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Abstract

We establish a generalization of Ekeland’s variational principle for
submonotone maps defined on a preordered pseudometric space and
with values in a preordered monoid. The proof relies on an ordering
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1 Introduction

The classical Ekeland principle can be stated as follows.

Ekeland’s variational principle. Let (M,d) be a complete metric space
and let f: M — RU{+o0} be lower semicontinuous, proper (i.e., f % +00),
and bounded below. Then, for every x € dom(f) := f~1(R), there is y €
dom(f) such that

o d(z,y) < f(z) — fy);
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o d(y,z) > f(y) = f(z) forall z € M, z # y.

As corollaries, one has the existence of “almost minimum” point of ar-
bitrarily small strong slope, or the existence of minimizing Palais—Smale se-
quence. Thus Ekeland’s variational principle is especially fruitful for study-
ing minimization problems for lower semicontinuous maps on a metric space.

In [1], Ekeland’s principle is generalized to the context of a submonotone
map f: P — RU {400} defined on a set P endowed with a pseudometric d
(instead of a metric) and a preorder <, i.e., a reflexive and transitive binary
relation. The classical situation is retrieved if d is a metric and < is the
trivial preorder, i.e., such that z < y for all z, y.

In this paper, our aim is to consider maps f : P — K, still defined on a
preordered set P, but with values in a commutative monoid (K, +) endowed
with a preorder (instead of R U {+oo}, which is itself a monoid endowed
with a total order).

In the present situation, the problem of finding “almost minimum” points
x for f (i.e., whose value f(x) is “almost the smallest” value of f) is replaced
by the problem of finding points  whose value f(z) is “almost minimal”
with respect to the preorder on K. A first step towards this purpose is to
generalize Ekeland’s principle over preordered monoids. This is the object
of this paper.

The paper is organized as follows. In Section 2, we show an ordering
principle (Proposition 1) which asserts the existence of certain d-maximal
points in a preordered set P, with respect to a map d more general than
a pseudometric. This extends [2, Theorem 2]. In Section 3, we derive our
extension of Ekeland’s principle (Theorem 1). The precise setting of this
result is given in the axioms (K1)—(K5), (P1)-(P2) which we introduce in
the due places and illustrate with various remarks and examples.

2 Basic setting and a general ordering principle

The setting of this section is quite rudimentary: we consider two nonempty
sets K and P, with the following structure.

(K1) K is a nonempty set, with a distinguished element 0 € K, and a
countable collection of subsets V such that

(YW,V'eV, VnV'eV) and [V ={0}
vey

(thus in particular 0 € V for all V € V).
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(P1) P is a nonempty set equipped with a preorder < (i.e., a binary relation
which is reflexive and transitive, but not necessarily antisymmetric)
and a map

d:Pé::{(x,y)EPxP:xSy}%K
such that d(z,z) =0 for all x € P.

Based on these assumptions, we will use the following terminology:

e We say that a sequence («,,) C K converges to 0, and we write a,, — 0
if, for every V' € V there is ng € N such that, whenever n > ng there
holds o, € V.

e A sequence (x,) C P is said to be <-ascending if x,, < x,, whenever
n < m. Then we say that:
e x € P is an upper bound of (x,) if x,, < x for all n.
o (z,) <-converges to x € P if x is an upper bound of (z,) and

. < . .
d(xy, ) — 0; we write x,, = z in this case.

o (x,) is <-convergent if there is z € P such that x, 5z

o (x,) is a Cauchy sequence (respectively, a semi-Cauchy sequence)
if for every V' € V there is a rank ng such that d(z,,z,) € V
whenever ng < n < m (respectively, d(zy,,x,) € V whenever
ng < n).

e A sequence is called a <-Cauchy (resp., <-semi-Cauchy) sequence if it
is both <-ascending and a Cauchy (resp., semi-Cauchy) sequence.
(In the same way, whenever we will speak of a <-convergent sequence,
it will be assumed <-ascending.)

e Wesay that P is <-complete if any <-Cauchy sequence is <-convergent.

e An element z € P is called d-mazimal if
Vu,ve P, z<u<v = d(uv)=0.

We will say that x is d-semi-maximal if the following weaker condition
holds:
Vue P, z<u = d(z,u)=0.
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e In the same way, we say that x € P is d-minimal (resp., d-semi-
minimal) if

Yu,vo e P, u<v<z = d(u,v)=0
(resp., Yu e P, u<z = d(u,z)=0).

The goal of this section is to prove a general criterion of existence of d-
maximal elements in the preordered set P: see Proposition 1 below. Before
that, we give comments on assumptions (K1)—(P1) and the above definitions,
and show preliminary facts.

