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Abstract

The order topology has been historically defined only for totally
ordered sets. Here, the order topology in partially ordered sets will be
constructed. Several attempts have been provided in the recent litera-
ture on partially ordered groups, rings and modules. This manuscript
contains a full construction that provides solid foundational ground
to the previous attempts and serves to pay tribute to the topological
trajectory of Prof. Ricceri.
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1 Introduction

The historical development of General Topology is full of milestones. One of
them was produced at the appearance of [11, Theorem 1.1], a principle with
applications to topological mini-max theorems, which provides new proofs
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of some known results or improves a number of recent contributions in this
area [12].

The order topology has been historically defined only for totally ordered
sets (tosets) with at least two points [1, 2, 7–10]. The order topology is the
most natural way to endow a toset with a topological structure. The order
topology uses open rays (sets of all elements greater than x or less than y)
and open intervals (elements between x and y) as its base. This precisely
mirrors how open intervals constitute the base for the standard topology on
R. The concept was formalized as an example or class of topologies in the
general development of set-theoretic topology in the 1910s and 1920s, fol-
lowing the work of Hausdorff and the full acceptance of abstract topological
spaces.

However, many algebraic structures, such as groups, rings and modules,
can not be endowed with a total ordering compatible with their operations.
Therefore, the order topology cannot be considered on those algebraic struc-
tures. This is why it becomes imperative to develop a construction of the
order topology in partially ordered sets (posets).

Recently, a successful attempt of construction of the order topology for
posets was provided with the aim of endowing partially ordered algebraic
structures with the order topology. In view of this, a sufficient condition
for the order topology to be a ring topology was provided for unital ordered
rings [3]. Continuing this line of research, in the recent submitted preprint
[5], a sufficient condition for the order topology to be a module topology was
provided for ordered modules over unital ordered rings. Finally, the very
recently submitted preprint [6] contains a sufficient condition that assures
that the order topology be a group topology in ordered groups.

The main goal of this manuscript is to construct the order topology in
general posets (not necessarily endowed with an algebraic structure) pro-
viding a stronger foundation for the order topology in partially ordered
algebraic structures given in [3, 5, 6].

2 Topological posets

Given a set X, the collection of finite intersections of a nonempty subset S of
P(X), B(S) :=

{⋂
T∈T T : T ⊆ S finite

}
, is closed under finite intersections.

Therefore, a necessary and sufficient condition for B(S) to be a base for a
topology on X is that

⋃
S∈S S = X.

Notation 1. If X is a poset and x ∈ X, then the closed rays are denoted
by ↑x := [x,∞) := {y ∈ X : x ≤ y} and ↓x := (−∞, x] := {y ∈ X : y ≤ x},
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and the open rays are denoted by ↑×x := (x,∞) := {y ∈ X : x < y} and
↓×x := (−∞, x) := {y ∈ X : y < x}.

The classical notation for bounded intervals will also be employed. The
following theorem provides ground for the definition of the order topology
and extends [3, Theorem 2.15].

Theorem 1. Let A be a poset. The collection {↑×a : a ∈ A}∪{↓×a : a ∈ A}∪
{A} forms a subbase for a topology on A. A necessary and sufficient condi-
tion for the collection {↑×a : a ∈ A}∪ {↓×a : a ∈ a} to form a subbase for a
topology on A is that for every a ∈ A either ↑×a 6= ∅ or ↓×a 6= ∅.

Proof. It is clear that {↑×a : a ∈ A} ∪ {↓×a : a ∈ A} ∪ {A} is a subbase for
a topology on A. Next, observe that {↑×a : a ∈ A} ∪ {↓×a : a ∈ A} is a
subbase for a topology on A if and only if

⋃
a∈A ↑×a ∪

⋃
a∈A ↓×a = A, if

and only if for every a ∈ A there exists b ∈ A such that either a ∈ ↑×b or
a ∈ ↓×b, if and only if for every a ∈ A there exists b ∈ A such that either
b ∈ ↓×a or b ∈ ↑×a.

Theorem 1 makes possible the definition of order topology given in [3],
giving birth to the notion of topological poset.

Definition 1 (Order topology [3]). Let X be a poset such that for every
x ∈ X either ↑×x 6= ∅ or ↓×x 6= ∅. The order topology on X is defined as
the topology generated by the subbase {↑×x : x ∈ X} ∪ {↓×x : x ∈ X}. And
we call X a topological poset.

Theorem 1 makes also possible to construct the order topology in those
posets X for which there exists an element x incomparable with all the rest,
that is, satisfying that ↑×x = ↓×x = ∅. The next definition contains the
previous one.

Definition 2 (Order topology). Let X be a poset. The order topology
on X is defined as the topology generated by the subbase {↑×x : x ∈ X} ∪
{↓×x : x ∈ X} ∪ {X}. And we call X a topological poset.

If X is a topological space endowed with the trivial topology, then the
trivial ordering on X given by x ≤ y ⇔ x = y satisfies that its induced order
topology is precisely the trivial topology. Something similar occurs with the
discrete topology.

