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Abstract

We introduce some sequences approximating the constant e, related
to the sequence defining the constant e and its irrationality. The main
tool for constructing those sequences is a result of Cesaro-Stolz type.
Some related inequalities are given.
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1 Introduction

The mathematical constant e (equal to 2.71828...), is one of the most im-
portant numbers in mathematics. It arises naturally in various contexts,
especially in calculus, number theory, and complex analysis.

One of the definitions of e is through the infinite series of inverse factorials

. 1 1 1
e = lim 1—|———|——+...+—l .
n!

n—00 1 2!
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The constant e first appeared in the work of the Swiss mathematician Jacob
Bernoulli (1655-1705) in the context of compound interest around 1683.
However, it was the Swiss mathematician Leonhard Euler (1707-1783) who
formally introduced the symbol e and explored its properties extensively in
the 18th century. Euler demonstrated many remarkable identities involving
e, including its irrationality by defining the sequence

1 1 1 0,
Euler’s work laid the foundation for the modern understanding of expo-
nential functions and logarithms, making e a cornerstone of mathematical

analysis.

2 Main results

We consider a family of sequences x, approximating the constant e, of the
form ) )
xn:1+ﬁ+...+m+%—€, (2)
where the sequence 7, depends on some real parameters. We define and dis-
cuss a sequence x,, obtained for particular values of the parameters involved,
such that z, has the highest possible rate of convergence.
Our method is inspired by a lemma of Cesaro-Stolz type presented in [1].
Precisely, if u,, is a sequence convergent to zero such that

HILH;O nF (up — tpyr) =1,

for some k > 1 and [ # 0, then

l
: k—1 _
nhmn un_ik—l'

This is a useful tool for calculating the rate of convergence of some sequences,

or to accelerate some convergencies. Consequently, many authors used this

lemma and obtained new results in recent years (see, for instance, [2]- [4]).
We give here a similar result which we will use in this paper.

Lemma 1. Let x,, be a sequence convergent to zero such that
lim n? (n 4 k) (xy, — 2pg1) =1,
n—oo

for somep >0, ke€Z andl #0. Then

lim n? (n + k)lz, = L.

n—o0
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Proof. By using the classical Cesaro-Stolz lemma, case 0/0, we have

. . T . Tn — Tp+1

lim n? (n+ k)lz, = lim = — lim n_ond T

n—oo n—oo ———— n—oo —

nP(n+k)! nP(n+k)! (n+1)P (n+1+k)!

. Tn — Tn+1
= lim ~ nt
n—00 1 1 1
(n+k)! ("” (n+1)P+1(n+1+k))
Tn — Tn+l

— 1
ngrolom{n}? (#—m)}

Ln — Tn+1 —1

= lim
e op (n+k)!

Note that for the last equality we have used

A {"p <n11’ C(n+ 1)p+11(n +1+ k)) }

nP
= lim <1— s} ) =
n—00 (n+ 1P (n+1+k)

In fact, this lemma says that if z,, — x,4+1 converges to zero like
(n? (n+k))7",

then x,, converges to zero like (n? (n + k)!) ™!, too. In other words, the faster
sequence T, — Tn+1 18, the faster sequence x,, is obtained.
As a first example, let us define the family of sequences
1 1 1

@) =1+ g+t oot aramon ¢

We have

n (@) = Tny1 fa) = <(n+a)1(n—1)!> N (;JFM)

- a(wra - arira)

a n a CLZ
0 (0) = s (0) = - AR R ®)

We use (3) and Lemma 1 to deduce the following:

SO
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Theorem 1. For the sequence x, (a), we have:
a) if a # —1, then

lim n-n!(z, (a) — zpy1(a)) =—a—1 and lim n-n!-z,(a)=—a—1.
n—oo n—oo

i1) if a = —1, then

lim n?n! (2, (—1) — 2pp1(=1)) =1 and lim n?n!-z, (-1) = 1.

Corollary 1. The sequence

x(—l)—1+l+l+ + ! + ! —e
" N o207 n=1 (n—=1)(n-1)

—1 . .
converges to zero as (nQn!) , while all sequences x, (a), with a # —1,
converge to zero as (n - n!)_1 .

Note that the sequence

is related to the sequence (1) used in proving the irrationality of e.
Now let us consider the family of sequences

1 1-B+h—r

_ 1 1 n n3 n
Vn(pvqﬂr)_l—i_ﬁ—i_?—*——i_ﬁ_‘_ n|n €,
depending on real parameters p, g, 7. We have
1—- 2 + 4qa _
Yo (P, 4,7) = Va1 (P, qs7) = S
__p ¢ _ _r
1 Ve T T ey
(n+1)! m+1D(n+1)
1 S
n! nd(n+1)°%
SO ) S (n)
n
_ R L 4
Tn (p7Q7T) Yn+1 (p7q7r) 7'1,' 7’L5 (TL+ 1)67 ( )
where
Sn) = A—p)n®+(g—5p+4)n”" + (5¢—13p —r +6) n®

+ (14q — 19p — 57 + 4) n® 4 (20q — 15p — 157 + 1) n?
+ (15 — 6p — 20r) n> + (6 — p — 157)n® + (¢ — 6r)n — -
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It follows that the limit

lim ndn! (’Yn (pa q, 7') — Yn+1 (pa q, T))

n—oo

is finite, nonzero, where
d=11—degS (n).

