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Abstract

In this paper we propose a reduction procedure for determining
generalized traveling waves for first order quasilinear hyperbolic non-
homogeneous systems. The basic idea is to look for solutions of the
governing model that satisfy a further set of differential constraints.
Some applications are given for a barotropic fluid with a source term.
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1 Introduction

Determining exact solutions of partial differential equations (PDEs) is of
great interest not only from a theoretical point of view but also for possible
applications. To this end, over the years many mathematical approaches
have been proposed, most of them based on group analysis (i.e., classical and
nonclassical symmetries [1,2], weak symmetries [18], conditional symmetries
[10] (see also [14])).
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Within such a theoretical framework, in 1964 J.J. Yanenko proposed the
Method of Differential Equations [24] and he applied it to the fluid-dynamics
equations. In order to explain better the basic idea of such an approach and
also for further convenience, we give the following simple example.

Let us consider the PDE

ut + a(u)ux = f(u). (1)

A particular class of exact solutions admitted by (1) are the famous traveling
waves, where

u = U(σ), σ = x− s t, (2)

with s constant. In order to calculate the traveling waves of (1) we have to
substitute the ansatz (2) into (1) and solve the resulting ordinary differential
equation. The function (2) also satisfies the linear PDE

ut + sux = 0. (3)

Therefore, if we cannot determine the traveling waves of (1), we can look for
the particular solutions of (1) which also satisfy (3). In such a case, since
the equation (3) selects the class of exact solutions of (1) we are looking for,
they play the role of differential constraints. Of course, since the unknown
u(x, t) must satisfy (1) along with (3) an overdetermined system is obtained
and some compatibility conditions must be required. In this simple case, it
is easy to verify that equations (1) and (3) are always compatible.

More in general, given a system of PDEs

F i(x, t,U,Ux,Ut,Uxx,Uxt, ...) = 0; i = 1, .., N (4)

Yanenko proposed to append to it a further set of differential constraints

Gk(x, t,U,Ux,Ut,Uxx,Uxt, ...) = 0; k = 1, ..,M (5)

and to look for the exact solutions of (4) and (5). Of course, the compatibil-
ity of the overdetermined system (4) and (5) must be required. The method
is general and, in fact, it includes many of the known approaches for deter-
mining exact solutions of PDEs. Unfortunately, such a generality leads to an
enormous complicated algorithm such that, without any further hypotheses,
the method is not always useful for studying problems of interest for the ap-
plications. To overcome such a difficulty, in [7] – [19] it was required that (4)
and (5) are in involution (i.e. no new differential relations can be obtained
from them by differentiation). The involutivness requirement simplifies the
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algorithms of the method, in particular for hyperbolic systems of equations.
In fact, many results concerning wave problems described by hyperbolic sys-
tems are obtained [15] – [13]. Moreover, an interesting application of the
method to a parabolic model was given in [20].

Within such a framework, here we develop a reduction procedure which
permits to determine generalized traveling wave solutions for first order
quasilinear nonhomogeneous hyperbolic systems.

The paper is organized as follows. In section 2 we recall briefly the
algorithm of the method of differential constraints applied to hyperbolic
systems. In section 3 we illustrate how the use of the k−Riemann invariants
may simplify such a procedure. In section 4 an approach for characterizing
generalized traveling waves is developed. Finally, some conclusions and final
remarks are given in section 5.

2 General procedure

In this section we illustrate the procedure related to the Method of Differen-
tial Constraints for a first order quasilinear strictly hyperbolic system. Let
us consider the quasilinear system

Ut +A (U)Ux = B (U) , (6)

where U ∈ RN is the field vector, A the N ×N matrix coefficients, B ∈ RN

the source vector, while t and x denote, respectively, time and space coordi-
nates. We assume the hyperbolicity (in the t−direction) of (6) and denote by
λi (U) the eigenvalues of A (characteristic speeds) while the corresponding
right and left eigenvectors are indicated, respectively, by di (U) and li (U).
Moreover, we assume λi 6= λj , ∀i 6= j (that is, the system (6) is strictly hy-
perbolic). We choose di and li so that the orthonormal condition is satisfied
(di · lj = δij). We add to (6) the set of differential constraints

Ci(x, t,U) ·Ux = pi(x, t,U) i = 1, ...,M ≤ N, (7)

where the functions Ci and pi are still not specified. For requiring the
compatibility between (6) and (7) we differentiate them with respect to t
and x, so that we find(