Example 1. A straightforward model for (K1) and (P1) is the following:

¢ K=R (or RU{+00}), equipped with the system V of neighborhoods
of 0 consisting of intervals I C R with rational bounds;

e P is endowed with a metric d : P x P — [0,400) C R and the trivial
preorder <, i.e., such that z <y for all z,y € P.

Then we retrieve the standard notions of convergence, Cauchy sequence,
and completeness. This is the setting of the classical Ekeland’s principle
(see Section 1).

The assumptions (K1)-(P1), and the complementary assumptions that
we will make in the next section, aim to incorporate the standard setting
above in a considerably wider generality.

The reason why (K1) involves a countable collection V is for having the
following lemma.

Lemma 1. Under (K1), there is a sequence (Vi)g>1 C V such that

(1) Vi D Vigq for all k > 1;

(i) () Ve =A{0};

k>1
(iii) for all V €V, there is k > 1 such that V D V.

Proof. Since V is countable, we can write V = {Ug}r>1. Then by setting
Vi :=UiN...NUy for all k > 1, we obtain a sequence (Vj)x>1 still contained
in V (since V is stable under finite intersections) and satisfying the required
conditions (for condition (iii), we have that every V € V is of the form
V = Uy, for some k > 1, thus by construction V' DO Vy). d
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Remark 1. If V is not assumed to be countable in (K1), then Lemma 1 is not
valid. Take for instance K = R equipped with the collection V of all cofinite
subsets V' C R containing 0. Then V is stable under finite intersection
and ¢y V = {0}. However, for every sequence (Vi)r>1 C V, the subset
R\ Mi>1 Vi = Ups1 (R \ Vi) is at most countable, hence (-, Vi # {0}.

Remark 2. In (K1), changing V to another countable collection of subsets
V' (satisfying the conditions of (K1)) may of course modify the property that
a sequence converges to (. For the purpose of discussion in this remark, we
write a, Yo (resp., ap, L 0) for convergence with respect to V (resp., V').

(a) Say that V refines V' if, for every V' € V' there is V € V with
V' > V. Then:

Vrefines V' &  (V(an) CK, ap %0 = an Y, 0).

Indeed, the proof of = is straightforward. For showing <, we use the
sequence (Vi)r>1 C V given by Lemma 1. If V does not refine V', then there
is V! € V' such that V' 5 V for all V € V. For every k > 1 this yields

an element oy € Vi such that o ¢ V'. We have oy Z> 0 by construction
of the sequence (and the properties stated in Lemma 1), but () does not
converge to 0 with respect to V' (since V’ does not contain any term of the
sequence).

(b) Say that V and V' are equivalent if V refines V' and V' refines V. By
part (a) above:

Vis equivalent to V' & (V(an) CK, ay Yo o an, LA 0).

For example, in K = R2, the collection V = {Igtqeqy with I :== {(z,0) :
2| < ¢} is not equivalent to V' = {I; }4eqr with I := {(0,y) : [y| < q}. We
have (1,0) % 0 but (,0) % 0.

(¢) In what follows the collection V of (K1) is fixed, but it would be
harmless to replace it by an equivalent collection of subsets also fulfilling
the conditions of (K1). As an example, the collection of subsets V of (K1)
is equivalent to the collection {Vj}x>1 produced in Lemma 1; thus we could

freely assume that V = {Vi}r>1.
Remark 3. We may declare that a subset A C P is <-closed if

Ve e P, (I(zn) C A, xnéx) = ze€A

. < . .
(where the notation z, = x means that the sequence (z,) is <-ascending
and <-converges to ). Then a subset U is declared <-open if its complement
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P\ U is <-closed. It is straightforward to check that this defines a topology
on P.

Remark 4. In the definitions above, we are focusing on <-ascending se-
quences and the notion of <-convergence because the map d is only defined
over pairs (z,y) € P2, so that d(z,,x) has no meaning if we do not require
a priori that =, < z.

Assume d defined on the whole set P x P instead of just the subset P2;
this is the setting of [1] and [2] (with K = R). Then more general definitions
can be given, which are considered in the aforementioned references:

e We say that a (not necessarily <-ascending) sequence (x,) C P con-
verges to x € P if d(xy,x) — 0.

e We say that (x,) is convergent if it converges to some x € P.

e The preorder < is called self-closed if whenever (z,,) is a <-ascending
sequence which converges to x € P, we have x,, < x for all n.

In other words, < is self-closed if and only if, for every <-ascending sequence
(xn) C P and every element 2 € P, we have:

() converges to x < (zp) <-converges to

(the implication < is always true).
The condition that P is <-complete is then implied by the condition:

every <-Cauchy sequence (x,) C P is convergent, (1)
and the preorder < is self-closed.