The highest value for d is obtained when deg S (n) is as small as possible.
This is attained when the first three coefficients of S (n) vanish

1-p=0
q—5p+4=0 ;
5¢ —13p—r+6=0
that is
p=1, qg=1, r=-2.
By using (4) and Lemma 1, we can give the following:

Theorem 2. For the sequence vy, (p,q,r), we have:
i) if p# 1, then v, (p,q,r) converges to zero as (n3n!)_l , since

lim n®n! (v, (p,q) — Y41 (@) =1—p and Jim n*nly, (p,q) =1 —p.

n—oo
it) if p=1 and q # 1, then v, (1,q,7r) converges to zero as (n4n!)_1, since

lim n'*n! (v, (1,¢,7) — Yns1 (1,¢,7)) = g—1 and nh_)n;o ninly, (1,q,7) = ¢—1.

n—oo
iii) if p1: 1, ¢ = 1, and r # =2, then v, (1,1,7) converges to zero as
(n5n!)_ , since

lim 77! (7, (1,1) = Ype1 (1,1)) = —r—2 and lim n’nly, (1,1) = —r—2.

w)ifp=1,q =1, and r = =2, then v, (1,1,—2) converges to zero as

(nn!) ! , since

lim n%n! (v, (1,1, -2) — yns1(1,1,-2)) =9 and lim nSnly, (1,1,-2) = 9.
n oo

n—oo

Corollary 2. The sequence

11 L l-mtwta
7”<1’1’_2):1+ﬁ+§+"'+ﬂ+ —e

converges to zero as (nﬁn!)fl ; it has the highest rate of convergence, through
all sequences vy, (p,q,r), where p,q,r are real parameters.
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We can consider the approximation formula

112
9n~1—ﬁ+$+ﬁ, n—>OO,

as we can prove the next:

Theorem 3. The following inequalities hold true, for all integers n > 3 :

IR +1+ <<1+1+1++ +ﬂ”
1 2! 1 2! nln’
where
1 1+1 B 1 1+1+2
=1 — — —1_ — il
n n 2 374
Proof. We have
1 1 1 Op
1+1'+§+...+a+n!—n—e:%(1,1,0)
and
1 B
1y = TR TR +—n—e—vn(1,1,—2)-

By using (4), we deduce that for all integers n > 3 :

1 (2n+1)(n®—2n—-n?-1)

n(1,1,0) — vy, 1,1,0) = —— - <0
’Y( ) ’Y-i-l( ) n! n4(n+1)5

and

1 13n + 3512 + 49n3 + 36n* + 9n® + 2
1,1,-2)— 1,1,-2) = > 0.
’Yn( ) 'Yn—l-l( ) n, b (n+1)

Consequently, the sequence 7, (1,1,0) is strictly increasing, while the se-
quence 7, (1,1, —2) is strictly decreasing. They converge to zero, so

T (1,1,0) <0 and ~,(1,1,-2) > 0.

The proof is complete. O



C. Mortici 159

3 Final remarks

Our method permits to calculate more terms in the asymptotic series, as
n—00:
1 1 2 9 9

S e B e
50 267 413 2180 17731 1
T T T T T PO Ge )

and we are convinced that it can be a starting point for obtaining new results
in the approximation theory.
Moreover, by using the same method presented above, for the sequence

7, defined by (2), we have, as n — oo
B 11 1 2
R R
9 9 50 267 1
-——t+ =+ —=-——7F +0 .

n6 T T8 T o nlo

Theorem 4. The following inequalities hold true, for all integers n >1:

4=+ + —+ —=<e<1l+=4+.. 4+ — -+ —,
R TR v Aoy TR TR
where 1 1 1
pnzl—l————3 and o, =1+ —.

n o on n
Proof. Let us denote

1 1 On

11 1+ -2
and

1 1 On

11 1+1
We have

1 1
1 e 1+

- n3
n! * (n+1)! n!

1 4dn+5n° 40’ +1

n! n3 (n+1)*

Tm+1 —Th =
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and

Lolegh 14l

Sn+1 — Sn E‘i‘ (n+1)' - ol
1 1
- = <o,
n! n(n+1)

Consequently, the sequence r, is strictly increasing, while the sequence s,
is strictly decreasing. They converge to zero, so

rp, <0 and s, >0.

The proof is now complete. O
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