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Abstract

Consider in a real Hilbert space
(
H, (·, ·), | · |

)
the following in-

complete Cauchy problem,

(ICP )

{
u′′(t) = ∇φ(u(t)), t ≥ 0, (E)

u(0) = u0, (IC)

where u0 ∈ H is a given initial state, and φ : H → R is a C1, non-
convex function (preferably quasiconvex, as explained below). We call
(ICP ) an incomplete Cauchy problem because the usual additional
Cauchy condition u′(0) = v0 is missing. In this paper, we establish
sufficient conditions on the non-convex function φ guaranteeing the
existence of bounded solutions on [0,∞) of (ICP ) for any u0 ∈ H.
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1 Introduction

First of all, we recall that the existence of bounded solutions for the problem
(ICP ) formulated in our abstract above has been proved long ago in the
case when φ : H → (−∞,∞] is a proper (i.e., not identically +∞), lower
semicontinuous, convex function with a nonempty set of minimum points
(see [1, Chap. V, p. 315]). More precisely, in this case, for any u0 ∈
D(φ), there exists a unique bounded solution of problem (ICP ) with the
subdifferential ∂φ instead of ∇φ. That is why here we concentrate our
attention on the case when φ is non-convex. By showing the existence of
bounded solutions on [0,∞) for (ICP ), we legitimize the existing results on
the asymptotic behavior of the solutions to equation (E) as t → ∞, where
φ is a quasiconvex function (i.e., its level sets {x ∈ H; φ(x) ≤ α}, α ∈ R,
are convex) (see [5], [6]).

Specifically, in this paper we provide an answer to the long standing
open problem concerning the existence of bounded solutions for the problem
(ICP ) with a C1 function φ in two cases:

1. the gradient ∇φ is a Lipschitz operator;

2. the function φ satisfies

a|v|2 ≤ φ(v) ≤ b|v|2, ∀v ∈ H, (1)

where 0 < a < b <∞ are given numbers.

2 The case when φ is a C1 function with
∇φ Lipschitzian

In this case we have the following result:

Theorem 1. Assume that φ : H → R is differentiable and ∇φ is a Lipschitz
operator on H. Then for all u0, v0 ∈ H there exists a unique function u ∈
C2([0,∞);H) satisfying equation (E) on [0,∞) and the Cauchy conditions
u(0) = u0, u

′(0) = v0.

Proof. Using the substitution v(t) = u′(t) we are led to the following Cauchy
problem in the product space X := H ×H equipped with the usual scalar
product and norm: {

d
dt(u, v) = (v,∇φ(u)), t ≥ 0,

(u(0), v(0)) = (u0, v0).
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Let T be an arbitrary but fixed positive number. By applying Banach’s
Contraction Principle, we easily derive the existence of a unique solution
(u, v) ∈ C1([0, T ];X) of the above problem considered on the interval [0, T ].
Of course, this solution can uniquely be extended to the whole half axis
[0,∞). So u = u(t) belongs to C2([0,∞);H) and it is the unique solution of
equation (E) satisfying the Cauchy conditions u(0) = u0, u

′(0) = v0. Hence,
the conclusion of Theorem 1 holds true.

2.1 Existence of bounded solutions on [0,∞) for (ICP )

In the context of Theorem 1, we need to identify additional conditions on φ
that guarantee the boundedness of u = u(t) on [0,∞). Such situations are
possible. In what follows, we identify a class of C1 functions φ with Lips-
chitzian gradients such that for every u0 ∈ H, u = u(t;u0, v0) in Theorem 1
be bounded on [0,∞) for some v0 ∈ H.

For the moment, let us consider for example the function φ : H → R
defined by

φ(v) =
|v|2

1 + |v|2
, v ∈ H.

This function is not convex (but is quasiconvex), and its Fréchet derivative
is given by

∇φ(v) =
2

(1 + |v|2)2
v, v ∈ H.

Furthermore, by an elementary computation it follows that ∇φ : H → H is
a Lipschitz operator. Therefore, according to Theorem 1 above, for every
u0, v0 ∈ H, there exists a unique function u = u(t;u0, v0) ∈ C2([0,∞);H)
satisfying equation (E) and the Cauchy conditions u(0) = u0 and u′(0) = v0.
According to [3, 1177–1178], for every u0 ∈ H, u(t;u0, v0) is bounded on
[0,∞) for some v0 ∈ H.