Theorem 2. If X is a nonempty set, then there exists an ordering on X
whose induced order topology is the discrete topology.
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Proof. If X = {x1, . . . , xn} is finite, then it suffices to establish the total
order x1 < · · · < xn. Suppose that X is infinite. Let us write X =

⋃̇
i∈IXi

as a disjoint union of infinitely countable subsets. For each i ∈ I, let us write
Xi = {xij : j ∈ N} endowed with a total order such as xi1 < · · · < xin < · · · .
Consider the partial ordering on X given by x ≤ y ⇔ ∃i ∈ I such that x, y ∈
Xi and x ≤ y in Xi. Finally, it only suffices to observe that, for every i ∈ I,
{xi1} = ↓×xi2 and {xij} = ↑×xij−1∩ ↓×xij+1 for each j > 1.

Let us next display a counterintuitive, although trivial, example showing
that the relative order topology in a subset does not always coincide with
the order topology of the subset.

Example 1. Let X := R endowed with its usual order topology. Let Y :=
{0} ∪ (2, 3). Let τ1 denote the order topology of Y as a totally ordered set.
Let τ2 denote the relative topology of Y (inherited from the order topology
of X). Note that τ1 ⊆ τ2. However, τ1 6= τ2. Indeed, {0} ∈ τ2 because
{0} = Y ∩ (−1, 1). However, {0} /∈ τ1 since {(−∞, y) : y ∈ (2, 3)} is a base
of neighborhoods of 0 in τ1.

The following proposition unveils a sufficient condition to guarantee that
the relative order topology of a subset coincide with its own order topology.
It is worth recalling that if S1,S2 are subbases for topologies τ1, τ2 in a set
Y and S1 ⊆ S2, then B (S1) ⊆ B (S2), hence τ1 ⊆ τ2.

Proposition 1 (Relative order topology). Let X be a topological poset. Let
Y be a subset of X. Then:

1. The order topology of Y is coarser than its inherited order topology
from X.

2. If, for all y ∈ Y, ↑×y ∩ Y is coinitial in ↑×y and ↓×y ∩ Y is cofinal
in ↓×y, then the order topology of Y coincides with its inherited order
topology from X.

Proof.

1. The subbase of open rays within Y together with Y , which generates
its order topology, is clearly contained in

{↑×x ∩ Y : x ∈ X} ∪
{
↓×x ∩ Y : x ∈ X

}
∪ {X ∩ Y },

which is the subbase of the inherited order topology from X. As
a consequence, the order topology of Y is coarser than its inherited
order topology from X.
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2. Let U be an open subset in the order topology of X such that U ∩Y 6=
∅ and fix an arbitrary y ∈ U ∩ Y . Without loss of generality, there
can be found x1, . . . , xp, xp+1, . . . , xq ∈ X such that

y ∈
(
↑×x1 ∩ · · · ∩ ↑×xp ∩ ↓×xp+1 ∩ · · · ∩ ↓×xq

)
∩ Y ⊆ U ∩ Y.

Then xi < y < xj for each i ∈ {1, . . . , p} and each j ∈ {p + 1, . . . , q}.
By hypothesis, ↑× y ∩ Y and ↓× y ∩ Y are coinitial and cofinal in
↑× y and ↓× y, respectively. Thus, for every i ∈ {1, . . . , p} and every
j ∈ {p+ 1, . . . , q}, there can be found yi, yj ∈ Y such that y < yj ≤ xj
and xi ≤ yi < y. As a consequence,

y ∈ (↑×y1 ∩ Y ) ∩ · · · ∩ (↑×yp ∩ Y ) ∩
(
↓×yp+1 ∩ Y

)
∩ · · · ∩

(
↓×yq ∩ Y

)
⊆

(
↑×x1 ∩ · · · ∩ ↑×xp ∩ ↓×xp+1 ∩ · · · ∩ ↓×xq

)
∩ Y

⊆ U ∩ Y.

This means that U ∩ Y is open in the order topology of Y .

A direct consequence of Proposition 1(1) is the fact that if the order
topology of Y is the discrete topology or its inherited order topology from
X is the trivial topology, then the order topology of Y coincides with its
inherited order topology from X. Next corollary shows that dense subsets
satisfy the hypothesis of Proposition 1(2) in topological posets free of holes.

Corollary 1. Let X be a topological poset. If X is holefree and Y is a dense
subset of X, then the order topology of Y coincides with its inherited order
topology from X.

Proof. Fix an arbitrary y ∈ Y . We will show that ↑×y ∩ Y is coinitial in
↑×y. Indeed, take any x ∈ ↑×y. Then y < x and by hypothesis (y, x) 6= ∅
because X is free of holes. Thus, (y, x) is a nonempty open subset of X
which must intersect Y due to its density. As a consequence, there exists
y′ ∈ (y, x) ∩ Y . Finally, notice that y′ < x and y′ ∈ ↑×y ∩ Y . This shows
that ↑× y ∩ Y is coinitial in ↑× y. In a dual way, it can be shown that
↓×y ∩ Y is cofinal in ↓×y.

