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Abstract

We study an elliptic equation, with homogeneous Dirichlet bound-
ary conditions, driven by a mixed type operator (the sum of the Lapla-
cian and the fractional Laplacian), involving a parametric reaction and
an undetermined source term. Applying a recent abstract critical point
theorem of Ricceri, we prove existence of a solution for a convenient
source and small enough parameters.
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1 Introduction and main result

Elliptic equations driven by mixed local and nonlocal operators have been
the subject of a number of interesting studies in the latest years, partly be-
cause they are used to describe the superposition of two different stochastic
processes (Brownian motion and Lévy flight), and partly due to a genuinely
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mathematical interest. The model for such operators is the sum of a Lapla-
cian and a fractional Laplacian, with order s € (0, 1), the latter being defined
for all u: RY — R as

(-8 ulw) =PV [ W dy.

where 'PV’ stands for ’principal value’ and the multiplicative constant is

B 1 —cos(z1) , 11
Cns = [/RN e dz] .

In such case, a linear nonhomogeneous equation with homogeneous Dirichlet
type conditions, set in a bounded domain Q ¢ RY with a general source term
h € L?(Q2), will read as

{—Au +(=A)Pu=h(z) inQ

u=20 in Q°,

where we notice that the conditions hold on Q¢ = R™ \ , rather than just
on 0f), due to the nonlocal character of the operator (—A)®. The leading
operator is a linear integro-differential one. We say that v € H'(RV) is a
weak solution of the problem above, if u = 0 a.e. in 2¢ and for all v € C2°(2)

/QVu-VvderCN,s //RNXRN (u(z) = u(y))(v(z) = v(y)) d dy

‘l’ _ y‘NJrZs

= /Q h(z)v dz.

We refer the reader to [1] for an introduction to mixed operators, and to [4]
for the fractional Laplacian and the related Sobolev spaces. Also, see [2] for
a nonlinear extension of the operator above, and [5] for the (non-obvious)
formulation of a Neumann type boundary condition. Finally, [8] presents a
general framework for purely nonlocal elliptic equations, seen in a variational
perspective.

In this short note, we let aside the delicate intertwining of local and nonlocal
dynamics, which mostly affect the regularity of solutions, and we hold on to
a simple approach, which consists in treating (—A)® u as a lower order term
in the equation. On the other hand, we consider a more general reaction
involving, beside the source h, a generalized logistic type reaction depending
on two powers ¢, € (1,2*) and a positive parameter A:

{—Au—i— (—A)*u = Nu|92u — [u[""2u+ h(z) inQ O

u=0~0 in Q€.
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Purely nonlocal equations of the type above, with A = 0, have been con-
sidered in [6,7]. In both works, bifurcations results are proved. In [6] the
sublinear case 1 < ¢ < r < 2 is studied, and it is proved that positive
solutions exist if, and only if, A lies above a threshold A\, > 0. In [7], an
analogous result is proved for the supercritical regime 2 < ¢ < r. Here we
let g, r span the whole subcritical interval, and we prove existence of at least
one solution for A below a positive threshold and for a convenient smooth
source h. In addition, we localize solutions in the unit ball with respect to
the fractional seminorm:

Theorem 1. Let Q2 C RY (N > 2) be a bounded domain with a C* boundary,

€ (1,2*). Then, there exists h € C°() with the following property: for
all g € (1,2%) there exists \* > 0 s.t. for all A € [0, \*] problem (1) has at
least one solution u with

// N(+2)|2 dr dy < 1.
RN xRN ’l’— |V +2s

In fact, we will prove a more general result, with the pure powers replaced by
non-autonomous reactions with subcritical growth (see Theorem 3 below).
Note that the general powers considered prevent the use of the direct method
of the calculus of variations, while the lack of a control at zero makes it
delicate to apply min-max schemes (such as the mountain pass theorem),
which anyway do not ensure localization in general. On the other hand,
Theorem 1 yields no information on the sign of the solution.

Our approach is entirely based on a recent work of Ricceri [9]. In such
work, two 'unusual’ existence results are proved for nonlinear elliptic equa-
tions affected by another type of nonlocality, consisting in the presence of a
Kirchhoff type potential. Both exploit an abstract theorem (see Theorem 2
below), which ensures existence of critical points of a perturbed functional,
localized in the interior of a closed convex subset K of a Banach space X.
Here the qualifying assumption is that K has nonempty interior and a non-
convex, sequentially weakly closed boundary. In [9], such K is defined as a
sublevel set for a sequentially weakly continuous integral functional, so 0K
is the corresponding level set, which ensures closure. We have chosen as
K the closed unit ball in the solution space, induced by a fractional order
seminorm, which turns out to be a sequentially weakly continuous functional
due to an ad hoc compact embedding result (see Lemma 1), thus implying
the localizazion in Theorem 1.
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2 Background

We establish a variational framework for (a generalized version of) problem
(1). Let Q be a bounded domain in RY (N > 2) with a C'-smooth boundary
09, so (2 is an extension domain for Sobolev type functions. For all p € [1, oo]
we denote by || - ||, the standard norm of LP(RY), and we systematically
identify functions defined in € with their 0-extensions to RY.