Indeed, if we multiply equation (E) by u′(t) we get

1

2

d

dt
|u′(t)|2 =

d

dt
φ(u(t)), t ≥ 0,

or, equivalently,
1

2
|u′(t)|2 = φ(u(t)) + C, t ≥ 0,

where C is a real constant. We choose v0 = u′(0) such that C = 0, and
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consider the following related Cauchy problem in H, denoted (CP ),u
′(t) = −

√
2√

1+|u(t)|2
u(t), t ≥ 0,

u(0) = u0.
(2)

It is easily seen that the operator P : H → H defined by

Pv = −
√

2√
1 + |v|2

v, v ∈ H

is Lipschitzian. Therefore the above problem (CP ) has a unique solution u =
u(t, u0, v0) ∈ C∞([0,∞);H), with v0 chosen above (by applying Banach’s
Contraction Principle in the space C([0, T ];H), T > 0, equipped with a
Bielecki norm, with extension to [0,∞)).

Now, multiplying equation (2) by u(t), we find

d

dt
|u(t)|2 ≤ 0, t ≥ 0,

so |u(t)| ≤ |u0|, t ≥ 0. Hence u = u(t, u0, v0) is bounded on [0,∞). In fact
this u satisfies (ICP ). Indeed, if we differentiate the equation√

1 + |u|2u′ +
√

2u = 0, t ≥ 0,

derived from (2), we obtain

(u, u′)√
1 + |u|2

u′ +
√

1 + |u|2u′′ = −
√

2u′, t ≥ 0. (3)

Using again (2) we obtain

(u, u′) = −
√

2|u|2√
1 + |u|2

, (4)

and so by (3) and (4) we derive

u′′ =
2

(1 + |u|2)2
u, t ≥ 0,

hence u satisfies equation (E). Therefore, the function φ : H → R,

φ(v) =
|v|2

1 + |v|2
, v ∈ H,
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is a good example for the existence of bounded solutions on [0,∞) for prob-
lem (ICP ).

Note that the same example was considered in [4] in the particular case
H = R which allows using elementary student level arguments.

Now, for λ, µ > 0, define φλµ : H → R by

φλµ(v) =
λ|v|2

1 + µ|v|2
, v ∈ H.

It is easily seen (by using arguments similar to those corresponding to the
case λ = µ = 1) that problem (ICP ) with φ = φλµ has bounded solutions
on [0,∞) for all λ > 0, µ > 0. Therefore, we have a class of functions
{φλµ, λ, µ > 0} generating bounded solutions for (ICP ). Many other classes
of such functions could also be considered for applications.

3 The case when φ is a C1 function satisfying
condition (1)

In this case we have the following result:

Theorem 2. If φ : H → R is a C1 function satisfying condition (1) above,
then problem (ICP ) has a solution bounded on [0,∞).

Proof. First of all, it follows by condition (1) that φ(0) = 0 and φ = φ(v)
attains its global minimum at v = 0, so ∇φ(0) = 0. Therefore, in this case
problem (ICP ) admits the null solution. In what follows we will assume
that u0 6= 0.

Consider the Sobolev space X = W 1,2
(
(0,∞);H

)
, i.e., the space of all

w ∈ L2
(
(0,∞);H

)
with derivatives w′ ∈ L2

(
(0,∞);H

)
, equipped with the

inner product

((w1, w2)) =

∫ ∞
0

(w1(t), w2(t)) dt+

∫ ∞
0

(w′1(t), w
′
2(t)) dt, ∀w1, w2 ∈ X,

and the corresponding norm

‖w‖ =
(∫ ∞

0
|w(t)|2 dt+

∫ ∞
0
|w′(t)|2 dt

)1/2
, ∀w ∈ X,

so
(
X, ((·, ·)), ‖ · ‖

)
is a real Hilbert space.

Now, consider the subspace X0 = W 1,2
0

(
(0,∞);H

)
, which is defined as

the closure of C∞0
(
(0,∞);H) in X. In other words, X0 = W 1,2

0

(
(0,∞);H

)
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consists of all w ∈W 1,2
(
(0,∞);H

)
with w(0) = 0, being a Hilbert subspace

of X = W 1,2
(
(0,∞);H

)
with the same scalar product and norm.

