, (see also [2]).

Lemma 1. Under the assumptions (2), (3), (4), (5), we prove the estimate

[ n@l < [ uaprt (13)

Proof. Recall that, Vk > 0,

S C T
)= if |s| > k.
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We use Ty(1)y,) as test function in the weak formulation of (12)

o /Q DT + /Q U To(tfn) < /Q KIE ()| n |DT(n)] + k /Q |71

and we have (we use the Young inequality with B € (0, «))

(= B) [ DT+ [ 6aTivn) )<t * [IB@E -+ [ Jual

Now we drop a positive term and we have

/%Tk Yn) _@,m /|E )2+ /|un|q1 (14)

In the above inequality, the limit k& — 0 gives, thanks to the Fatou lemma,
estimate (13). O

Lemma 2. Under the assumptions (2), (3), (1), (5), we prove the estimate

luall_ < 1711 (15)

Proof. Now we use a duality approach: by (8) (with test function v,) and
(12) (with test function u,,), we deduce that

[t = | [ rn

which implies (use the Holder inequality with exponents ¢ and ¢’)

[t <151 | [ 1ualt] w0,
[ hlt] " < w @31

Then we can pass to the limit as ¢ — oo (recall that every w, is a bounded
function) and we conclude that (15) holds: the sequence {uy,} is bounded in
L>(Q). O

ST [ e T (16)

\\H
-

that is

Remark 1. We point out that the estimate (15) does not depend neither on
E(x), nor on H(s).
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Lemma 3. Under the assumptions (2), (3), (4), (5), we prove the energy
estimate

HfH oo
(@=B) [ 1D < IFI2 (@) + —— / B2 (1)
where B € (0, ).
Proof. Now we use u,, as test function in the weak formulation of (8) and
we have, thanks to (15) and dropping a positive term,
o [ 1D < hllunl) [ 1ENDa+ 1]l sl
< RN DNEIL N Dull, + HfH2 1(Q);

then the Young inequality, with B € (0, «), gives

Du, 2 < || F]2 O+ B [ |Duy,|? AL EJ?
a/ﬂ| unl” SIS s ) 1D + /Q’ tn| +43/Q’ a
O

which implies (17).
Thus there exists a function u € VVO1 2(Q) N L*>(£2) and a subsequence
{tn, } such that

Up, converges weakly in W01’2(Q) and a.e. to u. (18)

2.3 Existence

Proof of Theorem 1. Thanks to (18), it is possible to pass to the limit
in the weak formulation of (8), and we prove the existence of a bounded
weak solution u of (6). Moreover with the limits in (15), (17) we see that u
satisfies the a priori estimates

hll < 11

11 s gy D (11l )?
/'Du‘2 (@—B) | 4B(a—B) /QE|2'

Then, by minimization on B, we obtain (7).
Remark 2. If we go back to (8), thanks to (17) and (4), we can say that

—div(M (z)Duy) = yn, sequence bounded in L.
Thus we can use a result by [7] to say that the sequence Duy, (x) converges

a.e. to Du(x). This a.e. convergence and (18) imply

Up, converges to u strongly in Wol’q(Q), Vg<2. (19)
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2.4 Positivity of solutions

In this subsection, we prove a basic result in the study of Dirichlet problems:
the positivity of the solutions: if f(z) > 0, then u(x) > 0.

The standard proof (the use of v~ (z) as test function) does not work,
since the differential operator is not coercive, because of the presence of the
term of order one (the advection term).

We write again (8) (with weak bounded solution w,) and a dual problem,
similar to (12) (with weak bounded solution )

E(x) - Du, h(uy)
(L4 LIEN+ £ un]) 1+ 5 |h(un)|

' ) ‘ E(x) h(un)
—div(M*(z) Dyp,) — div (W 1+ LB+ Lju,)) 1+ ;|h(un)l> i

+un:f

—div(M (x)Duy,) +

=u .

Again note that a weak solution ¢, € WO1 2(9) exists thanks to Schauder
fixed point theorem and that 1, is a bounded function (or see [1], [2]); u(z)
is the bounded weak solution of Theorem 1.

We use again a duality approach: by (8) (with test function 1) and by
the last Dirichlet problem (with test function u,), we deduce that

/Q ™ = /Q Fim,

where [, fip, > 0, since 1), > 0, proved in [1], [2] since u_ > 0. We pass to
the limit and we deduce that

—/u_u_:/uu_z(),
Q Q
that is u= = 0: u(xz) > 0. Thus we proved the following positivity theorem.
Theorem 2. Assume (2), (3), (4), (5),
f(z)>0.
Then wu, bounded weak solution of (6), is such that

u(z) > 0.
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2.5 Open problems

e In the previous Theorem: if f(z) > 0 and not equal to zero a.e., “how
much positive is” the weak solution u(x)?
Is it possible to prove, as in [5], that the the set {u(xz) = 0} has zero
measure?

e h(s) = s|s[P~2 and

u, € Wy (Q) N LX(Q) :
/M(x)DupDQO"‘/ P[E(x) - Duy up’up‘pQ"‘/Q Up P

o f@ e, (20)
Y o € Wy (Q) N L®(Q),
lupll _ < IIfIl

Asymptotic beaviour, as p — oo, of the sequence {u,} (bounded in
15°(92).

QH(S)Z\/ST'.
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