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1 Introduction

It is apparent today that the investigation of the influence of different pa-
rameters inherent in mathematical models from internal and/or external
sources is of great interest. This actually constitutes a permanent challenge
of stability analysis in both theoretical and applied models of variational
analysis that deal with real world phenomena and treat concrete applica-
tions to physics and engineering problems.

There is already a rich literature on stability issues in variational anal-
ysis; without claim of completeness we can refer to [1–7, 10, 11, 15, 19, 23].
The main novelty of this paper is a study of quantitative stability in a gen-
eral class of extended real-valued hemivariational inequalities with respect
to parametric perturbations in the elliptic operator and the Clarke direc-
tional derivative. Moreover, we apply our stability result of Lipschitz type
to an elliptic scalar boundary value problem that models unilateral contact
problems in solid mechanics with non-monotone friction.

We first consider a general class of hemivariational inequalities on a
reflexive Banach space V with norm ‖.‖ and with the following ingredients
following [22, Section 5.4] and [15, Section 2.4]: There are a convex closed
subset C ⊂ V , a nonlinear monotone continuous operator A0 : V → V ∗, a
linear continuous operator χ : V → X into a real Banach space X and a
locally Lipschitz function J0 : X → R with the Clarke generalized directional
derivative J0

0 . In addition we introduce an extended real-valued convex
lower semicontinuous proper function F : V → R ∪ {+∞}, and consider
the following extended real-valued hemivariational inequality problem: Find
u0 ∈ dom F such that

〈A0u0, v − u0〉+ J0
0 (χu0;χ(v − u0)) + F (v) ≥ F (u0) ∀v ∈ V. (HV I)

Further suppose that A0 is m0-strongly monotone (m0 > 0), i.e., for all
u, v ∈ V

〈A0u−A0v, u− v〉 ≥ m0‖u− v‖2, (1)

and similar to [22], suppose also the one-sided Lipschitz condition for the
generalized directional derivative J0

0 : There exists Θ0 > 0 such that for all
y1, y2 ∈ X

J0
0 (y1; y2 − y1) + J0

0 (y2; y1 − y2) ≤ Θ0‖y1 − y2‖2X , (2)

and in addition the smallness condition

Θ0‖χ‖2 < m0. (3)
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Under these assumptions and following [15], the problem (HV I) is uniquely
solvable. Inspired by the sensitivity analysis of abstract equilibria presented
in [6,21], we establish Lipschitz estimates for the parametric form of (HV I)
under perturbation of the elliptic operator A0 and the Clarke directional
derivative J0

0 . The perturbation is described by a parameter µ belonging
to a subset M (the space of an external perturbation) of a normed space,
whose norm is denoted by | · |. Thus, we consider a family of nonlinear
operators {Aµ : V → V ∗, µ ∈ M} := {A(., µ) : µ ∈ M}, and a family of
locally Lipschitz continuous functions {Jµ : X → R, µ ∈ M}. For a fixed
value µ̄ ∈ M of the parameter, for a given neighborhood V(µ̄) ⊂ M, the
parametric extended real-valued hemivariational inequality problem under
study reads for each µ ∈ V(µ̄) as follows: Find uµ ∈ dom F such that

〈Aµuµ, v − uµ〉+ J0
µ(χuµ;χ(v − uµ)) + F (v) ≥ F (uµ) ∀v ∈ V. (HV Iµ)

We shall consider the latter as a perturbed form of the problem (HV I).
In the following, we do not need to assume that (HV Iµ) admits at least
a solution uµ; instead, solvability will be proved in the first step of our
analysis. Let us denote the solution to (HV I) by ū , i.e., ū := uµ̄ = u0,
Aµ̄ := A0, and Jµ̄ := J0. Our analysis provides, under suitable assumptions
on the parametrized families (Aµ) and (Jµ), a stability result of the following
Lipschitz type: For all µ in the given neighborhood V(µ̄)

‖uµ − u0‖ ≤ c1|µ|,

where c1 > 0 is a constant to be specified.

The second problem in consideration is the following nonlinear variational-
hemivariational inequality on a bounded Lipschitz domain D ⊂ Rd (with
d ≥ 2): Find u0 ∈ dom F such that

〈A0u0, v − u0〉+ ϕ0(u0, v) + F (v) ≥ F (u0) ∀v ∈ V, (V HV I)

where, A0 : V → V ∗ is a generally nonlinear monotone operator and the
bifunction ϕ0 on V × V is defined by

ϕ0(u, v) =

∫
D
j0
0(s, χu(s);χv(s)− χu(s)) ds, ∀u, v ∈ V,

j0 : D × Rd → R such that j0(·, ξ) : D → R is measurable on D for all
ξ ∈ Rd and j0(s, ·) : Rd → R is locally Lipschitz on Rd for almost all (a.a.)
s ∈ D.