Our solutions space consists of the 0-extensions to RY of functions in H}(€2).
Equivalently, such space can be defined as

X:{UEHI(RN): u=0a.e. in Q°},

which is a separable Hilbert space with norm |ju|| = ||Vul|2. We recall that
X is compactly embedded into LP(RY) for all p € [1,2*), with

ON

2 NS 2
) N_g "I~

0 if N = 9.

Also, given s € (0, 1), we recall the definition of the (Gagliardo) s-fractional

seminorm X
= // ( ) dx dy} ?
) RN xRN ’33 - ’N+25 7

and we define the fractional Sobolev space H*(R") as the space of all u €
L*(RN) with [u]s < oo (see [4]). To incorporate the Dirichlet condition, we
define

Y ={ue HRY): u=0a.e. in Q°l,

again a Hilbert space with norm [u]s (see, for instance, [8, Eq. (1.65)]). The
variational formulation of the fractional Laplacian, in our framework, is the
following: for all u € Y, (—A)®u is the gradient of the functional

CN,S

u— 5 [u]z,

where Cy s > 0 is defined as in Section 1. Equivalently, for all u,v € Y

(=AY u,v) = Cns //RNxRN (u() _!z@;ﬁ\)’(ﬁg; o) dz dy.

We could not find a direct proof in the literature, so we include a short proof
of the following simple compactness result:
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Lemma 1. The space X is compactly embedded into Y .

Proof. Continuity of the embedding X < Y follows from [4, Proposition
2.2]. Hence, we focus on compactness. From [4, Proposition 3.4] we know
that Y can be endowed with an equivalent norm, defined via Fourier trans-
form. Indeed, for all u € Y we have

2
ol = o

/ €2\ F u(e)? de, (2)
RN

where F denotes the Fourier transform. Let (u,) be a bounded sequence in
X, then we have for some C > 0 independent of n

| JerFuop <.

By the compact embedding X < L%(RY), we can find v € X and a relabeled
subsequence s.t. u,, — u in L2(]RN). Set v,, = u, —uforalln € N, sov, — 0
in L2(RM). We claim that v, — 0 in Y. By (2), we may equivalently prove
that

i [ 61 (€ de = 0.
n RN
Fix € > 0. For all n big enough we have
1Fval3 < e+
Also, by Young’s inequality, we have for all £ € RV

s—1

€17 < el + Ces

with C' > 0 independent of . All these inequalities yield for all n € N big
enough (and a possibly bigger ')
[T o P dn < e [ €PFu©F dot 0 [ (o) ds
RN RN RN

< Ce.

Letting ¢ — 0, we find the desired convergence and prove the claim. Thus,
Up = u in Y. ]

Remark 1. We believe that a more general result than Lemma 1 above can
be proved, namely, that Wol’p(Q) is compactly embedded into Wi (Q) for all
p > 1. For instance, one could exploit an interpolation inequality, see [10].
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3 Proof of the main result

We begin by recalling, for the reader’s convenience, the abstract critical
point theorem that we are going to apply:

Theorem 2. [9, Theorem 2.1] Let X be a reflexive Banach space, Y be
a normed space, ¥ : X — Y be a bounded linear operator, S be a weakly*
dense, convex subset of Y*, K be a closed conver subset of X s.t. int(K) # 0,
0K s sequentially weakly closed in X, ¥(0K) is not convex in'Y. Also let
¢: 0K - R, ®: K — R be a functional, Gateauz differentiable in int(K).
Then, there exists h € S with the following property. For oll ¥ : K — R,
Gateauz differentiable in int(K), s.t. ¥ — ¢ is constant in 0K, ® + ¥ is
lower semicontinuous, strictly convex in K, and

lim D (u) + U(u)

Jul| 00 |

= +o0 if K is unbounded,

and for all T : K — R sequentially weakly lower semicontinuous, Gateaux
differentiable in int(K), there exists \* > 0 s.t. for all X € [0, \*] there exists
u € int(K) s.t.

O (u) +V'(u) + XY (u) —hotp =0 in X*.

We now prove our existence and localization result, of which Theorem 1 is
a special case.