We stress that <-completeness of P is in general a weaker condition than (1).
For instance, let K = R and V be as in Example 1, and let P = [0, 1Ju{—1} be
endowed with the standard total order < and the map d : P x P — [0, +00),
(x,y) — ||z| — |y||- In this case, P is <-complete: if (z,) is a <-Cauchy
sequence, then it is either constant equal to —1 (in which case it <-converges
to —1) or it is a nondecreasing sequence contained in [0, 1] for n large enough
(in which case it <-converges to some ¢ € [0, 1]); in both cases (z,) is <-
convergent. However, < is not self-closed, because the sequence (1 — %)
converges to —1 although —1 <1 — % for all n.

Remark 5. (a) A <-convergent sequence is not always a Cauchy sequence:
take for instance K = R and V as in Example 1 and let P = [0, 1] be equipped
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with its standard total order < and the map d : P% — R given by

0 ifx =y,
dz,y)=4¢ 1 ifr<y<l,
l—z fz<y=1

The sequence (z,,) C P defined by z,, =1 — % for all n > 1 is <-convergent
(to 1) but it is not a Cauchy sequence. Here a <-ascending sequence (y,) C
P is a Cauchy sequence if and only if it is stationary (which implies <-
convergent). This fact shows that P is <-complete.

(b) If d satisfies the property

u<v<w = (VVeV, duw),dvw)eV = duwv)eV) (2)

for all u, v, w € P, then it holds that every <-convergent sequence is also a <-
Cauchy sequence. Indeed, assume that (z,,) C P is <-convergent to some z.
Then for every V' € V there is a rank ng with d(x,,z) € V whenever n > ny.
If m > n > ng, we then have z,, < x,,, < z and d(zp, x), d(Tm,x) € V, which
(by virtue of (2)) yields d(zy, zm) € V.

(c) Assume that d satisfies the next property, which is a “right counter-
part” of (2):

u<v<w = WVeV, duw) eV = dvw) eV) (3)

for all u,v,w € P. If (z,,) is a <-ascending sequence which is <-convergent,
then every limit has the following property:

(4)

< x is an upper bound of (z,) and
Tpn =T = . oL
x is d-semi-minimal among upper bounds of (x,).

Indeed, since z, = x, we have by definition z,, < z for all n. Now let
y be another upper bound of (z,) such that y < xz. For every V € V,
we have d(zp,x) € V for n large enough; since z, < y < x we derive
d(y,z) € V by virtue of (3). Whence d(y,z) € (¢, V = {0} (by (K1)), so
that d(y,x) = 0.

If we assume both (2) and (3), we obtain the following more precise
property of the limits:

<
Ty = T

()

x is an upper bound of (z,) and
x is d-minimal among upper bounds of (x,,).

Indeed, it remains to show the d-minimality of x, so let y,z € P be such
that , <y < z < z for all n. For every V € V, we have d(x,,z) € V
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whenever n is large enough. Then (3) implies that d(y,x),d(z,z) € V and
(2) yields in turn d(y,z) € V. Since the latter inclusion holds for every
V €V, condition (K1) ensures that d(y,z) = 0.

However, the converse of (5) is not true (and a fortiori the converse
of (4) is not true neither). Take K = R and V as in Example 1, and let
P =10,1) U {2} be equipped with its standard total order < and standard
metric d. The sequence (z,) defined by z, = 1 — 1 for all n > 1 is <-
ascending, and admits 2 as a d-minimal upper bound (in fact 2 is the unique
upper bound of (z,)) but (z,) does not <-converge to 2.

(d) Finally, we emphasize that a <-convergent sequence (x,) C P may
have several limits — even when (2) and (3) hold (so that the characterization
of the limit of part (c) is valid), and even if the map d is nondegenerate (i.e.,
V(z,y) € P2, d(z,y) = 0 & o = y). Take for instance K = R and V as
in Example 1, let P = [0,1] U {2} be endowed with the partial order <
(resp., the map d) whose restriction to [0,1] is the standard order (resp.,
the standard metric) and such that 2z < 2 for all z € [0,1) and 1,2 are not
comparable (resp., d(z,2) = 1 — z for all z € [0,1)). Then the sequence

(1 —1)is <-ascending and <-converges to both 1 and 2.

Remark 6. (a) In addition to the notions of d-maximal and d-semi-maximal
elements in P, there is of course the notion of mazimal element, with respect
to the preorder <: x € P is maximal if for all © € P the relation z < u
implies z = w (the latter notion only concerns the preorder and does not
involve the map d).