Lipschitz stability of a class of extended real-valued HVIs 182

χ : V → Lp(D) (1 < p < ∞) is a linear continuous operator. j0
0(s, · ; ·)

stands for the generalized Clarke directional derivatives [9] of j0(s, ·).
Similarly to the problem (HV I), we are interested to the sensitivity

analysis of the parametric form of (V HV I), under perturbation of the data
A and ϕ, which is expressed for each µ ∈ V(µ̄) as follows: Find uµ ∈ dom F
such that

〈Aµuµ, v − uµ〉+ ϕµ(uµ, v) + F (v) ≥ F (uµ) ∀v ∈ V, (V HV Iµ)

where ϕµ(u, v) =

∫
D
j0
µ(s, χu(s);χv(s)− χu(s)) ds, ∀u, v ∈ V,∀µ ∈ V(µ̄).

The outline of the paper is as follows. The subsequent section 2 presents
the sensitivity analysis of (HV Iµ) for generally nonlinear monotone opera-
tors A0, Aµ, see Theorem 1, and also for the special case of bounded linear
operators A0, Aµ. Then the sensitivity result for (V HV Iµ) is given in The-
orem 2. Section 3 turns to the application to an elliptic scalar boundary
value problem that models unilateral contact problems in solid mechanics
with non-monotone friction and provides the sensitivity result in Theorem
3. The paper ends in section 4 with an outlook to some further directions
of research.

2 Sensitivity analysis - assumptions and results

2.1 Sensitivity analysis of (HV Iµ)

Here we present our main result on sensitivity analysis for (HV Iµ), that is
based on the following assumptions.

[CAµ] For all µ ∈ V(µ̄), Aµ : V → V ∗ is such that

(1) Aµ is hemicontinuous;

(2) there exists m1 > 0 such that for all u, v, w ∈ V and all µ ∈ V(µ̄)

|〈(Aµu−A0u)− (Aµv −A0v), w〉| ≤ m1|µ|‖u− v‖‖w‖;

[CJµ] for all µ ∈ V(µ̄), Jµ : X → R is such that

(1) there exists Θ1 > 0 such that for all µ ∈ V(µ̄) and all y1, y2 ∈ X

|J0
µ(y1; y2 − y1)− J0

0 (y1; y2 − y1) + J0
µ(y2; y1 − y2)

− J0
0 (y2; y1 − y2)| ≤ Θ1|µ|‖y1 − y2‖2X ;
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(2) there exists Θ > 0 such that for all µ ∈ V(µ̄) and all y1, y2 ∈ X

|J0
µ(y1; y2 − y1)− J0

0 (y1; y2 − y1)| ≤ Θ|µ|‖y1 − y2‖X ;

[Cuµ] boundedness of the solutions uµ: there exists R > 0 such that for all
µ ∈ V(µ̄)

‖uµ‖ ≤ R;

[Cd] control of data: assume that

|µ| < m0 −Θ0‖χ‖2

m1 + Θ1‖χ‖2
.

Remark 1. Following [7, Remark 2.1], condition [CJµ](2) is equivalent to:
there exists Θ > 0 such that for all µ ∈ V(µ̄) and all u ∈ V ,

∂cJµ(u) ⊂ ∂cJ0(u) + Θ|µ|BV ,

where BV stands for the closed unit ball of V .

Theorem 1. Under conditions [CAµ], [CJµ], [Cuµ] and [Cd], for each
µ ∈ V(µ̄), the problem (HV Iµ) is uniquely solvable. Moreover, the following
Lipschitz estimate is satisfied: For all µ ∈ V(µ̄),

‖uµ − u0‖ ≤
θ + Θ‖χ‖

m0 −Θ0‖χ‖2 − (m1 + Θ1‖χ‖2)|µ|
|µ|, (4)

where

θ := sup
µ∈V(µ̄)

‖Aµ0−A00‖V ∗
|µ|

+m1R.

Proof. We divide the proof into two steps.