The following technical lemma improves [4, Lemma 3.3] as well as mirrors
how to construct a base of neighborhoods of a point for the order topology
on the real line.

Lemma 1. Let X be a topological poset. Let x0 ∈ X. Then:
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1. If ↑×x0 6= ∅ is downward directed and ↓×x0 6= ∅ is upward directed,
then {(x, y) : x < x0 < y} is a base of neighborhoods of x0.

2. If ↑× x0 6= ∅ is downward directed and ↓× x0 = ∅, then {(−∞, y) :
x0 < y} is a base of neighborhoods of x0.

3. If ↑×x0 = ∅ and ↓×x0 6= ∅ is upward directed, then {(x,∞) : x < x0}
is a base of neighborhoods of x0.

4. If ↑×x0 = ∅ and ↓×x0 = ∅, then {X} is a base of neighborhoods of
x0.

Proof. Let W ⊆ X be an x0-neighborhood for the order topology. We will
distinguish between the four cases above:

1. There can be found a1, . . . , an, b1, . . . , bm ∈ X satisfying that x0 ∈ ↑×
a1 ∩ · · · ∩ ↑× an ∩ ↓× b1 ∩ · · · ∩ ↓× bm ⊆ W . Observe that ai < x0
and bj > x0 for all i ∈ {1, . . . , n} and all j ∈ {1, . . . ,m}. Since ↓×x0
is upward directed, there exists a0 ∈ ↓× x0 such that a0 ≥ ai for all
i ∈ {1, . . . , n}. Similarly, since ↑×x0 is downward directed, there exists
b0 ∈ ↑×x0 such that b0 ≤ bj for all j ∈ {1, . . . ,m}. Finally, notice that
x0 ∈ (a0, b0) ⊆ ↑×a1 ∩ · · · ∩ ↑×an ∩ ↓×b1 ∩ · · · ∩ ↓×bm ⊆W .

2. There can be found b1, . . . , bm ∈ X satisfying that x0 ∈ ↓×b1∩· · · ∩ ↓×
bm ⊆ W . Observe that bj > x0 for all j ∈ {1, . . . ,m}. Since ↑×x0 is
downward directed, there exists b0 ∈ ↑× x0 such that b0 ≤ bj for all
j ∈ {1, . . . ,m}. Finally, notice that x0 ∈ (−∞, b0) ⊆ ↓×b1 ∩ · · · ∩ ↓×
bm ⊆W .

3. There can be found a1, . . . , an ∈ X satisfying that x0 ∈ ↑×a1∩· · · ∩ ↑×
an ⊆ W . Observe that ai < x0 for all i ∈ {1, . . . , n}. Since ↓×x0 is
upward directed, there exists a0 ∈ ↓×x0 such that a0 ≥ ai for all i ∈
{1, . . . , n}. Finally, notice that x0 ∈ (a0,∞) ⊆ ↑×a1∩· · · ∩ ↑×an ⊆W .

4. In this situation, x is incomparable with all the rest elements of X,
hence X is the only open set containing x.

Observe that open rays are open in the order topology, and, consequently,
open bounded intervals are open as well in the order topology. However,
closed rays are not necessarily closed in the order topology. If the order
is total, then closed rays are closed in the order topology because their
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complementary is an open ray, and, consequently, closed bounded intervals
are closed as well in the order topology. Another sufficient condition for
closed rays to be closed in the order topology was unveiled in [4, Lemma
3.2], result that is included (and refined) next for the sake of completion.
Recall that in a poset X, the subset of incomparable elements to a certain
x ∈ X is denoted by θx. Recall as well that a poset X is said to be cofinal
in itself provided that X =

⋃
x∈X ↓× x. Dually, coinitial in itself can be

defined.

Lemma 2. Let X be a topological poset. Let x ∈ X:

1. If θx is open or cofinal in itself, then ↑x is closed.

2. If θx is open or coinitial in itself, then ↓x is closed.

Proof. Only the first item will be proved and we will only assume that θx is
cofinal in itself. Notice that X\ ↑x = ↓×x∪ θx. We will show that ↓×x∪ θx
is open by showing that it is a neighborhood of each of its points. Indeed,
fix an arbitrary y ∈ ↓× x ∪ θx. If y ∈ ↓× x, then y ∈ ↓× x ⊆ ↓× x ∪ θx,
so ↓×x ∪ θx is a neighborhood of y by definition of order topology. Next,
assume that y ∈ θx. By hypothesis, θx is cofinal in itself, meaning that there
exists z ∈ θx such that y < z. Let us prove that y ∈ ↓×z ⊆ ↓×x ∪ θx. Take
any w ∈ ↓×z. If w is not comparable to x, then w ∈ θx. If w is comparable
to x, then we have two options. One is that x ≤ w, which implies that
x ≤ w < z contradicting the fact z is not comparable to x. This only leaves
the other option, that is, w < x, meaning that w ∈ ↓×x. As a consequence,
y ∈ ↓×z ⊆ ↓×x ∪ θx. This shows that X\ ↑x = ↓×x ∪ θx is open because it
is a neighborhood of each of its points.