Now, let us define the function F : X0 → R by

F (w) =
1

2

∫ ∞
0
|w′(t)− e−tu0|2 dt+

∫ ∞
0

φ(w(t) + e−tu0) dt, w ∈ X0.

According to our condition (1), F is well defined on X0 and coercive (i.e.,
F (w) converges to ∞ as ‖w‖ → ∞).

By the coercivity of F it follows that ∀M > 0 the set {w ∈ X0; F (w) <
M} is bounded in X0. Let (wn) be a minimizing sequence in X0 satisfying

InfX0F ≤ F (wn) < InfX0F +
1

n
, ∀n ∈ N. (5)

Then (wn) is bounded in X0 so, as X0 is a Hilbert space (hence reflexive),
one can extract a subsequence, again denoted (wn), which converges weakly
in X0 to some ũ ∈ X0.

On the other hand, as wn converges weakly to ũ in X0, it follows that
wn converges weakly in L2

(
(0,∞);H

)
(to ũ), and w′n also converges weakly

in L2
(
(0,∞);H

)
to the derivative ũ′. Let us explain this in detail for com-

pleteness. Denote by z the weak limit of w′n in L2
(
(0,∞);H

)
. Notice that

for all n ∈ N, w = ψ(t)ζ with ψ ∈ C∞0 (0,∞) and ζ ∈ H, we have∫ ∞
0

(w′n(t), ζ)ψ(t) dt = −
∫ ∞
0

(
wn(t), ζ

)
ψ′(t) dt,

which implies by passing to limit as n→∞,∫ ∞
0

(z(t), ζ)ψ(t) dt = −
∫ ∞
0

(ũ(t), ζ)ψ′(t) dt,

and so ∫ ∞
0

(z(t), ζ)ψ(t) dt =

∫ ∞
0

(ũ′(t), ζ)ψ(t) dt,

for all ζ ∈ H and ψ ∈ C∞0 (0,∞). Hence z = ũ′ and consequently w′n → ũ′

weakly in L2
(
(0,∞);H

)
, as asserted.

On the other hand, for T > 0 arbitrary but fixed, the sequence (wn)
is bounded in C([0, T ];H) and equi-continuous on [0, T ], as one can easily
deduce from

wn(t) =

∫ t

0
w′n(s) ds, n ∈ N.
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So by the Arzelà-Ascoli Criterion wn converges to ũ in C([0, T ];H). Since
T > 0 was arbitrary and φ ∈ C1, we have

lim
n→∞

φ(wn(t) + e−tu0) = φ(ũ(t) + e−tu0),

uniformly on every interval [0, T ], where t → φ(ũ(t) + e−tu0) belongs to
C([0,∞);R) ∩ L1

(
(0,∞);R

)
.

Moreover, for every T ∈ (0,∞), we have

lim inf
n→∞

∫ ∞
0

φ(wn(t) + e−tu0) dt ≥
∫ T

0
φ(ũ(t)) + e−tu0) dt,

which implies

lim inf
n→∞

∫ ∞
0

φ(wn(t) + e−tu0) dt ≥
∫ ∞
0

φ(ũ(t)) + e−tu0) dt.

On the other hand, as w′n → ũ′ weakly in L2
(
(0,∞);H

)
, we have

lim inf
n→∞

∫ ∞
0
|w′n(t)− e−tu0|2 dt ≥

∫ ∞
0
|ũ′(t)− e−tu0|2 dt.

Therefore, F (ũ) ≤ lim infn→∞ F (wn). In fact, taking into account (5), we
can conclude that infX0F = limn→∞ F (wn) = F (ũ). As ũ is a minimum
point of F on X0, we have

∇F (ũ) = 0. (6)

Now, for λ > 0 and v ∈ X0, we have

F (ũ+ λv)− F (ũ)

λ
=

1

2λ

∫ ∞
0

(
|ũ′(t)−e−tu0 +λv′(t)|2−|ũ′(t)−e−tu0|2

)
dt+

1

λ

∫ ∞
0

(
φ(ũ(t) + e−tu0 + λv(t))− φ(ũ(t) + e−tu0)

)
dt.

