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Abstract

We introduce some sequences approximating the constant e, related
to the sequence defining the constant e and its irrationality. The main
tool for constructing those sequences is a result of Cesàro-Stolz type.
Some related inequalities are given.
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1 Introduction

The mathematical constant e (equal to 2.71828...), is one of the most im-
portant numbers in mathematics. It arises naturally in various contexts,
especially in calculus, number theory, and complex analysis.

One of the definitions of e is through the infinite series of inverse factorials

e = lim
n→∞

(
1 +

1

1!
+

1

2!
+ ...+

1

n!

)
.
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The constant e first appeared in the work of the Swiss mathematician Jacob
Bernoulli (1655-1705) in the context of compound interest around 1683.
However, it was the Swiss mathematician Leonhard Euler (1707-1783) who
formally introduced the symbol e and explored its properties extensively in
the 18th century. Euler demonstrated many remarkable identities involving
e, including its irrationality by defining the sequence

en = 1 +
1

1!
+

1

2!
+ ...+

1

n!
+

θn
n!n

, 0 < θn < 1. (1)

Euler’s work laid the foundation for the modern understanding of expo-
nential functions and logarithms, making e a cornerstone of mathematical
analysis.

2 Main results

We consider a family of sequences xn approximating the constant e, of the
form

xn = 1 +
1

1!
+ ...+

1

(n− 1)!
+
τn
n!
− e, (2)

where the sequence τn depends on some real parameters. We define and dis-
cuss a sequence xn obtained for particular values of the parameters involved,
such that xn has the highest possible rate of convergence.

Our method is inspired by a lemma of Cesàro-Stolz type presented in [1].
Precisely, if un is a sequence convergent to zero such that

lim
n→∞

nk (un − un+1) = l,

for some k > 1 and l 6= 0, then

lim
n→∞

nk−1un =
l

k − 1
.

This is a useful tool for calculating the rate of convergence of some sequences,
or to accelerate some convergencies. Consequently, many authors used this
lemma and obtained new results in recent years (see, for instance, [2]- [4]).

We give here a similar result which we will use in this paper.

Lemma 1. Let xn be a sequence convergent to zero such that

lim
n→∞

np (n+ k)! (xn − xn+1) = l,

for some p > 0, k ∈ Z and l 6= 0. Then

lim
n→∞

np (n+ k)!xn = l.
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Proof. By using the classical Cesàro-Stolz lemma, case 0/0, we have

lim
n→∞

np (n+ k)!xn = lim
n→∞

xn
1

np(n+k)!

= lim
n→∞

xn − xn+1
1

np(n+k)! −
1

(n+1)p(n+1+k)!

= lim
n→∞

xn − xn+1

1
(n+k)!

(
1
np − 1

(n+1)p+1(n+1+k)

)
= lim

n→∞

xn − xn+1

1
np(n+k)!

{
np
(

1
np − 1

(n+1)p+1(n+1+k)

)}
= lim

n→∞

xn − xn+1
1

np(n+k)!

= l.

Note that for the last equality we have used

lim
n→∞

{
np
(

1

np
− 1

(n+ 1)p+1 (n+ 1 + k)

)}

= lim
n→∞

(
1− np

(n+ 1)p+1 (n+ 1 + k)

)
= 1.

In fact, this lemma says that if xn − xn+1 converges to zero like

(np (n+ k)!)−1 ,

then xn converges to zero like (np (n+ k)!)−1, too. In other words, the faster
sequence xn − xn+1 is, the faster sequence xn is obtained.

As a first example, let us define the family of sequences

xn (a) = 1 +
1

1!
+ ...+

1

(n− 1)!
+

1

(n+ a) (n− 1)!
− e.

We have

xn (a)− xn+1 (a) =

(
1

(n+ a) (n− 1)!

)
−
(

1

n!
+

1

(n+ 1 + a)n!

)
=

1

n!

(
n

(n+ a)
−
(

1 +
1

(n+ 1 + a)

))
,

so

xn (a)− xn+1 (a) = − 1

n!