Next technical lemma refines and compiles [4, Lemma 3.4] and [4, Lemma
3.5] together. Recall that a hole in a poset is an empty nontrivial open
interval such as (x, y) = ∅ for some x < y.

Lemma 3. Let X be a topological poset. Let a, b ∈ X. Then:

1. If ↑×b 6= ∅ is downward directed and ↑b is hole free, then b /∈ int(↓b).
In particular, if a < b, then b /∈ int([a, b]).

2. If ↓×a 6= ∅ is upward directed and ↓a is hole free, then a /∈ int(↑a).
In particular, if a < b, then a /∈ int([a, b]).

3. Suppose a < b. If ↓× b is upward directed and ↓ b is hole free, then
b ∈ cl((a, b)) ⊆ cl(↓×b).
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4. Suppose a < b. If ↑×a is downward directed and ↑a is hole free, then
a ∈ cl((a, b)) ⊆ cl(↑×a).

Proof. Only the first and third items will be proved.

1. Assume on the contrary that b ∈ int(↓b). There exists W ⊆ X a b-
neighborhood for the order topology contained in ↓b. There are three
possibilities:

• There are a1, . . . , an ∈ X satisfying that b ∈ ↑× a1 ∩ · · · ∩ ↑×
an ⊆ W . Then ↑×b ⊆ ↑×a1 ∩ · · · ∩ ↑×an ⊆ W ⊆ ↓b, which is a
contradiction.

• There are a1, . . . , an, b1, . . . , bm ∈ X satisfying that b ∈ ↑× a1 ∩
· · · ∩ ↑×an ∩ ↓× b1 ∩ · · · ∩ ↓× bm ⊆ W . By hypothesis, ↑× b 6= ∅
and is downward directed, thus there exists b0 ∈ ↑× b such that
b0 ≤ bj for each j = 1, . . . ,m. Again, by hypothesis, ↑b is hole
free, meaning that there exists c ∈ ↑ b with b < c < b0. Then
we reach the contradiction that c ∈ ↑× a1 ∩ · · · ∩ ↑× an ∩ ↓×
b1 ∩ · · · ∩ ↓×bm ⊆W ⊆ ↓b.
• There are b1, . . . , bm ∈ X satisfying that b ∈ ↓×b1 ∩ · · · ∩ ↓×bm ⊆
W . By hypothesis, ↑× b 6= ∅ and is downward directed, thus
there exists b0 ∈ ↑× b such that b0 ≤ bj for each j = 1, . . . ,m.
Again, by hypothesis, ↑b is hole free, meaning that there exists
c ∈ ↑ b with b < c < b0. Thus, the contradiction that c ∈ ↓×
b1 ∩ · · · ∩ ↓×bm ⊆W ⊆ ↓b is again reached.

3. Take any b-neighborhood W ⊆ X for the order topology. There are
three possibilities:

• There are a1, . . . , an ∈ X satisfying that b ∈ ↑×a1∩· · · ∩ ↑×an ⊆
W . By hypothesis, ↓× b is upward directed, meaning that there
exists a0 ∈ ↓×b such that a ≤ a0 and ai ≤ a0 for each i = 1, . . . , n.
Again, by hypothesis, ↓b is hole free, therefore there exists c ∈ ↓b
with a0 < c < b. Finally, c ∈ (a, b) ∩ ↑×a1 ∩ · · · ∩ ↑×an.

• There are a1, . . . , an, b1, . . . , bm ∈ X satisfying that b ∈ ↑× a1 ∩
· · · ∩ ↑× an ∩ ↓× b1 ∩ · · · ∩ ↓× bm ⊆ W . By hypothesis, ↓× b is
upward directed, meaning that there exists a0 ∈ ↓× b such that
a ≤ a0 and ai ≤ a0 for each i = 1, . . . , n. Again, by hypothesis,
↓ b is hole free, therefore there exists c ∈ ↓ b with a0 < c < b.
Finally, c ∈ (a, b) ∩ ↑×a1 ∩ · · · ∩ ↑×an ∩ ↓×b1 ∩ · · · ∩ ↓×bm.
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• There are b1, . . . , bm ∈ X satisfying that b ∈ ↓×b1 ∩ · · · ∩ ↓×bm ⊆
W . Since ↓b is hole free, we can find c ∈ ↓b with a < c < b. Then
c ∈ (a, b) ∩ ↓×b1 ∩ · · · ∩ ↓×bm.

Lemma 1 and Lemma 3 motivate the following definition.

