
Ann. Acad. Rom. Sci.
Ser. Math. Appl.

ISSN 2066-6594 Vol. 18, No. 1/2026

ON THE NON-COERCIVE COMPETING

(p, q)-LAPLACIAN DIRICHLET PROBLEM∗

Marek Galewski†

Dedicated to Biagio Ricceri on the occasion of his 70th anniversary 
 

 DOI     10.56082/annalsarscimath.2026.1.199

Abstract

We investigate the existence of generalized solutions to a non-
coercive competing system driven by the (p, q)-Laplacian. In order
to reach the existence result, we derive an abstract principle based on
the convergence of the Galerkin scheme.

Keywords: competing operator, generalized solution, Dirichlet prob-
lem, abstract principle.

MSC: 47J05, 35J92.

1 Introduction

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω. Fix p > q >
1. We study the following problem with homogeneous Dirichlet boundary
condition:

−div
(
|∇u|p−2∇u

)
+ div

(
|∇u|q−2∇u

)
= λf(x, u,∇u) in Ω,

u (x) = 0 on ∂Ω,

(1)

where λ > 0 is a numerical parameter and where the convection term f :
Ω×R×RN → R is the Carathéodory function satisfying only the following
generic condition:
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(H): There exist a nonnegative function σ ∈ Lp′(Ω) and constants b ≥ 0

and c ≥ 0 such that

|f(x, s, ξ)| ≤ σ(x) + b|s|p−1 + c|ξ|p−1, for a.e. x ∈ Ω, all s ∈ R, ξ ∈ RN .

Due to the homogeneous Dirichlet boundary condition and since q <
p, we consider problem (1) in the space W 1,p

0 (Ω) which is endowed with

the standard norm ‖∇(·)‖Lp(Ω). The dual space of W 1,p
0 (Ω) is denoted

W−1,p′(Ω). We refer to [2] for the background on Sobolev spaces. The
(negative) p-Laplacian −∆p : W 1,p

0 (Ω)→W−1,p′(Ω) is defined as follows

〈−∆pu, v〉 =

∫
Ω
|∇u(x)|p−2∇u(x)∇v(x) dx for all u, v ∈W 1,p

0 (Ω)

and it is uniformly monotone (hence strictly monotone), continuous, poten-
tial and bounded and therefore pseudomonotone, and also it is coercive. We
refer [3], [5] for some background notions in the area of the method of mono-
tone operators. Note that the operator −∆p + ∆q : W 1,p

0 (Ω) → W−1,p′(Ω)
appearing on the left hand side of (1) and defined as follows for all u, v ∈
W 1,p

0 (Ω)

〈(−∆p + ∆q)u, v〉 =

∫
Ω
|∇u|p−2∇u∇v dx−

∫
Ω
|∇u|q−2∇u∇v dx

is continuous, potential, bounded and due to q < p also coercive on W 1,p
0 (Ω).

Nevertheless it is not pseudomonotone. Such operators are called competing
operators as they lack any type of monotonicity and as their potentials lack
the weak sequential lower semicontinuity. The competing operators were
introduced in [6] and later on were applied for various types of problems,
see [4] and references therein. The surjectivity theorem on pseudomonotone,
bounded, coercive and continuous operator leads the existence of weak solu-
tions, see [3]. If we drop the assumption that the operator is pseudomono-
tone, than the weak solutions may not be reached and another type of
solution is needed.

The weak solution to problem (1), should it exist, is defined as a function
u ∈W 1,p

0 (Ω) such that∫
Ω
|∇u (x) |p−2∇u (x)∇v(x) dx−

∫
Ω
|∇u(x)|q−2∇u (x)∇v(x) dx

=

∫
Ω
f(x, u (x) ,∇u (x))v(x) dx, for all v ∈W 1,p

0 (Ω).
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Such a solution however may not be reached directly due to the mentioned
lack of monotonicity of the difference of the (negative) p-Laplacian and the
(negative) q-Laplacian which drives the left hand side of (1) understood in
a weak sense. This prevents the usage of methods of monotone operators.
Variational methods, described for example in [1], are not applicable due to
the fact that the convection depends on the gradient on the one hand and
due to the lack of monotonicity on the other hand.

We introduce the operator

A : W 1,p
0 (Ω)→W−1,p′(Ω)

which drives problem (1) in a standard manner

〈A (u) , v〉 =

∫
Ω
|∇u (x) |p−2∇u (x)∇v(x) dx−

∫
Ω
|∇u(x)|q−2∇u (x)∇v(x) dx−

∫
Ω
f(x, u (x) ,∇u (x))v(x) dx,

(2)

for u, v ∈W 1,p
0 (Ω). As we will mention later on, assumption (H) suffices to

have A continuous and bounded.