Step 1: Existence and uniqueness
Assumption [CAµ](2) implies that for all u, v ∈ V and all µ ∈ V(µ̄)

|〈(Aµu−A0u)− (Aµv −A0v), u− v〉| ≤ m1|µ|‖u− v‖2. (5)

By combining inequalities (1) and (5), we have for all u, v ∈ V and all
µ ∈ V(µ̄)

〈Aµu−Aµv, u− v〉 ≥ (m0 −m1|µ|)‖u− v‖2. (6)

On the other hand, from (2), [CJµ](1) and triangle inequality, we also have,
for all y1, y2 ∈ X and all µ ∈ V(µ̄)

J0
µ(y1; y2 − y1) + J0

µ(y2; y1 − y2) ≤ (Θ0 + Θ1|µ|)‖y1 − y2‖2X . (7)
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Using inequality (7), we have for all u, v ∈ V and all µ ∈ V(µ̄)

J0
µ(χu;χ(v − u)) + J0

µ(χv;χ(u− v)) ≤ (Θ0 + Θ1|µ|)‖χ‖2‖u− v‖2. (8)

Since by [Cd], |µ| < m0−Θ0‖χ‖2
m1+Θ1‖χ‖2 <

m0
m1

, then m0 > m1|µ|, we deduce from

(6) that the operator Aµ is mµ := (m0−m1|µ|)-strongly monotone. On the
other hand, we also have

(Θ0 + Θ1|µ|)‖χ‖2 < mµ.

Finally, following [11, Section 4.2], the last inequality combined with (6)
and (8) guarantees existence and uniqueness of a solution to the perturbed
problem (HV Iµ).

Step 2: Lipschitz estimate
Now, for proving the estimation (4), we follow the quantitative stability
approach of [6] for strongly monotone equilibrium problems. Let us define
for all u, v ∈ V and all µ ∈ V(µ̄)

Φµ(u, v) := 〈Aµu, v − u〉+ J0
µ(χu;χ(v − u)).

Then, for all u ∈ V and all µ ∈ V(µ̄), Φµ(u, ·) is convex and lsc on V, and
Φµ(u, u) = 0. In this way, the perturbed problem (HV Iµ) is equivalent to
the following parametric extended real-valued equilibrium problem: for each
µ ∈ V(µ̄), find uµ ∈ V such that

Φµ(uµ, v) + F (v)− F (uµ) ≥ 0, ∀v ∈ V.

In a similar way, we have, for all v ∈ V

Φ0(u0, v) + F (v)− F (u0) ≥ 0.

Thus, if we set v = u0 in the first inequality and v = uµ in the second one,
by adding the two obtained relations, we have for all µ ∈ V(µ̄)

0 ≤ Φµ(uµ, u0) + Φ0(u0, uµ),

and hence

0 ≤ Φµ(uµ, u0) + Φµ(u0, uµ) + Φ0(u0, uµ)− Φµ(u0, uµ).

Next, we first estimate using (6) and (8)

Φµ(uµ, u0) + Φµ(u0, uµ)

= 〈Aµuµ −Aµu0, u0 − uµ〉+ J0
µ(χuµ;χ(u0 − uµ)) + J0

µ(χu0;χ(uµ − u0))

≤ −
(
(m0 −m1|µ|)− (Θ0 + Θ1|µ|)‖χ‖2

)
‖uµ − u0‖2 ∀µ ∈ V(µ̄). (9)
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Now, we aim to estimate |Φµ(u0, uµ) − Φ0(u0, uµ)|. To this end, we apply
assumption [CAµ](2) with v = 0, then for all u ∈ V

‖Aµu−A0u‖V ∗ ≤ ‖Aµ0−A00‖V ∗ +m1|µ|‖u‖.

Since, by [Cuµ], the family {uµ} is uniformly bounded, we define

θ := sup
µ∈V(µ̄)

‖Aµ0−A00‖V ∗
|µ|

+m1R.

Then, for all µ ∈ V(µ̄)

‖Aµuµ −A0uµ‖V ∗ ≤ θ|µ|. (10)

On the other hand, by (10) and [CJµ](2), we have for all µ ∈ V(µ̄)

|Φµ(u0, uµ)− Φ0(u0, uµ)|
≤ ‖Aµu0 −A0u0‖V ∗‖uµ − u0‖+ |J0

µ(χu0;χ(uµ − u0)) (11)

−J0
0 (χu0;χ(uµ − u0))|

≤ θ|µ|‖uµ − u0‖+ Θ|µ|‖χ‖‖uµ − u0‖.