(a+ 1)n+ 2a+ a2

(n+ a) (n+ a+ 1)
. (3)

We use (3) and Lemma 1 to deduce the following:
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Theorem 1. For the sequence xn (a) , we have:
a) if a 6= −1, then

lim
n→∞

n · n! (xn (a)− xn+1 (a)) = −a− 1 and lim
n→∞

n · n! · xn (a) = −a− 1.

ii) if a = −1, then

lim
n→∞

n2n! (xn (−1)− xn+1 (−1)) = 1 and lim
n→∞

n2n! · xn (−1) = 1.

Corollary 1. The sequence

xn (−1) = 1 +
1

1!
+

1

2!
+ ...+

1

(n− 1)!
+

1

(n− 1)! (n− 1)
− e

converges to zero as
(
n2n!

)−1
, while all sequences xn (a) , with a 6= −1,

converge to zero as (n · n!)−1 .

Note that the sequence

xn+1 (−1) = 1 +
1

1!
+

1

2!
+ ...+

1

n!
+

1

n!n
− e

is related to the sequence (1) used in proving the irrationality of e.
Now let us consider the family of sequences

γn (p, q, r) = 1 +
1

1!
+

1

2!
+ ...+

1

n!
+

1− p
n2 + q

n3 − r
n4

n!n
− e,

depending on real parameters p, q, r. We have

γn (p, q, r)− γn+1 (p, q, r) =
1− p

n2 + q
n3 − r

n4

n!n

− 1

(n+ 1)!
−

1− p

(n+1)2
+ q

(n+1)3
− r

(n+1)4

(n+ 1)! (n+ 1)

=
1

n!
· S (n)

n5 (n+ 1)6
,

so

γn (p, q, r)− γn+1 (p, q, r) =
1

n!
· S (n)

n5 (n+ 1)6
, (4)

where

S (n) = (1− p)n8 + (q − 5p+ 4)n7 + (5q − 13p− r + 6)n6

+ (14q − 19p− 5r + 4)n5 + (20q − 15p− 15r + 1)n4

+ (15q − 6p− 20r)n3 + (6q − p− 15r)n2 + (q − 6r)n− r.
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It follows that the limit

lim
n→∞

ndn! (γn (p, q, r)− γn+1 (p, q, r))

is finite, nonzero, where

d = 11− degS (n) .

The highest value for d is obtained when degS (n) is as small as possible.
This is attained when the first three coefficients of S (n) vanish

1− p = 0
q − 5p+ 4 = 0

5q − 13p− r + 6 = 0
,

that is
p = 1, q = 1, r = −2.

By using (4) and Lemma 1, we can give the following:

Theorem 2. For the sequence γn (p, q, r) , we have:

i) if p 6= 1, then γn (p, q, r) converges to zero as
(
n3n!

)−1
, since

lim
n→∞

n3n! (γn (p, q)− γn+1 (p, q)) = 1− p and lim
n→∞

n3n!γn (p, q) = 1− p.

ii) if p = 1 and q 6= 1, then γn (1, q, r) converges to zero as
(
n4n!

)−1
, since

lim
n→∞

n4n! (γn (1, q, r)− γn+1 (1, q, r)) = q−1 and lim
n→∞

n4n!γn (1, q, r) = q−1.

iii) if p = 1, q = 1, and r 6= −2, then γn (1, 1, r) converges to zero as(
n5n!

)−1
, since

lim
n→∞

n5n! (γn (1, 1)− γn+1 (1, 1)) = −r−2 and lim
n→∞

n5n!γn (1, 1) = −r−2.

iv) if p = 1, q = 1, and r = −2, then γn (1, 1,−2) converges to zero as(
n6n!

)−1
, since

lim
n→∞

n6n! (γn (1, 1,−2)− γn+1 (1, 1,−2)) = 9 and lim
n→∞

n6n!γn (1, 1,−2) = 9.