Definition 3 (Locally directed poset). A poset X is said to be:

• locally directed whenever that, for every x ∈ X, if ↑×x 6= ∅, then it is
downward directed, and if ↓×x 6= ∅, then it is upward directed.

• strongly locally directed whenever that, for every x ∈ X, ↑×x 6= ∅ and
is downward directed, and ↓×x 6= ∅ and is upward directed.

By relying on the previous definition and by combining together Lemma
2 and Lemma 3, we obtain the following result.

Lemma 4. Let X be a topological poset. Suppose that X is holefree and
locally directed. Let x < y in X be such that either θx and θy are open in X
or θx is cofinal in itself and θy is coinitial in itself. Then:

1. cl (↑×x) = ↑x, cl (↓×y) = ↓y, and cl ((x, y)) = cl ((x, y]) = cl ([x, y)) =
[x, y].

2. Assume ↓×x 6= ∅ and ↑×y 6= ∅. Then int (↑x) = ↑×x, int (↓y) = ↓×y,
and int ([x, y]) = int ((x, y]) = int ([x, y)) = (x, y).

Proof. According to Lemma 2, ↑x, ↓y are closed, therefore, [x, y] is closed as
well. Then (x, y) ⊆ cl((x, y)) ⊆ [x, y]. In virtue of Lemma 3(3,4), cl (↑×x) =
↑ x, cl (↓×y) = ↓ y and cl ((x, y)) = cl ((x, y]) = cl ([x, y)) = [x, y]. Next,
↑×x, ↓×y are open, hence (x, y) is open as well, so (x, y) ⊆ int ([x, y]) ⊆ [x, y].
Assume ↓×x 6= ∅ and ↑×y 6= ∅. In view of Lemma 3(1,2), int (↑x) = ↑×x,
int (↓y) = ↓×y and int ([x, y]) = int ((x, y]) = int ([x, y)) = (x, y).

3 Separation properties of topological posets

Let us continue our study of the order topology by unveiling its most basic
separation properties. Recall that the set of isolated points of a topological
space X is commonly denoted by iso(X).

Proposition 2. Let X be a topological poset. Let x 6= y in X. Then:
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1. If x < y, then x, y can be separated by disjoint open sets. In particular,
if X is totally ordered, then it is Hausdorff.

2. If X is locally directed and hole free, then iso(X) = ∅.

3. If X \ {x, y}, ↓× x, ↓× y are upward directed and ↑× x = ↑× y = ∅,
then x, y cannot be separated by disjoint open sets. Hence X is not
Hausdorff.

Proof.

1. If (x, y) = ∅, then y ∈ (x,∞), x ∈ (−∞, y), and (−∞, y) ∩ (x,∞) =
(x, y) = ∅. If there exists z ∈ X with x < z < y, then x ∈ (−∞, z),
y ∈ (z,∞), and (−∞, z) ∩ (z,∞) = ∅.

2. Assume that x ∈ iso(X). Then {x} is open. According to Lemma 1,
{x} is of the form (a, b) or (−∞, a) or (b,+∞). In any of the three
prior cases, we reach the contradiction that X has a hole.

3. First off, note that the fact that ↑×x = ↑×y = ∅ implies that x, y are
incomparable. Fix arbitrary neighborhoods Ux, Uy of x, y, respectively,
in the order topology. In accordance with Lemma 1(3), there exist x0 ∈
↓×x and y0 ∈ ↓×y such that x ∈ (x0,∞) ⊆ Ux and y ∈ (y0,∞) ⊆ Uy.
Since X \ {x, y} is upward directed, there exists z ∈ X with z ≥ x0
and z ≥ y0. At this point, let us distinguish between the following
cases:

• z = x0 and z 6= y0. Then x0 ≥ y0 so x ∈ (x0,∞) ⊆ (x0,∞) ∩
(y0,∞) ⊆ Ux ∩ Uy.

• z 6= x0 and z = y0. Then y0 ≥ x0 so y ∈ (y0,∞) ⊆ (x0,∞) ∩
(y0,∞) ⊆ Ux ∩ Uy.

• z 6= x0, y0. Then z ∈ (x0,∞) ∩ (y0,∞) ⊆ Ux ∩ Uy.

Next theorem characterizes separability of the order topology in locally
directed holefree posets. This result is known in the classic literature for
totally ordered sets.

Theorem 3. Let X be a locally directed holefree topological poset. Then X
is separable if and only if X is second countable.
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Proof. Every second countable topological space is separable. As a con-
sequence, let us suppose that X is separable. Let D be a countable and
dense subset of X. We claim that BD := {(−∞, d) : d ∈ D} ∪ {(c, d) :
c < d in D} ∪ {(c,+∞) : c ∈ D} ∪ {X} is a countable base of the order
topology of X. Notice that BD is countable. Take an arbitrary nonempty
open subset V of X and an arbitrary v ∈ V . According to Lemma 1, there
exists an interval of the form (a, b), (−∞, b), (a,+∞), (−∞,∞) containing v
and contained in V . We will distinguish between the following four cases:

• v ∈ (a, b) ⊆ V . Since X has no holes, (a, v), (v, b) 6= ∅, hence the
density of D allows c ∈ (a, v), d ∈ (v, b). Then v ∈ (c, d) ⊆ (a, b) ⊆ V .