We conclude that, for all µ ∈ V(µ̄)

|Φµ(u0, uµ)− Φ0(u0, uµ)| ≤ (θ + Θ‖χ‖)|µ|‖uµ − u0‖. (12)

Using thus (9) and (12), we conclude that

(m0 −m1|µ| − (Θ0 + Θ1|µ|)‖χ‖2)‖uµ − u0‖2 ≤ (θ + Θ‖χ‖)|µ|‖uµ − u0‖.

Therefore,

‖uµ − u0‖ ≤
θ + Θ‖χ‖

m0 −m1|µ| − (Θ0 + Θ1|µ|)‖χ‖2
|µ|.

This completes the proof.

2.2 The case of bounded linear operators

In this subsection, we consider problems of the form (HV I) and (HV Iµ)
with bounded linear operators A0, Aµ : V → V ∗. In this case clearly assump-
tion [CAµ](2) reduces to : There exists m1 > 0 such that for all µ ∈ V(µ̄)

‖Aµ −A0‖L(V,V ∗) ≤ m1|µ|. (13)
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Moreover, similar to [15,22], in addition to the one-sided Lipschitz continuity
(2), we assume that, for all µ ∈ V(µ̄), the local Lipschitz function Jµ satisfies
the following growth condition

‖ξ‖X∗ ≤ dJµ(1 + ‖z‖X), ∀z ∈ X, ξ ∈ ∂Jµ(z). (14)

Corollary 1. Assume that assumptions [CAµ](1), (13), [CJµ] and [Cd] hold.
Then, for each µ ∈ V(µ̄), the problem (HV Iµ) is uniquely solvable. More-
over, the following Lipschitz estimate is satisfied: for all µ ∈ V(µ̄), there
exists cµ > 0 such that

‖uµ − u0‖ ≤
θcµ + Θ‖χ‖

m0 −Θ0‖χ‖2 − (m1 + Θ1‖χ‖2)|µ|
|µ|. (15)

Proof. The proof of existence and uniqueness of a solution to (HV Iµ) is
similar to that of Theorem 1.

Let us prove the estimation (15). Under assumption (13), inequality (12)
becomes: for all µ ∈ V(µ̄)

|Φµ(u0, uµ)− Φ0(u0, uµ)| ≤ (θ‖uµ‖+ Θ‖χ‖)|µ|‖u− v‖. (16)

Then, following lines of the proof of Theorem 1, we end at

‖uµ − u0‖ ≤
θ‖uµ‖+ Θ‖χ‖

m0 −Θ0‖χ‖2 − (m1 + Θ1‖χ‖2)|µ|
|µ|. (17)

So, to conclude, we need an a priori estimate for the solution uµ for all µ ∈
V(µ̄). For this regard, combining the mµ := m0−m1|µ|-strong monotonicity
of Aµ with (8) for u = uµ and v = 0 ∈ dom F , we have for all µ ∈ V(µ̄)

mµ‖uµ − 0‖2 ≤ 〈Aµuµ −Aµ0, uµ − 0〉
≤ J0

µ(χuµ; 0− χuµ) + F (0)− F (uµ)

≤ (Θ0 + Θ1|µ|‖χ‖2‖uµ‖2 − J0
µ(0;χuµ) + F (0)− F (uµ).

On the other hand, by (14), we have

−J0
µ(0;χuµ) ≤ max

ξ∈∂Jµ(0)
‖ξ‖X∗‖χuµ‖X

≤ dJµ‖χ‖‖uµ‖.

Further, since the extended real-valued function F is conically minorized
(see, [15]), that is, it enjoys the estimate

F (v) ≥ −cF (1 + ‖v‖), ∀v ∈ V,
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then, we have for all µ ∈ V(µ̄)(
mµ − (Θ0 + Θ1|µ|

)
‖χ‖2‖uµ‖2 ≤ cF (1 + ‖uµ‖) + dJµ‖χ‖‖uµ‖+ F (0),

which yields
‖uµ‖2 ≤ αµ‖uµ‖+ βµ,

where αµ =
cF+dJµ‖χ‖

mµ−(Θ0+Θ1|µ|)‖χ‖2 > 0 and βµ = cF+F (0)
mµ−(Θ0+Θ1|µ|)‖χ‖2 > 0.

Using thus the elementary quadratic inequality estimate

x2 ≤ ax+ b ⇒ x ≤ a+
√
b, ∀x, a, b ≥ 0

to obtain, for |µ| sufficiently small, a priori estimate:

‖uµ‖ ≤ cµ :=
cF + dJµ‖χ‖

mµ − (Θ0 + Θ1|µ|)‖χ‖2
+

√
cF + F (0)

mµ − (Θ0 + Θ1|µ|)‖χ‖2
. (18)

Finally, we conclude by combining (17) and (18).