The notion of a generalized solution, introduced in [6], reads as follows:
a function u ∈ W 1,p

0 (Ω) is said to be a generalized solution to problem (1)

if there exists a sequence {un}n≥1 in W 1,p
0 (Ω) such that

(a) un ⇀ u in W 1,p
0 (Ω) as n→∞;

(b) limn→∞ 〈A (un) , v〉 = 0 for each v ∈W 1,p
0 (Ω);

(c) limn→∞ 〈A (un) , un − u〉 = 0.

Generalized solutions have been obtained for problems in which the driv-
ing operator is bounded, continuous and coercive. The methods leading to
their existence are described in detail in a recent book [4] and rely on the
analysis of the convergence of Galerkin or, in the potential case, Ritz type
schemes. The growth condition (H) is not sufficient to obtain the coerciv-
ity of A. Therefore, we cannot use the existing approaches concerning the
existence of generalized solutions. Nevertheless we are able to derive some
abstract existence result relying on the direct convergence of the Galerkin
scheme and next apply it to problem under consideration in order to get the
generalized solution. Precisely speaking we will determine the range of a nu-
merical parameter for which there problem (1) has at least one generalized
solution. Our contribution relies in the following observation: continuity of
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the operator; its boundedness and the boundedness of the Galerkin scheme
lead to the existence of the generalized solution. Throughout [4] and classical
applications of the Browder-Minty theorem to boundary value problems, the
boundedness of the Galerkin scheme is usually obtained via the coercivity.

2 Abstract result

Assume that E is a real, separable and reflexive Banach space. Our con-
siderations are inspired by the following result which is derived from the
Browder-Minty Theorem in case the coercivity on the operator governing
the equation is not necessarily imposed, see [3]:

Theorem 1. Let f ∈ E∗ be fixed. Assume that A : E → E∗ is demicontin-
uous (i.e. un → u0 in E implies that A (un) ⇀ A (u0) in E∗), bounded and
satisfies condition (M0) and the following condition

(B): There is a number R > 0 such that 〈A (u)− f, u〉 ≥ 0 if ‖u‖ = R.

Then the set of solutions to
A (u) = f

is non-empty and bounded.

The operator A satisfies condition (M0), if relations un ⇀ u0 in E,
A (un) ⇀ f in E∗ and limn→∞ 〈A (un) , un〉 = 〈f, u0〉 , imply that A (u0) = f .
Condition (M0) is used in order to show that the limit of the sequence of
Galerkin type approximations solves the given equation.

In the case of the operator −∆p + ∆q the condition (M0) is not satisfied.
This means that we cannot use the above theorem directly, and we need to
derive its counterpart concerning the existence of generalized solutions. We
will need some preparation for the proof.

Remark 1. Since E is separable, it contains a dense and countable set
{hk : k ∈ N}. For n ∈ N define En as a linear hull of {h1, ..., hn}. The
sequence of subspaces En has the following approximation property: for each
u ∈ E there is a sequence {un}n≥1 such that un ∈ En for n ∈ N and un → u.

The proof of the Browder-Minty Theorem, as seen in [3] and [4], utilizes
the following finite-dimensional existence result derived from the Brouwer
Fixed Point Theorem:
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Lemma 1. Assume that f : RN → RN is a continuous mapping such that

〈f (u) , u〉 ≥ 0 if ‖u‖ = R,

for some R > 0. Then there is u0 ∈ RN , ‖u0‖ ≤ R, such that f (u0) = 0.

Now we turn to writing an abstract result concerning the existence of
a generalized solution. Let A : E → E∗ be some operator. For any fixed
f ∈ E∗ we consider the following problem

A (u) = f. (3)

Definition 1. An element u ∈ E is said to be a generalized solution to
problem (3), if there exists a sequence {un}n≥1 in E such that

(a) un ⇀ u in E as n→∞;

(b) limn→∞ 〈A (un)− f, v〉 = 0 for each v ∈ E;

(c) limn→∞ 〈A (un)− f, un − u〉 = 0.

The abstract result reads:

Theorem 2. Let f ∈ E∗ be fixed. Assume that the operator A : E → E∗ is
continuous, bounded and satisfies assumption (B). Then problem (3) has at
least one generalized solution.
If additionally the operator A satisfies the (S+)-property, that is un ⇀ u in
E and lim supn→∞ 〈A (un) , un − u〉 ≤ 0 imply un → u in E, then problem
(3) has a weak solution, i.e. there u such that

〈A (u)− f, v〉 = 0 for all v ∈ E.

Proof. Let us fix n ∈ N and the space En from Remark 1. By fn we denote
the restriction of the functional f to En. Similarly by An we understand
the restriction of A to En. Then the operator An : En → E∗n is continuous
and from assumption (B) we have that

〈An (v)− fn, v〉 ≥ 0 whenever v ∈ En with ‖v‖ = R.

By Lemma 1 we now see that equation

An (u) = fn (4)

has at least one solution un with ‖un‖ ≤ R. Since the sequence {un}n≥1

is bounded, there is a subsequence, which we do not renumber, converging
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weakly to some u. Thus we have condition (a) from Definition 1 satisfied.
From (4), again possibly for a subsequence, we have

lim
n→+∞

〈An (un) , h〉 = lim
n→+∞

〈fn, h〉 = 〈f, h〉 for each h ∈
∞⋃
n=1

En.