• v ∈ (−∞, b) ⊆ V . Since X has no holes, (v, b) 6= ∅, hence the density
of D allows d ∈ (v, b). Then x ∈ (−∞, d) ⊆ (−∞, b) ⊆ V .

• v ∈ (a,+∞) ⊆ V . Since X has no holes, (a, v) 6= ∅, hence the density
of D allows c ∈ (a, v). Then v ∈ (c,+∞) ⊆ (a,+∞) ⊆ V .

• v ∈ (−∞,∞) ⊆ V . Then v ∈ X = (−∞,∞) ⊆ V .

Recall that a poset is said to have the sup (inf) property if every bounded
above (below) subset has a supremum (infimum). At this stage, it is worth
recalling that a poset enjoys the sup property if and only if it satisfies the
inf property. Our next step is to introduce a topological version of this
property. But first, a technical lemma is needed.

Lemma 5. Let X be a topological poset. Let A ⊆ X. If x is an upper bound
of A, y ∈ cl(A), and x and y are comparable, then y ≤ x. In particular, if X
is totally ordered, then cl(A) is bounded above if so is A, and sup(A) exists
if and only if sup(cl(A)) exists, in which case sup(A) = sup(cl(A)) ∈ cl(A).

Proof. Suppose on the contrary that x < y. Then ↑× x is an open neigh-
borhood of y, meaning that ↑×x ∩ A 6= ∅. As a consequence, there exists
a ∈ A with x < a, which contradicts the fact that x is an upper bound of
A.

Lemma 5 has its dual version for lower bounds and infimums. It also
motivates the following definition.

Definition 4 (Strong sup (inf) property). A topological poset X is said to
have the strong sup (inf) property provided that it verifies the sup (inf) prop-
erty and sup(A) ∈ cl(A) (inf(A) ∈ cl(A)) for every bounded above (below)
subset A ⊆ X.
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An immediate consequence of Lemma 5 is that every topological toset
with the sup (inf) property enjoys the strong sup (inf) property.

Theorem 4. Let X be a topological poset. If X is upward directed and
satisfies the strong sup property, then X is totally ordered.

Proof. Fix arbitrary elements x1 6= x2 in X. We will show that they are
comparable. Since X is upward directed, there exists x3 ∈ X such that
xi ≤ x3 for i = 1, 2. Then {x1, x2} is bounded above, hence there exists
x1 ∨ x2 and x1 ∨ x2 ∈ cl({x1, x2}). We distinguish now between two cases:

• x1 ∨ x2 = x1. In this case, x2 ≤ x1 ∨ x2 = x1.

• x1∨x2 6= x1. In this case, x1∨x2 ∈ ↑×x1. Then ↑×x1 is a neighborhood
of x1 ∨x2 in the order topology, so ↑×x1 ∩{x1, x2} 6= ∅, meaning that
x1 < x2.

As expected, the previous theorem has its dual version for downward
directed topological posets enjoying the strong inf property. The following
result characterizes connectedness of the order topology in totally ordered
sets. This result is well known in the classic literature, but we decided to
include it here for the sake of completeness.

Theorem 5. A necessary and sufficient condition for a topological toset X
to be connected is that X have no holes and possess the sup property.

Proof. Let us suppose first that X is connected. Let us prove that X has
no holes. Assume on the contrary that we can find x, y ∈ X with x < y
such that (x, y) = ∅. Observe that {(−∞, y), (x,∞)} is a partition of X
in nonempty open sets, which contradicts the fact that X is connected.
Next, we will prove that X enjoys the sup property. Again, suppose on
the contrary that there can be found Y ⊆ X bounded above in such a
way that sup(Y ) does not exist. Define U :=