Hence, for λ→ 0+ we get (see also equation (6) above)

0 =

∫ ∞
0

(ũ′(t)− e−tu0, v′(t)) dt+

∫ ∞
0

(∇φ(ũ(t) + e−tu0), v(t)) dt,

for all v ∈ C∞0
(
(0,∞);H

)
. Therefore, choosing in the last equation v(t) =

α(t)ξ, with α ∈ C∞0 (0,∞) and ξ ∈ H, we get{
−ũ′′(t)− e−tu0 +∇φ

(
ũ(t) + e−tu0

)
= 0, t ≥ 0,

ũ ∈ X0,
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hence u(t) = ũ(t) + e−tu0 satisfies problem (ICP ). Note that both the
functions f(t) = |u(t)|2, f ′(t) = 2((u(t), u′(t)) belong to L1

(
(0,∞);R

)
. It

follows from

f(t) = |u0|2 +

∫ t

0
f ′(s) ds

that supt≥0 |u(t)| <∞, so problem (ICP ) has a solution bounded on [0,∞).

Remark 1. Notice that in Theorem 2 we did not assume that φ is a qua-
siconvex function, but this situation is not excluded. One can say that in
Theorem 2 the function φ is almost convex, but not necessarily convex.

3.1 Graphical representations in the case H = R

We notice that in the case H = R there are infinitely many quasiconvex
C1 functions y = φ(v) satisfying condition (1) above, that may be alterna-
tively convex and concave on subintervals, i.e., their graphs are smooth
wavy curves situated in the region between the graphs of the functions
y = a|v|2 = av2 and y = b|v|2 = bv2, as illustrated in Figures 1–3 below,
wherein the plottings were obtained using Matlab.

Example 1. Consider the functions g, h : R → R, g (v) = 0.1v2, h (v) =
0.02v2, and the function φ : R→ R defined by

φ(v) =


h (v) , 0 ≤ v ≤ 2,

(1− θ(v))h (v) + θ(v)F (v), v ≥ 2,

φ(−v), v ≤ 0,

where

θ(v) = s
(v

2
− 1
)
, v ∈ R,

s(t) =


0, t ≤ 0,

3t2 − 2t3, 0 < t < 1,

1, t ≥ 1,

and
F (v) = 0.056v2 + 0.036 sin(4v), v ∈ R.

Then φ is quasiconvex, of class C1 (R) , φ′ is Lipschitzian, and its graph is
plotted in Figure 1 below on a time interval.
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Example 2. We take now the functions g, h : R → R, g (v) = 0.1v2,
h (v) = 0.01v2, and φ : R→ R,

φ(v) =


g(v)− (g(v)− h(v))S1(v), v ∈ (−∞,−5) ,
g(v), v ∈ [−5, 0],
h(v), v ∈ [0, 6],
h(v) + (g(v)− h(v))S2(v), v ∈ (6,∞) ,

where

S1(v) = 0.5(1− exp(−2(−5− v)))2(1 + 0.4 sin(1.5(−5− v))), v ∈ R,

S2(v) = 0.25(1− exp(−2(v − 6)))2(1 + 0.3 sin(1.5(v − 6))), v ∈ R.

We easily infer that φ is of class C1 (R) and φ′ is Lipschitzian. The plotting
of the graph of φ on a time interval is given in Figure 2 below.

Example 3. Another example is represented by the functions g, h : R→ R,
g(v) = 0.1v2, h(v) = 0.01v2, and φ : R→ R,

φ(v) =


h(v) + (g(v)− h(v))S1(v), v ∈ (−∞,−6) ,
h(v), v ∈ [−6, 0],
g(v), v ∈ [0, 5],
g(v)− (g(v)− h(v))S2(v), v ∈ (5,∞) ,

where

S1(v) = 0.25(1− exp(−2(−6− v)))2(1 + 0.4 sin(1.5(−6− v))), v ∈ R,

S2(v) = 0.7(1− exp(−2(v − 5)))2(1 + 0.3 sin(1.5(v − 5))), v ∈ R.

Then φ is of class C1 (R) and φ′ is Lipschitzian, the plotting of the graph of
φ on a time interval being provided in Figure 3 below.

4 Conclusion

In this paper, we have identified classes of non-convex C1 functions φ such
that the problem given in (ICP ) has bounded solutions on [0,∞). Thus we
have legitimized the efforts in [2], [5], [6] towards establishing results on the
asymptotic behavior of the bounded solutions to problem (ICP ) as t→∞.
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Figure 1: The graph of the function φ defined in Example 1
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Figure 2: The graph of the function φ defined in Example 2
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Figure 3: The graph of the function φ defined in Example 3
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