In general, we have clearly the implications

x is maximal = =z is d-maximal =z is d-semi-maximal  (6)

but none of the reversed implications is valid. For instance, if P = R is
equipped with the standard order < and the map d such that d(z,y) = 0
for all z,y € P2, then every element of P is both d-maximal and d-semi-
maximal, but P contains no maximal element. Now if P = [0, 1] is endowed
with the standard order < and the map d : P2 — R such that d(z,y) = y—=
for 0 <z <y < 1andd(0,y) =0 for all y € [0, 1], then 0 is d-semi-maximal,
but not d-maximal.

(b) The three conditions of (6) become equivalent if d is nondegenerate
(i.e., such that ¥(z,y) € P2, d(x,y) =0 < z =y). Indeed, in this case, it
is clear that d-semi-maximality implies maximality.

(c) If it holds that

Vu,v,we P, u<v<w = (d(u,v)=du,w)=0 = d(v,w)=0), (7)
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then every d-semi-maximal element becomes also d-maximal. Note that
condition (7) is weaker than condition (3) stated in Remark 5 (c), because
MNyey V' = {0}. Also condition (7) is weaker than the condition that d is
nondegenerate, involved in part (b) above (indeed, (7) automatically holds
if d is nondegenerate, but it also holds if d = 0).

The following result is the announced criterion of existence of d-maximal
elements; it extends [2, Theorem 2].

Proposition 1. Assume that (K1) and (P1) hold; assume in addition that
(i) every <-ascending sequence in P has an upper bound

and that one of the following two conditions holds:
(i) every <-ascending sequence in P is a Cauchy sequence;

(il)" every <-ascending sequence (x,) C P is a semi-Cauchy sequence and
satisfies

Vu,v € P, (u<wv and xnéu,v) = d(u,v) =0.

Then, for every x € P, there ewists a d-mazximal element x' with x < 2.

Proof. We first show the following claim:

Claim. (a) If (ii) holds then for every x € P andV € V, there isy € P with
x <y and such that for all u,v € P with y < u < v, we have d(u,v) € V.

(b) If (ii) holds then for every x € P and V € V, there is y € P with
x <y and such that for all uw € P with y < u, we have d(y,u) € V.

For showing part (a) of the Claim, assume to the contrary that there
are z € P and V € V such that for every y € P with = < y, we can find
u,v € P with y < u < v and d(u,v) ¢ V. We construct a <-ascending
sequence (y,) C P by induction:

e Set yp = x.

e Assuming that yg < ... < y9, have been constructed, by invoking the
above property, we find y2,11,%2n12 € P such that yo, < yopy1 <
Yon+2 and d(y2ni1,Yons2) € V.
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Altogether we get a <-ascending sequence (y,,) such that d(yont1, Yont2) € V
for all n. The latter fact implies that (y,) cannot be a Cauchy sequence, a
contradiction with (ii).

Next we show part (b) of the Claim. Arguing again by contradiction,
assume that there are x € P and V € V such that for every y € P with
x < y there is some u € P with y < u and d(y,u) ¢ V. Here we construct a
sequence (yp) as follows: set y9 = x and once yp < ... < y, are constructed
choose yn41 > yn such that d(yn,yn+1) ¢ V. The so-obtained sequence
(yn) C P is <-ascending and such that d(yn, yn+1) ¢ V for all n. The latter
fact prevents it from being semi-Cauchy, a contradiction with (ii)’. The
Claim is established.

Fix x € P and let us produce a d-maximal element ' € P with z < z'.
To do this, we rely on the construction of a <-ascending sequence (z,,) C P.
For this construction, we use the Claim and the sequence (Vi)g>1 C V
provided by Lemma 1.

Set first xg = x. Once zg < ... < x,_1 are constructed, by virtue of the
Claim, we find z,, > z,,_1 such that

zn,<u<v = duv)eV, if (ii) holds, (8)
respectively, =, <u = d(z,,u) €V, if (i)’ holds.  (9)

We obtain a <-ascending sequence (x,,) which satisfies (8) (respectively, (9))
for all n > 1.

By assumption (i), the sequence (z;,) has a upper bound #’. In particular
x = w9 < 2/. It remains to verify that 2’ is d-maximal. To this end, let
u,v € P be such that '’ <wu < wv. For all £ > 1 we thus have 2, <2’ <u <
v. If (ii) holds, then (8) implies that d(u,v) € Vj for all k > 1, which yields
d(u,v) = 0 because (,~; Vi = {0}.