∂Ci

∂t
+
∂Ci

∂U

∂U

∂t

)
·Ux + Ci ·

(
dB

dx
− d(AUx)

dx

)
=
∂pi

∂t
+
∂pi

∂U

∂U

∂t
(8)

(
∂Ci

∂x
+
∂Ci

∂U

∂U

∂x

)
·Ux + Ci ·Uxx =

∂pi

∂x
+
∂pi

∂U

∂U

∂x
(9)
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where d
dx means the total derivative with respect to x. In order to eliminate

Uxx between (8) and (9) it soon follows that the vectors Ci must belong
to the subspace of the left eigenvectors of A so that, owing to the strictly
hyperbolicity of (6), without loss of generality we can choose Ci = li and
therefore we prove that the most general first-order differential constraints
admitted by (6) have the form

li ·Ux = pi(x, t,U) i = 1, ...,M ≤ N. (10)

The case of great interest for the nonlinear wave problem is when the number
of constraints is M = N − 1. In this case, from (6) and (10) we have

Ut = B−
N−1∑
i=1

piλidi − πλNdN (11)

Ux =

N−1∑
i=1

pidi + πdN , (12)

where π(x, t) is arbitrary. If we wont that the overdetermined system (6),
(10) is in involution, from (11), (12) we have to require Utx = Uxt ∀π, so
that the following compatibility conditions are obtained

pit + λipix +∇pi
B−

N−1∑
j=1

pj
(
λj − λi

)
dj


+
N−1∑
j=1

N−1∑
k=1

pjpk
(
λj − λk

)
li∇djdk

+

N−1∑
k=1

pk
(
li
(
∇dkB−∇B dk

)
+ pi∇λidk

)
= 0 (13)

(
λi − λN

)
∇pidN +

N−1∑
k=1

pk
(
λk − λN

)
li
(
∇dkdN −∇dNdk

)
+li
(
∇dNB−∇B dN

)
+ pi∇λidN = 0, (14)

where ∇ = ∂
∂U and i = 1...(N − 1).

Furthermore, from (11) and (12) we obtain

Ut + λNUx = B +

N−1∑
i=1

pi
(
λN − λi

)
di. (15)
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Since the left-hand side of system (15) involves the derivative of U along
the characteristics associated to λ(N), equations (15) can be integrated by
using the standard method of characteristics. By substituting the resulting
solutions into the constraints (10) we get (see [14] for more details)

li(U0(x)) · dU0(x)

dx
= pi (x, 0,U0) i = 1 . . . N − 1, (16)

where U0(x) = U(x, 0). Since the N initial conditions U0(x) must satisfy
the N−1 constraints (16) the solutions which can be obtained by integration
of (15) are determined in terms of one arbitrary functions.

It is of some interest to notice that in the case where B = 0 and pi = 0,
the compatibility conditions (13) and (14) are identically satisfied and the
above-illustrated procedure permits to determine the classical simple wave
solutions.

3 An alternative approach

The crucial point of the method of differential constraints is to study and
possibly to solve the compatibility conditions (13), (14). Unfortunately, it
is a very hard task not only to find the general solution of (13), (14) but
also to determine particular solutions of such an overdetermined system. In
order to simplify the analysis of (13), (14), quite recently in [9] an alternative
approach based on the use of the Riemann invariants was proposed.

The basic idea is the following. We fix one of the characteristic speeds
of (6) (for instance, we can choose, without loss of generality, λN ) and we
compute its Riemann invariants defined by

∇Rα · dN = 0, α = 1, ..., N − 1. (17)

It is well known that associated to λN there exist N −1 Riemann invariants
whose gradients are linearly independent (see, for instance, [23]). Therefore,
owing to (17), we can write

∇Rα = σαβ l
β, α, β = 1, ..., N − 1, (18)

where σαβ are the components of ∇Rα with respect to the basis of the left
eigenvectors. Moreover, here and what follows, the greek indices vary from
1 to N − 1. Taking (18) into account, the constraints (10) assume the form

∂Rα

∂x
= σαβ q

β (19)
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and, in turn, equations (15) give

∂Rα

∂t
+ λN

∂Rα

∂x
= σαβ l

β ·B +
(
λN − λβ

)
σαβ q

β. (20)

We choose one of the field variables of U (say, for instance, v = uj) and we
add to the N − 1 equations (20) the j−th equation arising from (15)