Theorem 3. Let Q C RN (N > 2) be a bounded domain with a C' boundary,
g: QxR — R be a Carathéodory mapping s.t. for a.e. x € )

(1) lg(z,t)| < C1(1+|t|"™Y) for allt € R (C1 >0, r € (1,2%));
(13) g(x,-) is nonincreasing in R;
(13i) g(x,t)t <O for allt € R.

Then, there exists h € CZ°(Q2) with the following property. For all Carathéodory
mapping f: QxR — R satisfying for a.e. x € Q and allt € R

[z, 1)) < Ca(1+ [t771) (C2 >0, g & (1,27)),

there exists \* > 0 s.t. for all X € [-\*, \*] we can find a weak solution u of

{—Au + (=AY u=Af(z,u) + g(xz,u) + h(z) inQ 3)

u =0 in Q°,

and in addition [u]s < 1.
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Proof. Let X, Y be defined as in Section 2. Set for all u € X
Y(u) = u,

so by Lemma 1 ¢ : X — Y is a linear compact operator. Also, set S =
C°(Q), a weakly™ dense linear subspace of the dual Y* (identified with Y
by Riesz’ representation theorem). Set

K={ueX: [u,<1}.

Since u — [u]s is a convex continuous functional in X, then K is a closed
convex, unbounded set in X, with 0 € int(K) and boundary

OK ={ue X : [u],=1}.

For all u € 0K we have —u € 0K while 0 ¢ 0K, so K is not convex in Y.

We claim that 0K is sequentially weakly closed in X. Indeed, let (u,) be a
sequence in 0K, s.t. u, — u in X. By [3, Proposition 3.5], (uy,) is bounded
in X. Passing to a subsequence, if necessary, we have u,(x) — u(x) for a.e.
z € RN, By Lemma 1, up to a further subsequence we have u,, — v in Y,
hence

[u]s = liin [unls =1,

which is equivalent to u € K.

Set for all u € X
CN,S
p(u) = :

2
Also, for all (z,t) € Q x R set

G(x,t):/o g(z,T)dr,

so by assumptions (i) (iii) we see that G : 2 x R — R is a Carathéodory
function, G(z,-) is concave, and for a.e. v € Q and all t € R

G(z,t) < 0. (4)

Set for all u € X .

O(u) = 5”“”2 - /QG(x,u) dx.

Then, @ is strictly convex as the sum of a strictly convex functional and a
convex one. By (i), ® € C'(X) with derivative given for all u,v € X by

(@' (u),v) :/QVu-Vvdw—/Qg(a:,u)vd:c.
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All the hypotheses of Theorem 2 are fulfilled, so let A € S be as in the
statement of such result. Next we set for all u € X

W) = o,

so U € C1(X) is strictly convex and, as recalled in Section 2, for all u,v € X
we have

(W' (u),v) = ((=A) u,v).
Also, for all u € K we have

_ CN,S
2

() - pu) ([u2 - 1) =0.

The functional ®+W¥ : X — R is strictly convex and continuous. In addition,
by (4), for all uw € X \ {0} we have

O(u) + ¥(u) _ [lu]

lull 72

and the latter tends to oo as |lu|| — oo. These observations make ¥ a
legitimate choice for Theorem 2.

There remains but one element to define. Set for all (z,t) € Q@ x R

F(m,t):/o f(z,7)dr,

and for all u € X

Y () :—/QF(x,u) dz.

By the growth condition on f and the compact embedding X < L%(Q), we
see that Y is sequentially weakly continuous in X, and T € C!(X) with

(T (u),v) = —/Qf(:v,u)v dx.

By Theorem 2, there exists A* > 0 s.t. for all A € [0, \*] we can find u €
int(K) (ie., [uls <1)s.t. in X*

' (u) + W' (u) + AY' (u) — h = 0. (5)

Replacing f with —f, the conclusion is easily extended to the negative pa-
rameters A € [—\*,0). Finally, we note that (5) rephrases as follows: for all
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v € CX(N) we have

/QVu-Vvd:chCN,s //RNXRN (u(z) — u(y))(v(z) = v(y)) dz dy

‘JJ _ y‘N+2s

= /Q (M (z,u) + g(z,u) + h(z)]vdz.

Also, u(z) = 0 for a.e. x € Q by definition of X, so u is a weak solution of
(3). O

For the sake of completeness, we give a proof of the special case seen in
Section 1:

Proof of Theorem 1. Set for all t € R
g(t) = —|tI"7%t, f(t) = [t|"7*t,

so g € C°(R) satisfies conditions (i) (i) (iii), besides f € C°(R) satisfies
the growth condition. Theorem 3 then yields the existence and localization
of a solution of (1), for convenient h € C°(Q2) and A € [0, A*]. O
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