Now assume that (ii)’ holds. Given k > 1, for every n > k, condition
(9) implies that d(xy,,u) € V;, C Vi. This shows that d(z,,u) — 0, whence

Ty S u. Similarly, (9) implies that d(z,,v) € V} for all n > k, and we also
obtain that z, 5 v. Due to (i), we conclude that d(u,v) = 0. In all the

cases, we obtain that 2’ is d-maximal, and the proof of the proposition is
complete. O

Example 2. Let K = R and V be as in Example 1. Let P be the closed
unit ball of R? endowed with its standard metric d and the partial order <
given by (z,y) < (2/,y) if x < 2/ and y < 3. Then, every <-ascending
sequence (z,) = ((zn,yn)) C P consists of two nondecreasing sequences
(xn), (yn) C [—1,1], which easily implies that (z,) is <-convergent to some
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point z = (z,y) € P, and z, < z for all n. Thus (i) and (ii) are satisfied
and Proposition 1 can be applied. Note that the d-maximal elements of P
are exactly the points (cos@,sin @) with ¢ € [0, §]. Thus even in this simple
example, the applicability of the proposition does not mean that P has a
single d-maximal element, or a finite number of d-maximal elements.

3 Extension of Ekeland’s principle

We now introduce more assumptions on our two sets K and P.

(K2) K is endowed with an operation + and a preorder < such that:

(a) (K,+) is a commutative monoid with neutral element 0;

(b) letting K’ C K denote the subset of invertible elements, we have
Vo, €K, (a<pB and BeK) = ack)|
(c) the preorder < is compatible with + in the sense that
Va,B,veK, a<pB = a+vy<B+7,
so that in particular
VaeK,VBeK, a<p & [B-—a>0.

We set Ky :={ae€K:a >0}, K, =K' NK;, and K_ := {a € K:
a<0}cCcK.

(K3) For all V € V, we have

Va,BeK, (0<a<p and BeV) = acV.

(K4) (Generalized Archimedean condition) For every « € K" and V € V,
there is n > 1 such that

VBi,....Bn €KL\V, Bi+...4+ 8, £

(K5) (Passing to the limit condition) For all a € K,

(3(Bn) Ky with 8, -0 and a<p,Vn) = «a<0.
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(P2) We have d(z,y) € K4 for all (z,y) € Pé, and d is <-triangular in the
sense that

Ve,y,z€ P, 2<y<z = d(z,z)<d(z,y)+dy,z).

(For simplifying the presentation, we use the same symbol < to denote the
preorder on K and the preorder on P, but this will generate no ambiguity.)

Example 3. (a) As in Example 1, let K = R or K = RU {+o0}, and
let V be the system of neighborhoods of 0 formed by real intervals with
rational bounds. Let in addition K be equipped with its standard operation
+ and the standard total order <. Then all the assumptions (K1)-(K5)
are fulfilled. Note that if K = R then (K, +) is a group (every element is
invertible). If K = R U {400}, then (K, +) is just a monoid with K’ = R.

(b) Let K = C be equipped with the usual addition +, let V be the
collection of open discs V, := {2z € C : |z| < ¢} of rational radius ¢ € Q,
g > 0. We consider the partial order < on C defined by letting z < 2’
if |S(2 — 2)] < R(Z' — 2) (where R and & stand for real and imaginary
parts). It is easy to see that conditions (K1)—(K5) are fulfilled. The subset
Cy = {z € C: z > 0} is the closed cone {re? : r >0, |§] < T}, and it
contains in particular the real interval [0, 4+00).

Remark 7. All examples and counterexamples produced for illustrating the
various remarks in Section 2 actually fit conditions (K1)-(K5), (P1)-(P2).
Therefore, these remarks also apply to the setting of the present section.

Remark 8. Conditions (K1), (K2), (K4) actually imply that the restriction
of the preorder < to K’ has to be antisymmetric, thus a partial order.

Indeed, arguing by contradiction, assume that there are o, 8 € K’ dis-
tinct such that o < 8 and 8 < «. Then v := 8 — « and —y both belong to
K, and are nonzero. Due to (K1), there is V' € V such that v, —y € K, \ V.
Setting 8; = ~ for odd ¢ and B; = —v for even ¢, we obtain a sequence
(Bi)i>1 € K4\ V such that every partial sum 1 + ...+ 3, is either 0 or 7,
thus always < «. This contradicts (K4).

Remark 9. (a) For a pair of subsets A C X C K, define the <-saturation
of Ain X as the set

satx(A) ={ae X :30€ A, a <pB}.

Say that A is <-saturated in X if A =satx(A). Some of the above assump-
tions can be rephrased with this terminology:
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e Condition (K2) (b) means that the subset K’ of invertible elements is
<-saturated in K.

e (K3) means that V NK/_is <-saturated in K/, for all V' € V.

e Finally, under (K1)-(K2), condition (K5) becomes equivalent to

) satx(VNKy) =K. (10)
Vey

The latter assertion requires a justification, which can be done as follows.