⋃
y∈Y (−∞, y) and V :=⋃

{(z,+∞) : z is an upper bound of Y } . Observe that U, V are open as well
as disjoint. We will show now that U, V 6= ∅ and U∪V = X. If U = ∅, then
Y is a singleton, hence sup(Y ) exists. Therefore, U 6= ∅. In case V = ∅,
then there exists only one upper bound of Y , hence sup(Y ) exists. Thus,
V 6= ∅. Finally, let us show that X = U ∪ V . Take an arbitrary x0 ∈ X.
If x0 /∈ U , then x0 is an upper bound for Y . If, in addition, x0 /∈ V , then
x0 ≤ z for every upper bound z of Y , meaning that x0 = sup(Y ), which
is impossible by assumption. Therefore, x0 ∈ U ∪ V . The arbitrariness
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of x0 ∈ X guarantees that X = U ∪ V . The contradiction that X is not
connected has been reached. Conversely, suppose that X does not have
any hole and possesses the sup property. Let {U, V } be a partition of X
in nonempty open sets. Fix u0 ∈ U, v0 ∈ V . Let us assume, without
any loss of generality, that u0 < v0. Define U0 := {u ∈ U : u ≤ v0} =
U ∩ (−∞, v0]. Notice that U0 is closed, u0 ∈ U0 and v0 is an upper bound for
U0. By hypothesis, sup(U0) exists, and sup(U0) ≤ v0. In virtue of Lemma
5, sup(U0) ∈ cl(U0) = U0. Since U ∩ V = ∅ and sup(U0) ∈ U , we have that
sup(U0) /∈ V , hence sup(U0) < v0. Since X is free of holes, (sup(U0), v0) 6=
∅. We will prove next that (sup(U0), v0) ⊆ V . Take any x ∈ (sup(U0), v0).
Since X = U ∪ V , if x /∈ V , then x ∈ U . Since x < v0, we conclude that
x ∈ U0, which is not possible because x > sup(U0). As a consequence,
(sup(U0), v0) ⊆ V . Observe that V is closed, meaning, by bearing in mind
Lemma 4, that sup(U0) ∈ [sup(U0), v0] = cl ((sup(U0), v0)) ⊆ cl(V ) = V ,
which is impossible.

4 Side topological posets

Our next step is to introduced the side order topologies, which allow the
conception of lower and upper semicontinuity.

Definition 5 (Side order topologies). Let X be a poset. The right order
topology on X is defined as the topology generated by the subbase of upper
open rays {↑×x : x ∈ X} ∪ {X} and we call X a right topological poset.
Dually, the left order topology on X is defined as the topology generated by
the subbase of lower open rays {↓×x : x ∈ X} ∪ {X} and we call X called a
left topological poset.

Notice that both the left and right order topologies are coarser than the
order topology.

Proposition 3. Let X be a left topological toset. If K ⊆ X is compact,
then there exists max(K).

Proof. Consider the family {↑k ∩K : k ∈ K} of closed subsets of K. Let us
prove that the previous family satisfies the finite intersection property. Fix
arbitrary elements k1, . . . , kp in K. Since K is upward directed, there exists
k0 ∈ K such that k0 ≥ kj for all j = 1, . . . , p. Then k0 ∈

⋂p
j=1 (↑kj ∩K) 6=

∅. The compacity of K allows the existence of k′ ∈
⋂

k∈K (↑k ∩K). Notice
that k′ = max(K).
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The following corollary is a direct consequence of Proposition 3, which
has its dual version for the right order topology.

Corollary 2. If X is a topological toset and K ⊆ X is compact, then there
exist max(K) and min(K).

Proof. On the one hand, K is closed because the order topology is Hausdorff
in totally ordered sets. On the other hand, K is compact as well for the left
and right order topologies, since the side order topologies are coarser than
the order topology. Therefore, by Proposition 3 and its dual version, there
exist max(K) and min(K).

The notion of semicontinutiy can now be transported to posets by means
of the side order topologies.

Definition 6 (Semicontinuous map). Let X be a topological space. Let Y
be a poset. A function f : X → Y is called upper (lower) semicontinuous at
x ∈ X whenever f is continuous at x when Y is endowed with the left (right)
order topology. The function f is said to be upper (lower) semicontinuous
if so is f at each x ∈ X.

The following remark shows that maximal and minimal elements are
always points of upper semicontinuity and lower semicontinuity, respectively.

Remark 1. Let X be a topological space. Let Y be a poset. Let f : X → Y be
a function. Let x0 ∈ X. If f(x0) is maximal, then f is upper semicontinuous
at x0. Indeed, since ↑×f(x0) = ∅, the only open set of the left order topology
containing f(x0) is Y . If U is any neighborhood of x0, then f(U) ⊆ Y .
Dually, if f(x0) is minimal, then f is lower semicontinuous at x0.

As expected, semicontinuity is preserved by taking infs and sups of fam-
ilies of functions.

Lemma 6. Let X be a topological space. Let Y be a topological poset satis-
fying the strong sup property. Let {fi}i∈I be a family of functions from X
to Y. Then:

1. If {fi}i∈I is pointwise bounded below and fi is upper semicontinuous
for all i ∈ I, then infi∈I fi is upper semicontinuous.