Remark 2. 1) One can consider the following sharper estimate for ‖uµ‖ :

‖uµ‖ ≤
αµ +

√
α2
µ + 4βµ

2
,

where αµ and βµ are the positive constants defined above. Indeed, the
sharpest upper bound for x satisfying the quadratic inequality x2 ≤ ax + b

(a, b > 0) is a+
√
a2+4b
2 which is always tighter than x ≤ a+

√
b.

2) Let C ⊂ V be a closed convex set. To obtain a stability result applicable
to the parametric form of the following problem: Find an element u0 ∈ C
such that

〈A0u0, v − u0〉+ J0
0 (χu0;χ(v − u0)) + f(v) ≥ f(u0) ∀v ∈ C,

we can simply set F = f + IC where IC is the indicator function of C.

2.3 Sensitivity analysis of (V HV Iµ)

In this subsection we come back to the nonlinear problem (V HV Iµ) de-
scribed in the introduction section. We provide a stability result of this
problem within the framework of (HV Iµ). Let V be a function space that
endowed with the norm ‖ · ‖ is a reflexive Banach space. Further we have
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a bounded Lipschitz domain D ⊂ Rd (with d ≥ 2) and a linear continuous
operator χ : V → Lp(D) (1 < p < ∞). With V continuously embedded in
(Lp(D), ‖.‖p), there is cp > 0, such that ‖u‖p ≤ cp‖u‖ ∀u ∈ V .
Let X := Lp(D) and introduce the real-valued locally Lipschitz functional

J0(y) :=

∫
D
j0(s, y(s)) ds y ∈ X.

Then by Lebesgue’s theorem of majorized convergence,

J0
0 (y; z) =

∫
D
j0
0(s, y(s); z(s)) ds (y, z) ∈ X ×X.

Similarly, for all µ ∈ V(µ̄), set

Jµ(y) :=

∫
D
jµ(s, y(s)) ds y ∈ X.

Then, for all µ ∈ V(µ̄),

J0
µ(y; z) =

∫
D
j0
µ(s, y(s); z(s)) ds (y, z) ∈ X ×X.

With these notations, for all u, v ∈ V and all µ ∈ V(µ̄), the bifunctions
ϕ0(u, v) and ϕµ(u, v) can be respectively identified to J0

0 (χu;χ(v − u)) and
J0
µ(χu;χ(v − u)). Consequently, problems (V HV I) and (V HV Iµ) become

equivalent to problems (HV I) and (HV Iµ), respectively.
Next suppose that the generalized directional derivative j0

0(s, .; .) satisfies
the following assumption: there exists λ0 > 0 such that there holds the
Lipschitz condition: for all ξ, η ∈ Rd

j0
0(s, ξ; η − ξ) + j0

0(s, η; ξ − η) ≤ λ0|ξ − η|2. (19)

In this case we have for all y1, y2 ∈ X

J0
0 (y1; y2 − y1) + J0

0 (y2; y1 − y2) ≤ λ0(meas (D))
1− 1

p ‖y1 − y2‖X , (20)

meas (D) being the measure of D. Indeed, by (19) and generalized Hölder’s
inequality, we have for all y1, y2 ∈ X

J0
0 (y1; y2 − y1) + J0

0 (y2; y1 − y2)

=

∫
D

(
j0
0(s, y1(s); y2(s)− y1(s)) + j0

0(s, y2(s); y1(s)− y2(s))
)
ds

≤ λ0

∫
D
|y1(s)− y2(s))|2 ds

≤ λ0

∫
D
‖y1 − y2‖ ds

≤ λ0(meas (D))
1− 1

p ‖y1 − y2‖2p.
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This means that condition (2) is satisfied with Θ0 = λ0(meas (D))
1− 1

p and
then, following (3), under the smallness condition

λ0(meas (D))
1− 1

p ‖χ‖2 < m0, (21)

problem (V HV I) is uniquely solvable.
In our sensitivity analysis for the problem (V HV Iµ) we require the fol-

lowing conditions.