Assume that (10) holds and let us show condition (K5). Let a € K
and a sequence (f,) C K be such that a < g, for all n and 3, — 0.
For every V € V, we have 8, € V N K4 for n large enough, which yields
a € satg (V N K4 ); then (10) implies that o € K_, as desired in (K5).

Now suppose that (K5) holds and let us show (10). The inclusion D in
(10) comes from the fact that every a € K_ satisfies « <0, and 0 € VNKy
for every V' € V, whence « € satg (VNK, ) by definition of the <-saturation.
Now let a € K be an element that belongs to the left hand side of (10). Let
{Vi}k>1 C Vbe asin Lemma 1. For every k > 1, we have a € satg(VxNKy),
hence there is B € Vi N K, such that a < ;. By construction (and the
properties stated in Lemma 1), the sequence (f) is contained in K, and
satisfies B, — 0. Whence a € K_, by virtue of (K5). This completes the
argument.

(b) Observe that (K1)—(K3) imply the following property: for all o € K,

(3(Bn) CK, with B, >0 and a<B,Vn) = a#0.

Thus (K5) automatically holds if every sequence (5,) C K4 with 8, — 0
satisfies 3, € K/ for large enough n (this holds for instance if there is V € V
such that VNKy C K') and if < is a total order on K'.

Let us justify the above observation. Suppose to the contrary that there
are a € K and a sequence (8,) C K/, such that 0 < a < 3, for all n and
Bn — 0. For every V € V, we have 5, € V for n large enough, whence
a € V by virtue of (K2) (b) and (K3) and, therefore, o € (o), V = {0}
(see (K1)), a contradiction.

We consider functions f: P — K.

e Given such a function f, its domain is the subset dom(f) = f~1(K') =
{reP: fx)eK}cCP.

e We say that f is proper if dom(f) # 0.
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e We say that f is <-submonotone if, for every <-ascending sequence
() C dom(f) and every element = € P,

(f(xn) > f(xm) VR <m and =z, 5 x) = f(zn) > f(x) Vn.

e Finally, we will say that f is locally finitely bounded from below if for
every x € dom(f) there is a finite subset M = M (z) C K’ such that

Vye P, (x<y and f(y)<[f(z)) = 3pueM fy)>p

Remark 10. The condition that f is <-submonotone is weaker than the
following condition, which is a generalization of lower semicontinuity to the
present context:

VaeK, {reP:f(xr)<a} is <-closed (11)

(see Remark 3). Indeed, it is easy to see that f will be <-submonotone
whenever (11) holds. Now, letting K = R and V as in Example 1, and
considering P = [0, 1] endowed with its standard metric and total order, the
function f : P — R such that f(z) = z for all € [0,1) and f(1) = 2 is
<-submonotone but does not satisfy (11).

Note also that, for arbitrary K and P, a function f : P — K is <-
submonotone if it is nonincreasing, i.e., for all x,y € P such that z < vy,
we have f(z) > f(y). (Indeed, the <-convergence x,, S incorporates that
xn, < z for all n, which directly implies f(z,) > f(z).)

As an opposite special situation, f is also automatically <-submonotone
when its restriction to dom(f) is increasing in the sense that

Vz,y € dom(f), (z<y and z#y) = f(z)<[fly),

and provided that d is nondegenerate. (Indeed, a <-ascending sequence
(x,) C dom(f) such that f(xz,) > f(z,,) whenever n < m must then be
constant. If x,, 5 x, then the fact that d is nondegenerate yields x,, = x for
all n and so f(z) = f(zp).)

Remark 11. The condition that f is locally finitely bounded from below
is much weaker than requiring that f(P) has a lower bound. For instance,
if f is nondecreasing in the sense that the following holds:

Ve,ye P, z<y = f(z)<f(y),

then f is automatically locally finitely bounded from below.
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As another example, let K = C, V, and the partial order < on C be as
in Example 3 (b). Then it is easy to see that every subset A C C which
is bounded (in the usual sense, i.e., contained in a ball) has a lower bound
(i.e., there is p € C with u < « for all @ € A). This observation implies that
whenever f: P — C is a map satisfying the condition

Vae C, f(P)Nn{BeC: S < a} isbounded, (12)

then f will be locally finitely bounded from below — even if the image f(P)
is unbounded below. Take for example P = R endowed with the trivial
preorder < and the standard metric d : RxR — [0, 4+00) C C, and consider
the function f : R — C,  + |z|"sin(x) + iz with n € (0,1). Then it is
straightforward to check that (12) holds, so that f is locally finitely bounded
from below. Also in this example the fact that f is continuous ensures that
it is <-submonotone.