2. If {fi}i∈I is pointwise bounded above and fi is lower semicontinuous
for all i ∈ I, then supi∈I fi is lower semicontinuous.
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Proof. We will prove only the second item. Denote f := supi∈I fi. Let
V be a neighborhood of f(x0) in Y for the right order topology. We will
find a neighborhood U of x0 ∈ X such that f(U) ⊆ V . By construction
of the right order topology, if ↓× f(x0) = ∅, then V = Y , hence we can
take U := X. If ↓×f(x0) 6= ∅, then there are y1, . . . , yn ∈ Y satisfying that
f(x0) ∈ ↑×y1∩· · · ∩ ↑×yn ⊆ V . By hypothesis, f(x0) ∈ cl({fi(x0) : i ∈ I}) in
the order topology, meaning that (↑×y1 ∩ · · · ∩ ↑×yn)∩{fi(x0) : i ∈ I} 6= ∅,
that is, there exists j ∈ I such that yk < fj(x0) for all k = 1, . . . , n. Since
fj is lower semicontinuous at x0, there exists a neighborhood U of x0 such
that fj(U) ⊆ ↑×y1 ∩ · · · ∩ ↑×yn. Finally, yk < fj(u) ≤ f(u) for all u ∈ U ,
meaning that f(U) ⊆ ↑×y1 ∩ · · · ∩ ↑×yn ⊆ V .

What comes up next is a technical remark that allows to compute global
sups. And, obviously, it has its dual version for infs.

Remark 2. Let X be a set. Let Y be a poset. Let {fi}i∈I be a pointwise
bounded above family of functions from X to Y such that supi∈I fi(x) exists
for all x ∈ X. Let f := supi∈I fi. If sup fi(X) exists for all i ∈ I and
sup{sup fi(X) : i ∈ I} exists as well, then sup f(X) exists and sup f(X) =
sup{sup fi(X) : i ∈ I}. Indeed, denote y := sup {sup fi(X) : i ∈ I}. For an
arbitrarily fixed x ∈ X, y ≥ sup fi(X) ≥ fi(x) for all i ∈ I, thus y is an
upper bound for {fi(x) : i ∈ I}, hence y ≥ f(x). Then y is an upper bound
for f(X). Let z ∈ Y be another upper bound for f(X). Fix an arbitrary
i ∈ I. For every x ∈ X, z ≥ f(x) ≥ fi(x). This means that z is an upper
bound of fi(X), meaning that sup fi(X) ≤ z. Therefore, z is an upper bound
of {sup fi(X) : i ∈ I}, resulting in y ≤ z. This shows that y = sup f(X).

Notice that, in a topological tosetX, sup(A) = sup(cl(A)) for each subset
A ⊆ X whenever those sups exist (Lemma 5). Also, it is worth mentioning
that every continuous map f : X → Y between topological spaces X,Y
satisfies that f(cl(A)) ⊆ cl(f(A)) for each subset A ⊆ X.

Lemma 7. Let X be a topological space. Let Y be a topological toset. Let
A ⊆ X. Let f : X → Y be a lower semicontinuous function. Then sup f(A)
exists if and only if sup f(cl(A)) exists and, in this situation, sup f(A) =
sup f(cl(A)).

Proof. Suppose first that sup f(A) exists. If y is an upper bound for f(cl(A)),
then y is also an upper bound for f(A), meaning that sup f(A) ≤ y. Let
us show that sup f(A) is a upper bound for f(cl(A)). If not, there exists
b ∈ cl(A) such that sup f(A) < f(b). Then ↑×sup f(A) is an open neighbor-
hood of f(b) in the right order topology. Since f is lower semicontinuous,
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there exists a neighborhood U of b in X such that f(U) ⊆ ↑× sup f(A).
Since U ∩ A 6= ∅, by considering any a ∈ U ∩ A, we reach the contra-
diction that sup f(A) < f(a). This shows that sup f(A) = sup f(cl(A)).
Conversely, suppose that sup f(cl(A)) exists. Observe that sup f(cl(A)) is
an upper bound for f(A). Let y ∈ Y be an upper bound for f(A). Let us
show that y is an upper bound for f(cl(A)). If not, there exists b ∈ cl(A)
such that y < f(b). Then ↑×y is an open neighborhood of f(b) in the right
order topology. Since f is lower semicontinuous, there exists a neighborhood
U of b in X such that f(U) ⊆ ↑×y. Since U ∩ A 6= ∅, by considering any
a ∈ U ∩ A, we reach the contradiction that y < f(a). Finally, since y is an
upper bound for f(cl(A)), we obtain that sup f(cl(A)) ≤ y. This shows that
sup f(cl(A)) = sup f(A).

In a dual way, the previous lemma has its version for lower semicontinu-
ity. The final theorem in this manuscript constitutes a topological general-
ization of the famous and classical Extreme Value Theorem.

Theorem 6 (Extreme Value Theorem). If f : X → Y is an upper (lower)
semicontinuous function from a compact topological space X to a toset Y ,
then f is bounded above (below) and attains its maximum (minimum).

Proof. By hypothesis, f is continuous if Y is endowed with the left order
topology. As a consequence, f(X) is compact in Y for the left order topology.
By applying Proposition 3, there exists max f(X).
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logical ordered rings and measures, Res. Math. 78 (2023), 16.
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[4] F.J. Garćıa-Pacheco, Unit neighborhoods of zero in topological ordered
rings, Carpathian J. Math. 41 (2025), 951-957.

[5] F.J. Garćıa-Pacheco, M.A. Moreno-Fŕıas, M. Murillo-Arcila and S. Rah-
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