Corollary 2. The sequence

γn (1, 1,−2) = 1 +
1

1!
+

1

2!
+ ...+

1

n!
+

1− 1
n2 + 1

n3 + 2
n4

n!n
− e

converges to zero as
(
n6n!

)−1
; it has the highest rate of convergence, through

all sequences γn (p, q, r) , where p, q, r are real parameters.
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We can consider the approximation formula

θn ≈ 1− 1

n2
+

1

n3
+

2

n4
, n→∞,

as we can prove the next:

Theorem 3. The following inequalities hold true, for all integers n ≥ 3 :

1 +
1

1!
+

1

2!
+ ...+

1

n!
+
αn

n!n
< e < 1 +

1

1!
+

1

2!
+ ...+

1

n!
+

βn
n!n

,

where

αn = 1− 1

n2
+

1

n3
, βn = 1− 1

n2
+

1

n3
+

2

n4
.

Proof. We have

1 +
1

1!
+

1

2!
+ ...+

1

n!
+
αn

n!n
− e = γn (1, 1, 0)

and

1 +
1

1!
+

1

2!
+ ...+

1

n!
+

βn
n!n
− e = γn (1, 1,−2) .

By using (4), we deduce that for all integers n ≥ 3 :

γn (1, 1, 0)− γn+1 (1, 1, 0) = − 1

n!
·

(2n+ 1)
(
n3 − 2n− n2 − 1

)
n4 (n+ 1)5

< 0

and

γn (1, 1,−2)−γn+1 (1, 1,−2) =
1

n!
·13n+ 35n2 + 49n3 + 36n4 + 9n5 + 2

n5 (n+ 1)6
> 0.

Consequently, the sequence γn (1, 1, 0) is strictly increasing, while the se-
quence γn (1, 1,−2) is strictly decreasing. They converge to zero, so

γn (1, 1, 0) < 0 and γn (1, 1,−2) > 0.

The proof is complete.
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3 Final remarks

Our method permits to calculate more terms in the asymptotic series, as
n→∞ :

θn = 1− 1

n2
+

1

n3
+

2

n4
− 9

n5
+

9

n6

+
50

n7
− 267

n8
+

413

n9
+

2180

n10
− 17731

n11
+O

(
1

n12

)
,

and we are convinced that it can be a starting point for obtaining new results
in the approximation theory.

Moreover, by using the same method presented above, for the sequence
τn defined by (2), we have, as n→∞

τn = 1 +
1

n
− 1

n3
+

1

n4
+

2

n5

− 9

n6
+

9

n7
+

50

n8
− 267

n9
+O

(
1

n10

)
.

Theorem 4. The following inequalities hold true, for all integers n ≥ 1 :

1 +
1

1!
+ ...+

1

(n− 1)!
+
ρn
n!

< e < 1 +
1

1!
+ ...+

1

(n− 1)!
+
σn
n!
,

where

ρn = 1 +
1

n
− 1

n3
and σn = 1 +

1

n
.

Proof. Let us denote

rn = 1 +
1

1!
+

1

2!
+ ...+

ρn
n!
− e

= 1 +
1

1!
+

1

2!
+ ...+

1 + 1
n −

1
n3

n!
− e

and

sn = 1 +
1

1!
+

1

2!
+ ...+

σn
n!
− e

= 1 +
1

1!
+

1

2!
+ ...+

1 + 1
n

n!
− e.

We have

rn+1 − rn =
1

n!
+

1 + 1
n+1 −

1
(n+1)3

(n+ 1)!
−

1 + 1
n −

1
n3

n!

=
1

n!
· 4n+ 5n2 + n3 + 1

n3 (n+ 1)4
> 0
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and

sn+1 − sn =
1

n!
+

1 + 1
n+1

(n+ 1)!
−

1 + 1
n

n!

= − 1

n!
· 1

n (n+ 1)2
< 0.

Consequently, the sequence rn is strictly increasing, while the sequence sn
is strictly decreasing. They converge to zero, so

rn < 0 and sn > 0.

The proof is now complete.
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