However, if the preorder on P is trivial and the restriction of the preorder
on K is a total order on K’, then the condition of being locally finitely
bounded from below is equivalent to the condition that f(P) N K’ has a
lower bound.

We now give our generalization of Ekeland’s principle.

Theorem 1. Assume that (K1)-(K5), (P1)-(P2) hold. Assume that P is
<-complete. Let f : P — K be <-submonotone and locally finitely bounded
from below.

Then, for every x € dom(f), there exists y € dom(f) satisfying the
following conditions:

(a) z <y;
(b) d(z,y) < f(z) - f(y);
(c) for all (z,2') € dom(f) x dom(f) such that y < z < 2/, we have
(d(y,2) < f(y) = f(z) and d(z,2) < f(2) = f(z) = d(z,2)=0.
Proof. We consider the set
P'={ueP:z<uand f(u) < f(z)} C dom(f),

where the last inclusion is shown as follows: for every u € P’, we have
f(u) < f(z) € K whence f(u) € K, i.e., u € dom(f), by virtue of (K2) (b).
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By exploiting the fact that f is locally finitely bounded from below, we
find a finite set M = M (z) C K’ such that

Vue P, FueM, p<flu). (13)
We define a binary relation < on P’ by setting
u=xv if (u<v and d(u,v) < f(u)— f(v))
and check that < is a preorder:

e The reflexivity of < comes from the fact that the relations considered
on K and P are reflexive, and d(u,u) = 0 for all u.

e Let u,v,w € P’ be such that v < v and v < w. Then, u < v, v < w,
d(u,v) < f(u) — f(v), and d(v,w) < f(v) — f(w).

— The first two inequalities yield u < w by transitivity of the rela-
tion < on P.

— The last two inequalities first tell us that d(u,v) and d(v,w) be-
long to K’ by virtue of (K2) (b), since f(u), f(v), f(w) € K'. Then
we can invoke (P2) and (K2) (c¢) which yield

d(u,w) d(u,v) + d(v,w)
fu) = f0) + f(v) = f(w) = f(u) = f(w).
Whence v = v, and the transitivity is established, which completes
the proof that < is a preorder on P’.

<
<

Clearly (P’)?_< ={(u,v) € P’xP': u=v}C Pé and thus the restriction
d = dl(pryz, : (P")%4 — K is well defined; the triple (P, %, d') satisfies (P1).
Let us show that (P’,=<,d’) also satisfies the hypotheses (i) and (ii) of

Proposition 1. Let (un)p>0 C P’ be an arbitrary <-ascending sequence,
which (by definition of <) means that

(uy) is <-ascending (14)

and
(0 <) d(un, um) < f(un) — f(um) whenever n < m. (15)

We claim that
YWV ev, dng, no<n<m = f(un)— flun) €V. (16)

Assume to the contrary that there is V' € V such that for any ng we can find
m > n > ng with f(un) — f(um) ¢ V. Then we construct a nondecreasing
sequence of indices (o) C N as follows:
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e Set ag =0.

e Once ap < ... < ag are constructed, choose qog1, Qopt2 With agg <
Qg1 < Qgpyo such that f(uay, ) — f(Uag,.) €V

The so-obtained sequence («yj) being nondecreasing, relation (15) implies
that f(ua,) — f(tay,,) > 0 for all £ > 0, whence

f(uoézk—Q) - f(uoézk) > f(uoézk—1) - f(uazk) =: Pk
for all £ > 1 by virtue of (K2) (c). Note also that, by construction, we have
Vk>1, BreK,\V.

On the one hand, by invoking again (K2) (¢) and using (13), we have

Vn>1, 3peM, flu)—p > f(uw)— fluay,)

n

= Z(f(ua%,g) — [ (uay))

k=1
> Bi+...+ Bn (17)

On the other hand, by virtue of (K4), for every p € M there is an integer

ny > 1with B1+4...4+8,, £ f(uo)—p, thus a fortiori B1+.. .48, £ f(uo) —p
for all n > n,, (since By > 0 for all k and by (K2) (c)). Since M is finite, we
can set n := max{n, : 4 € M} and infer that

Vue M, Bi+...+ By £ fluo) — .

This is contradictory with (17). Therefore, (16) is established.
By combining (15), (16), and (K3), we obtain that

(un) is a Cauchy sequence. (18)

Since (u,) was an arbitrary <-ascending sequence in P’, we have therefore
checked condition (ii) of Proposition 1.