[Cjµ] for all µ ∈ V(µ̄), jµ : D × Rd → R is such that

(1) there exists λ > 0 such that there holds the Lipschitz condition:
for all µ ∈ V(µ̄) and for all ξ, η ∈ Rd

|j0
µ(s, ξ; η − ξ)− j0

0(s, ξ; η − ξ) + j0
µ(s, η; ξ − η)− j0

0(s, η; ξ − η)|
≤ λ|µ||ξ − η|2;

(2) there exists δ3 > 0 such that for a.a. s ∈ D, all µ ∈ V(µ̄) and all
ξ, η ∈ Rd, it holds

|j0
µ(s, ξ; η − ξ)− j0

0(s, ξ; η − ξ)| ≤ δ3|µ||ξ − η|;

[C’d] control of data: assume that

|µ| < m0 − λ0(meas (D))
1− 1

p ‖χ‖2

m1 + λ(meas (D))
p−2
p ‖χ‖2

.

Remark 3. 1) Condition [Cjµ](1) implies: for all µ ∈ V(µ̄) and all y1, y2 ∈
X

|J0
µ(y1; y2 − y1)− J0

0 (y1; y2 − y1) + J0
µ(y2; y1 − y2)− J0

0 (y2; y1 − y2)|

≤ λ(meas (D))
p−2
p |µ|‖y1 − y2‖2X .

Indeed, by [Cjµ](1) and generalized Hölder’s inequality, we have for all µ ∈
V(µ̄) and all y1, y2 ∈ X
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|J0
µ(y1; y2 − y1)− J0

0 (y1; y2 − y1) + J0
µ(y2; y1 − y2)− J0

0 (y2; y1 − y2)|

=

∣∣∣∣∫
D

(
j0
µ(s, y1(s); y2(s)− y1(s))− j0

0(s, y1(s); y2(s)− y1(s))

+j0
µ(s, y2(s); y1(s)− y2(s))− j0

0(s, y2(s); y1(s)− y2(s))
)
ds
∣∣

≤ λ|µ|
∫
D
|y1(s)− y2(s)|2 ds

≤ λ|µ|
∫
D
‖y1 − y2‖2 ds

≤ λ|µ|(meas (D))
p−2
p ‖y1 − y2‖2p.

This means that assumption [CJµ](1) is satisfied with Θ1 = λ(meas (D))
p−2
p .

2) Similar arguments justify that condition [Cjµ](2) implies: for all µ ∈
V(µ̄) and all y1, y2 ∈ X

|J0
µ(y1; y2 − y1)− J0

0 (y1; y2 − y1)| ≤ δ3meas (D)
1− 1

p |µ|‖y1 − y2‖X .

This means that [CJµ](2) is also satisfied with Θ = δ3meas (D)
1− 1

p .

Thus, the next result is immediate from Theorem 1.

Theorem 2. Under conditions [CAµ], [Cjµ], [Cuµ] and [C’d], for each µ ∈
V(µ̄), the problem (V HV Iµ) is uniquely solvable. Moreover, the following
Lipschitz estimate is satisfied: For all µ ∈ V(µ̄),

‖uµ − u0‖ (22)

≤ θ + δ3(meas (D))
1− 1

p ‖χ‖

m0 − λ0(meas (D))
1− 1

p ‖χ‖2 − (m1 + λ(meas (D))
p−2
p ‖χ‖2)|µ|

|µ|,

where

θ := sup
µ∈V(µ̄)

‖Aµ0−A00‖V ∗
|µ|

+m1R. (23)

3 Application to a nonsmooth boundary value
problem

In this section, we consider a nonsmooth boundary value problem with uni-
lateral and nonmonotone boundary conditions, which simplifies a bilateral
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obstacle problem from [15] and from [16], dispensing with random structure.
This boundary value problem can be seen as a scalar model of unilateral
frictional contact problems in continuum mechanics, see [12, Remark 5.1]
and [18, Remark 1].

Let D ⊂ Rd (d ≥ 2) be a bounded Lipschitz domain with outer unit
normal ν. Let

• S0 ∈ L∞(D), with S0(x) ≥ S∗ > 0 a.e. in D,

• R ∈ L∞(D),

• T ∈ L∞(ΓN ∪ ΓS), with T (x) > 0 a.e.

The strong form of the boundary value problem under study is to find
a sufficiently smooth function u0 : D → R that satisfies the elliptic partial
differential equation

−div (S0 p(|∇u0|)∇u0) = Rg in D, (24)

along with boundary conditions specified below, where g ∈ L2(D), and
p : [0,∞)→ [0,∞) is continuous with t 7→ tp(t) monotonically increasing.