∂v

∂t
+ λN

∂v

∂x
= Bj +

(
λN − λβ

)
qβdβj , (21)

where Bj and dαj denote, respectively, the j−th component of B and dα. Of
course, we can always choose v in such a way the variable transformation

Rα = Rα(U), v = uj (22)

is not singular. Therefore, the equations (15) transform to (20) and (21)
while the constraints (10) take the form (19). Integration of (20), (21) along
with (19) gives, through the change of variables (22), exact solutions of (6),
(10). Furthermore, by requiring the the involutiveness of the overdetermined
system (19)-(21), the following compatibility conditions are obtained:(

λβ − λN
)
σαβ

∂qβ

∂v
=

((
λN − λβ

) ∂σαβ
∂v
− σαβ

∂λβ

∂v

)
qβ

+
∂

∂v

(
σαβ l

β ·B
)

(23)

∂wα

∂Rγ
zγ − ∂zα

∂Rγ
wγ +

∂wα

∂v

(
Bj +

(
λN − λγ

)
qγdγj

)
= 0 (24)

where, for simplicity, we set

wα = σαβ q
β, zα = σαβ l

β ·B− λβσαβ qβ. (25)

The analysis of the equations (23), (24) is not so hard as that of (13), (14). In
fact, we notice that the N − 1 equations (23) characterize a linear ODE-like
system in the unknown qα which, due the strictly hyperbolicity of (6), can
be written in normal form. Once the functions qα are determined from (23),
substituting them in (24), we find a set of N − 1 structural conditions that
the coefficients of the system (6) must satisfy to guarantee the compatibility
among (6) and (10).

Two significant cases where (23) and (24) are solved under suitable struc-
tural conditions are the following (see [9] for a more general analysis).
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i) We assume qα = 0 so that from (23), (24) we find

σαβ l
β ·B = Fα(Rγ), (26)

where Fα are not specified functions. If the structural condition (26) is
satisfied, then, from (19) we find Rα = Rα(t) and taking into account (20),
(21) exact solutions of (6) are obtained by solving the system

dRα

dt
= Fα(Rγ), (27)

∂v

∂t
+ λN (v,Rα(t))

∂v

∂x
= Bj (v,Rα(t)) . (28)

In passing we notice that the equations (27) are decoupled from (28). In
fact, once Rα(t) are determined from (27), exact solutions of the governing
system can be obtained by solving the quasilinear non-autonomous PDE
(28). Furthermore, when B = 0 also Fα = 0, the compatibility conditions
(26) are identically satisfied and the equations (27), (28) characterize the
simple waves

Rα (U) = kα

uj = v = v0(ξ), x = λN (v0 (ξ) , kα) t+ ξ,

where kα are arbitrary constants and v0(x) = v(x, 0).

ii) We require

σαβ

(
lβ ·B− λβqβ

)
= Fα(Rγ), σαβ q

β = Gα(Rγ) (29)

so that condition (23) is identically satisfied, while from (24) we find

dGα

dRβ
F β − dFα

dRβ
Gβ = 0 (30)

where Fα and Gα are not specified. The functions qα can be calculated
by solving the linear algebraic system (29)2 while from (29)1 supplemented
by (30) a set of N − 1 structural conditions which must be satisfied by the
coefficients of (6) in order that such a procedure holds, are obtained.

Furthermore, equations (20) assume the form

∂Rα

∂t
+ λN

∂Rα

∂x
= Fα + λNGα (31)

while the constraints (21) specialize to

∂Rα

∂x
= Gα. (32)
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It is of interest to notice that if λN (Rγ), then equations (31) are decoupled
from (21). Thus, once Rα(x, t) are determined from (31), exact solutions of
(6) can be obtained by integrating the PDE (21) by means of the method
of characteristics. Of course, the corresponding initial data must obey the
constraints (32).

4 Generalized traveling waves

Within the framework of the method of differential constraints, the main
aim of this section is to develop a reduction procedure which permit to
determine a class of exact solutions which generalize the classical traveling
waves.