In order to apply the proposition, it remains to complete the verification
of (i), that is, to show that (u,) has an upper bound in the preordered set
(P’,<). Note that (14) and (18) imply that (u,) is also a <-Cauchy sequence
in P. The assumption that P is <-complete yields an element v € P such
that u, 5 u. Let us show that this element u is the desired upper bound.

o < . .
By definition of the <-convergence u,, = u, we have in particular

u, <wu foralln (19)
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thus 2 < u (since u,, € P’). From (15) and (K2) (c), we see that the sequence
(f(up)) € K’ is such that f(u,) > f(un) whenever n < m. Using that f is
<-submonotone, we get

fu) < f(uy) for all n (20)
thus f(u) < f(x) (since u, € P’). This already shows that u € P’.

Relation (19) also implies that, for all n and m such that n < m, we
have u,, < uy, < u. By invoking (P2) and using (15), we obtain that
d(up,u) < d(up,tm) + d(up, )
< flun) = fum) + d(um, u)
f(un) - f(u> + f(u) - f(um) + d(umau)

Knowing that f(uy), f(um), f(u) € K' (since up, um,u € P') and f(u) —
f(um) <0 (by (20)), by (K2) (¢) we deduce that

d(un,u) — f(un) + f(u) < d(tm,u) whenever n < m.

Since d(um,u) — 0 (because uy, 5 u), by virtue of (K5) we infer that
d(un,u) = f(un) + f(u) <0, whence

d(un,u) < f(un) — f(u) for alln
(since f(uy), f(u) € K'). This fact combined with (19) shows that
u, < u for all n. (21)

Therefore, u is an upper bound of (u,) in the preordered set (P’, <), which
shows that condition (i) of Proposition 1 is valid, and finally allows us to
apply this proposition to P’ endowed with the preorder < and the restriction
d of d.

The application of Proposition 1 provides an element y € P’ (so y €
dom(f)) such that z < y and y is d’-maximal in P’. The fact that x <y
exactly means that y satisfies parts (a) and (b) of the theorem. For showing
(c), let z, 2" € dom(f) be such that

y<z<7, dy,2) < fly) = f(z), and d(z,7) < f(z) - f(<)) (22)

and let us show that this forces d(z,2’) = 0. The first part of (22) yields
x <y <z<2. Since z, 2’ belong to dom(f), we get f(z), f(2') € K. Then,
by (K2) (c) and the fact that d takes values in K; (see (P2)), the last two
inequalities in (22) imply f(2') < f(2) < f(y) < f(z). Whence 2,2’ € P’
Now (22) means that y < z < 2/, and the property that y is d’-maximal in
P’ yields finally d(z,2') = d'(z,2") = 0. O
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Example 4. As an illustration of the result, we point out a property of
“existence of almost minimal point” in a general context.

Let (K, +, <) be a preordered monoid satisfying conditions (K1)—(K5).
Let P be an arbitrary nonempty set and f : P — K a function which is
locally finitely bounded from below and such that dom(f) # (). Then, for
every a € K/, o # 0, there is y, € dom(f) with

Vze P [f(z) £ f(Ya) — .

Indeed, let < be the trivial preorder on P. Define d,, : P% =PxP—K
by letting
0 ifx=y,

da(x,y):{ a ifx#uy.

It is clear that (P1)—(P2) hold. Moreover, every sequence (x,) C P is <-
ascending (since the preorder on P is trivial), and (z,,) is a Cauchy sequence
if and only if it is stationary, which is in fact also equivalent to having that
(xy,) is <-convergent. Thus, endowed with d, the set P is <-complete.

The fact that every <-convergent sequence in P is stationary (and thus
has a unique limit since d, is nondegenerate) also easily implies that f is
<-submonotone. We can apply Theorem 1: fixing z € dom(f), there is
Yo € dom(f) such that

Vz € dom(f), da(Ya,2) < f(ya) — f(2) = da(Ya,2)=0. (23)

Now, arguing by contradiction, assume that there is z € P with f(z) <
f(ya) —a. Then f(2) € K/, i.e., z € dom(f). Moreover, since du(yq,z) <
a, the previous inequality implies do(Ya,2) < f(ya) — f(z), which yields
do (Yo, z2) = 0 by virtue of (23). However, we then have y, = z by definition
of dy, so that the relation f(z) < f(yo) — a becomes impossible as it implies
a e K_NK/, \ {0} whereas K_ NK/, = {0} (since < is a partial order on
K’; see Remark 8). This completes the argument.

References

[1] L. Fresse and V.V. Motreanu, On the characterization of coercivity for
submonotone maps in preordered pseudometric spaces, submitted.

[2] M. Turinici, Pseudometric extensions of the Brezis-Browder ordering
principle, Math. Nachr. 130 (1987), 91-103.