The boundary ∂D = Γ is partitioned into disjoint open subsets:

Γ = ΓD ∪ ΓN ∪ ΓS0 ∪ ΓT ∪ ΓC ,

with meas(ΓD) > 0, where ΓD is the Dirichlet part, ΓN the Neumann part,
ΓS the Signorini part, ΓT the Tresca part, and ΓC the Clarke part. Let
h ∈ L2(ΓN ∪ ΓS0), and k ∈ L2(ΓT ), with k > 0 a.e.

Boundary conditions: We impose

Qν := S0 p(|∇u0|)∇u0 · ν on ∂D,

u0 = 0 on ΓD,

Qν = Th on ΓN ,

u0 ≤ 0, Qν − Th ≤ 0, u(Qν − Th) = 0 on ΓS ,

|Qν | ≤ k, u0Qν + k|u0| = 0 on ΓT ,

p(|∇u0|)
∂u0

∂ν

∣∣∣∣
ΓC

∈ ∂j0(·, u0|ΓC ) on ΓC . (25)

Here, j0 : ΓC × R→ R satisfies:
- j0(·, ξ) is measurable for all ξ,
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- j0(s, ·) is locally Lipschitz for a.a. s ∈ ΓC ,
- for all ξ ∈ R, and η ∈ ∂j0(s, ξ), there exist constants cj0,1, cj0,2 > 0 such
that

(i) ηξ ≥ −cj0,2|ξ|, (ii) |η| ≤ cj0,1(1 + |ξ|). (26)

These imply:

j0
0(s, ξ;−ξ) ≤ cj0,2|ξ|, |j0

0(s, ξ; ς)| ≤ cj0,1(1 + |ξ|)|ς|, ∀ξ, ς ∈ R.

Functional setting: Let H := H1
0 (D) = {v ∈ H1(D) : v|ΓD = 0} the

separable Hilbert space with inner product and induced norm

〈v, w〉 =

∫
D
∇v · ∇w dx, ‖v‖ = ‖∇v‖L2(D).

Define the closed convex subset (Signorini constraint):

C := {v ∈ H : v|ΓS ≤ 0}.

Let Z := L2(Γ), and let γ : H → Z be the trace operator. Define:

K(z) :=

∫
ΓT

k(s)|z(s)| ds, z ∈ Z,

J0(y) :=

∫
ΓC

j0(s, y(s)) ds, y ∈ Z.

Assuming j0(s, ·) is locally Lipschitz, we have by Lebesgue’s theorem of
majorized convergence:

J0
0 (y; z) =

∫
ΓC

j0
0(s, y(s); z(s)) ds, y, z ∈ Z.

Let g(t) :=
∫ t

0 s · p(s) ds, which defines the strictly convex energy func-
tional:

G(u) :=

∫
D
g(|∇u|) dx, u ∈ H1(D),

with Gateaux derivative

DG(u, v) =

∫
D
p(|∇u|)∇u · ∇v dx, u, v ∈ H1(D).

Assuming p ∈ C1, 0 ≤ p(t) ≤ p0, we have

G(u) ≤ 1

2
p0‖u‖2, and DG is strongly monotone:

∃cG > 0, cG‖u− v‖2 ≤ DG(u, u− v)−DG(v, u− v).
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Variational formulation: In this setting it can be proved, see e.g. [18, The-
orem 1] for a similar result, that the boundary value problem (24) - (25) is
equivalent in the sense of distributions to the following HVI problem: Find
u0 ∈ C such that for all v ∈ C,∫

D
S0 p(|∇u0|)∇u0 · ∇(v − u0) dx+ J0

0 (γu0; γv − γu0) +K(γv)−K(γu0)

≥
∫
D
Rg (v − u0) dx+

∫
ΓN∪ΓS

Th(γv − γu0) ds. (27)

Define the nonlinear operator A0 : H → H∗ by

〈A0u, v〉 :=

∫
D
S0 p(|∇u|)∇u · ∇v dx, for all v ∈ H,

and the linear continuous form l : H → R:

〈l, v〉 =

∫
D
Rg v dx +

∫
ΓN∪ΓS

T h γv ds.

Here, the pairing 〈A0u, v〉 is the duality between H∗ and H1
0 (D).