To this end we append to system (6) the following constraints

Ut + sUx = F (U) , (33)

where s is a constant and F (U) is unspecified. We decompose the vector
Ux along the basis of the right eingenvectors

Ux = πjd
j (34)

so that, from (6) and (33) we have

Ut = F− sπjdj , Ux = πjd
j , (35)

where

πi =
1

λi − s
li · (B− F) . (36)

It is simple to verify that the compatibility between relations (35) leads to

Fi
∂πs
∂ui

= lsk

(
∂Fk
∂ui

dji −
∂djk
∂ui

Fi

)
πj . (37)

Once πi are determined by solving the linear PDEs system (37), from (36)
we find F and by integration of (35) a class of exact solutions of (6) are
found. Such a solutions generalize the classical traveling waves because
when F = 0, the compatibility conditions (37) are identically satisfied and
from (35) traveling wave solutions are found.

Remark 1. Owing to (35) along with (36), if there exists a value U? of the
field U such that λi (U?) = s, a singularity in the traveling wave solution
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may appear depending if
(
li · (B− F)

)
U=U? vanishes or not. In the last case

a sub-shock appears [21].

As an example, here we apply our procedure the Euler system describing a
barotropic fluid

ρt + uρx + ρux = 0 (38)

ut + uux +
c2

ρ
ρx = f(ρ, u), (39)

where ρ is the mass density, u the velocity, c =
√
pρ the sound velocity with

p(ρ) the pressure while f(ρ, u) denotes a force term. The characteristics
velocities of (38), (39) are

λ1 = u− c, λ2 = u+ c (40)

while the corresponding left and right eigenvectors are

l1 =
1

2

(
1,−ρ

c

)
, l2 =

1

2

(
1,
ρ

c

)
(41)

d1 =

(
1,− c

ρ

)T
, d2 =

(
1,
c

ρ

)T
, (42)

where T means for transposition.
Next, we consider the compatibility conditions (37) where, for simplicity,

we assume F1 = 0. In such a case equations (37) assume the form

F2
∂

∂u
(π1 + π2) = 0

F2
∂

∂u
(π2 − π1) =

ρ

c

(
∂F2

∂ρ
(π1 + π2) +

c

ρ

∂F2

∂u
(π2 − π1)

)
whose integration gives

π2 − π1 =
1

Φu

(
−ρα(ρ)

c(ρ)
Φρ + β(ρ)

)
, π2 + π1 = α(ρ), (43)

where α(ρ) and β(ρ) are not specified, while

Φu =
1

F2(ρ, u)
.
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Owing to (43), from (36) we determine F2 as well as the source term f(ρ, u).
For instance, if F2(u) we soon find

F2 = k1(u− s), f = k1(u− s) + k1
cβ

ρ

(
(u− s)2 − c2

)
, (44)

where k1 is a constant. Furthermore, the function α(ρ) must assume the
form

α = −k1cβ.

In such a case, integration of (35) leads to

ρ = R(σ), u = s+
a0
R(σ)

ek1t, (45)

where σ = x− st, a0 is a constant, while R(σ) is given by solving the ODE

dR

dσ
= −k1c(R)β(R). (46)

We notice that the function β(ρ) that is involved in the force term (44)2 is
still not specified. For instance, if we choose

β =
ρ

c

from (45), (46) the following generalized traveling wave solution is obtained

ρ = ρ0e
−k1(x−st), u = s+

a0
ρ0
ek1(x−2st) (47)

where ρ0 is a constant. Finally, we notice that the solution (45), (46) is
obtained ∀p(ρ).

5 Conclusions and final remarks

In this paper we developed a reduction procedure for determining a special
class of exact solutions admitted by hyperbolic first order systems. The idea
is to append to the original systems a further set of particular nonhomoge-
neous differential constraints which, in the homogeneous case, characterize
traveling waves. Therefore, the solutions we obtained generalize the known
traveling wave solutions.

To accomplish such a procedure, we are led to integrate the linear PDEs
system (37) and, in turn, from (36) to calculate the vector F(U) involved in
the constraints (33). Once πi or, equivalently, F are determined, generalized
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traveling waves of (6) can be obtained by solving the ODEs (35). We applied
such a procedure to the hyperbolic system describing a barotropic fluid.
The exact solutions we obtained for such equations are determined for any
pressure law.

We conclude by noticing that the traveling waves are, in general, non
admitted by non-autonomous systems. Our procedure can be applied also
to systems like (6) where the matrix coefficients A and/or the source vector
B depend on the field U as well as on the variables x and t. In fact, in such
a case we have to require that the source vector F involved in the constraints
(33) depends on (U, x, t). As a consequence, the compatibility conditions
(37) must be modified by adding the derivatives of πi with respect to x
and t and from (35) generalized traveling waves are obtained also in the
non-autonomous case.
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