Since An (un) = A (un) we obtain that condition (b) from Definition 1 is
satisfied. This also means that A (un) ⇀ f , since the operator A is bounded
and since the sequence {A (un)}n≥1 is weakly convergent, up to a subse-
quence. Moreover, testing (4) against un we see that

〈A (un) , un〉 = 〈f, un〉 .

Since obviously limn→+∞ 〈A (un)− f, u〉 = 0, we observe that condition (c)
from Definition 1 also holds.

If additionally the operator A satisfies the (S+)-property, then the se-
quence {un}n≥1 converges strongly, thus the assertion follows from condition
(b).

3 Applications

Now, we apply Theorem 2 to problem (1). Recall that the first eigenvalue
of −∆p has the variational expression

λ1 := inf
u∈W 1,p

0 (Ω),u6=0

∫
Ω
|∇u(x)|p dx∫

Ω
|u(x)|p dx

.

We proceed with the following estimate that leads to the already mentioned
continuity and boundedness of the operator of operator A given by (2). The
lemma below is reformulated after Lemma 2.2 from [6]:

Lemma 2. Under assumption (H) the Niemytskij operator induced by f
is well defined, continuous and such that there exists a constant C > 0 for
which we have∣∣∣∣∫

Ω
f(x, u (x) ,∇u (x))v(x) dx

∣∣∣∣
≤
∫

Ω
|f(x, u (x) ,∇u (x))v (x)| dx

≤ C
(
‖σ‖Lp′ (Ω) + ‖u‖p−1

Lp(Ω) + ‖∇u‖p−1
Lp(Ω)

)
‖∇v‖Lp(Ω) ,
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for all u, v ∈W 1,p
0 (Ω).

From Lemma 2 it follows by a direct calculation that:∫
Ω
|f(x, u (x) ,∇u (x))u(x) |dx

≤
(
λ−1

1 ‖σ‖Lp′ (Ω) ‖∇u‖Lp(Ω) +
(
λ−p1 b+ c

)
‖∇u‖pLp(Ω)

)
,

(5)

for all u ∈W 1,p
0 (Ω).

Now we can proceed to the existence of generalized solutions:

Theorem 3. Assume that condition (H) is satisfied. Let the number R be

such that R > (µ (Ω))1/p. Then, there is the parameter λ0 > 0 such that for
all λ ∈ (0, λ0] problem (1) has at least one generalized solution u0 ∈W 1,p

0 (Ω)
with the property ‖∇u0‖Lp(Ω) ≤ R.

Proof. From estimate (5) and from the well known relations concerning Lp

spaces, we obtain for any u ∈W 1,p
0 (Ω) that:

〈A (u) , u〉 ≥ ‖∇u‖pLp(Ω) − (µ (Ω))1/q−1/p ‖∇u‖qLp(Ω)

−λ
(
λ−1

1 ‖σ‖Lp′ (Ω) ‖∇u‖Lp(Ω) + λ−p1 b ‖∇u‖pLp(Ω) + c ‖∇u‖pLp(Ω)

)
,

where A is defined by (2). Note that since R > (µ (Ω))1/p, we have

Rp−1 − (µ (Ω))1/q−1/pRq−1 > 0.

If we put

λ0 =
Rp−1 − (µ (Ω))1/q−1/pRq−1

λ−1
1 ‖σ‖Lp′ (Ω) +

(
λ−p1 b+ c

)
Rp−1

,

then we see for u ∈W 1,p
0 (Ω) with ‖∇u‖Lp(Ω) = R and λ ∈ (0, λ0] that

〈A (u) , u〉 ≥ 0.

Hence, assumption (B) satisfied. Since the operator A is bounded and
continuous, we can apply Theorem 2 in order to get the assertion.

Since the standard (p, q)-Laplacian satisfies the (S+)-property, it follows
that Theorem 2 can be applied for the following classical problem

−div
(
|∇u|p−2∇u+ |∇u|q−2∇u

)
= λf(x, u,∇u) in Ω,

u (x) = 0 on ∂Ω,

(6)
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under condition (H). Using the proof of Theorem 3 we obtain what follows:

Theorem 4. Assume that condition (H) is satisfied. Let the number R > 0
be fixed. Then, there is λ0 > 0 such that for all λ ∈ (0, λ0] problem (6) has
at least one weak solution u0 ∈W 1,p

0 (Ω) with ‖∇u0‖Lp(Ω) ≤ R.

Proof. Since 〈−∆pu−∆qu, u〉 ≥ ‖∇u‖pLp(Ω) for any u ∈ W 1,p
0 (Ω), we may

put

λ0 =
Rp−1

λ−1
1 ‖σ‖Lp′ (Ω) +

(
λ−p1 b+ c

)
Rp−1

and proceed as in the proof of Theorem 3.
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