Thus, problem (27) can be written in the following form: Find u0 ∈ C
such that for all v ∈ C,

〈A0u0, v − u0〉+ J0
0 (γu0; γv − γu0) +K(γv)−K(γu0) ≥ 〈l, v − u0〉. (28)

Since S0 is assumed to be bounded from below by S∗, and DG is cG-
strongly monotone, it follows that the operator A0 is also m0-strongly mono-
tone with m0 = S∗cG. Combined with assumption (26), this guarantees
the existence of a solution to (29) (see [13, Theorem 6.1]). For unique-
ness, following [13, Remark 6.1] and condition (21), the smallness condition

λ0(meas (D))
1− 1

p ‖γ‖2H→Z < S∗cG, guarantees the uniqueness.

Next, we aim to establish a novel sensitivity result for the nonsmooth
boundary value problem described above, under perturbations of the data
S0 and j0.

In this context, for each µ ∈ V(µ̄), the parametric form of problem (28)
that we consider is as follows: Find uµ ∈ C such that for all v ∈ C,

〈Aµuµ, v − uµ〉+ J0
µ(γuµ; γv − γuµ) +K(γv)−K(γuµ) ≥ 〈l, v − uµ〉,

(29)

where, for each µ, the nonlinear operator Aµ : H → H∗ is defined by

〈Aµu, v〉 :=

∫
D
Sµ p(|∇u|)∇u · ∇v dx, for all v ∈ H.
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Theorem 3. Under assumptions [Cjµ], [Cuµ] and by assuming further that:

(i) for each µ ∈ V(µ̄), Sµ ∈ L∞(D), with Sµ(x) ≥ S∗ > 0 a.e. in D;

(ii) for each µ ∈ V(µ̄), ‖Sµ − S0‖L∞(D) ≤M |µ| for some M > 0;

(iii) the nonlinear map ξ 7→ p(|ξ|) ξ is Lipschitz, i.e. there is L > 0 such
that ∣∣p(|ξ|) ξ − p(|η|) η∣∣ ≤ L |ξ − η|, ∀ξ, η ∈ Rd;

(iv) control of data: assume that

|µ| < S∗cG − λ0(meas (D))
1− 1

p ‖γ‖2

LC + λ(meas (D))
p−2
p ‖γ‖2

.

Then, for each µ ∈ V(µ̄), the problem (29) is uniquely solvable. Moreover,
the following Lipschitz estimate is satisfied: For all µ ∈ V(µ̄),

‖uµ − u0‖

≤ LMR+ δ3(meas (D))
1− 1

p ‖γ‖

S∗cG − λ0(meas (D))
1− 1

p ‖γ‖2 − (LM + λ(meas (D))
p−2
p ‖γ‖2)|µ|

|µ|.

Proof. Since the linear continuous form l is not subject to perturbation, the
proof is similar to that of Theorem 2. Then it suffices to verify that the
conditions of that theorem are all satisfied.

Assumption [CAµ](1) on hemicontinuity of Aµ follows from (i) and the
continuity of p and of the map ξ 7→ p(|ξ|) ξ.

To check assumption [CAµ](2), compute

〈(Aµu−A0u)− (Aµv −A0v), w〉

=

∫
D

(Sµ − S0)
[
p(|∇u|)∇u− p(|∇v|)∇v

]
· ∇wdx.

Then, using assumption (ii), we have∣∣〈(Aµu−A0u)− (Aµv −A0v), w〉
∣∣

≤ ‖Sµ − S0‖L∞
∫
D

∣∣p(|∇u|)∇u− p(|∇v|)∇v∣∣|∇w| dx
≤ L‖Sµ − S0‖L∞‖∇(u− v)‖L2(D)‖∇w‖L2(D)

≤ L‖Sµ − S0‖L∞‖u− v‖‖w‖
≤ LM |µ|‖u− v‖‖w‖.
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Therefore, assumption [CAµ](2) is verified with m1 = LM .
On the other hand, since ‖Aµ0−A00‖H∗ = 0, it follows that the constant

θ in (23) is given by θ = LMR.
- Finally, in this setting, condition (iv) becomes the control assumption

in [Cd].
Thus, the conclusion follows directly from (22).

4 Some concluding remarks - an outlook

In this paper, we focused to deterministic hemivariational inequalities. By
more involved arguments one could generalize some of the presented quan-
titative sensitivity results to more general classes of nonlinear variational
inequalities and hemivariational inequalities in a random setting, see the
qualitative sensitivity results in a L2 (more generally LP with 1 < p < ∞)
Bochner–Lebesgue space, see [14], respectively in the finer L∞ Bochner–
Lebesgue space, see [17].

Another direction of research is the extension to quasi (hemi) variational
inequalities, see e.g. [8, 20].
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