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1 Introduction and preliminaries

We let A denote the class of analytic functions defined in the open unit disk
D:={z € C: |z| < 1}, having the power-series expansion of the type

f(z):z+§:anz",z€]]]). (1)
n=2

Also, we let S denote the class of all functions of A that are univalent
in D.

If F and G are analytic functions in I, and if there exists a function w
analytic in D with w(0) = 0 and |w(2)| < 1 in D, such that F = G o w,
then we say that F' is subordinated to G, written F(z) < G(z) (see, for
example, [16] p. 368). Using the Schwarz lemma, it is easy to show that
F(z) < G(z) implies F'(0) = G(0) and F(D) C G(D), and assuming that G
is univalent in D then the next equivalence holds:

F(z) < G(z) & F(0) = G(0) and F(D) C G(D). (2)

The classic Fekete—Szeg6 problem [14] involves finding the exact limits
of the functional |a3 — ,ua%‘ for a compact-function family or f € A with
any p € C; for further details, one may refer to [30].

The sharp bounds of this inequality for a few subclasses S* and K were
found in [12].

Gandhi in [15] introduced a set of bounded turning functions connected
to a three-leaf function. In 2022, in the articles [4,31] the authors introduced
and studied different subclasses of analytic functions defined by subordina-
tion to the four-leaf function (see Figure 1, made with MAPLE™ computer
software) that is given by

5 1
Ayp(z) =1+ 6° + 625’ z € D.

With the aid of a four-leaf function, we define the following subclass of
A, using the notion of subordination, as follows:

Definition 1. A function f € A is said to be in the class Ay (9) if

f(2)
(1—-9)z+92f'(2)

Uy f(z) = < Aar(2), (3)

where 0 < 9 < 1.
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Figure 1: The image of A4r (D).

Remark 1. Some relevant special cases of the class A4r () could be obtained

as follows:
(i) For 9 =1, the class Asr,(1,A) =: Yar, will be

_ . f()
Vur = {f e A: Zf/(Z) < A4L(2)} .
(ii) Fizing 9 =0 in (3), we obtain the class A4, (0, A) =: Ny, which is
N4L = {f eA: f(ZZ) < A4L(Z)}.

The reason for taking the above left-hand-side expression consisted in
the fact that we could obtain a subordination condition where appeared the
1) fG)

z zf'(2)
some of these functions vanished or the formula became more simple and,
as we can see in the further Remark 1, we could simply obtain expressions
subordinated to the four-leaf function.

Many results regarding some subclasses defined by subordinations with
different functions with significant geometrical properties (e.g., the limagon
function, convex functions in one direction, the cosine function, the nephroid
function, etc.) were studied by the second author in many papers (see, for
example, [6,23,24,29]). The novelty of these subclasses and of this paper
consists in the fact that such subordinations with similar expressions to
the left-hand side of the subordination (3) were not studied in some other
previous articles.

usual expressions . For special values of the parameters 9,
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Remark 2. (i) If ¢ is an analytic function in D then ¢ is said to be a
starlike function with respect to wo = ¢(0) if ¢ is univalent in D and (D)
is a starlike domain with respect to wy, that is the segment [wq, p(2)] lies
in (D) for all z € D. It is well known that the function ¢ is starlike with
respect to wy = ¢(0) if and only if ¢’ (0) # 0 and

e
©(z) — wo
Since Ayr,(0) =1, A);(0) =5/6 # 0 and

>0, z€D.

20 (2) 142
Re A4L(Z) — A4L(0) = SRe 54 z4

it follows that the four-leaf function Ay4p is starlike (univalent) in D with
respect to wg = A4r(0) = 1. Moreover, from the fact that (A4L(1) +
Agr(— )/2 = 1 it follows that the domain A4r, (D) is symmetric with re-

>0, zeD,

spect to the point wo = 1, and because Ay (2) = Ayp(Z), z € D the domain
A4r, (D) is symmetric with respect to the real azis.
We have Re Ayr(z) > 0, z € D because

5) 1 5) 1 ) 1
ReA4r(z) = Re <1+62+625> =1+ Re (62+625> >1- ‘6z+6z5
) 1 5 1
>1——|z|— =2 >1—2—==0 D

hence, Re Ayr(2) > 0, z € D.

(i) We will emphasize that the class A4r (V) is not empty. Considering
f(2) = 2+ az® + bz3, for the particular case a =2, b= 0.1, 9 = 0.4, using
the 2D plot of the MAPLE™ computer software we obtain the images of the
boundary 0D by the functions Yy f and A4, shown in Figure 2(a). Since
A4r, as we showed above, is univalent in D, the equivalence (2) yields that
the subordination Wyf(z) < Agz(z) holds whenever Wy f(0 ) = A4p(0) =1
and Uy f(D) C Ay (D) (see Figure 2(b)). In conclusion, f € Aqr(9) for
the above values of the parameters; hence, the class A4 (9) is not empty for
non-trivial values of the parameters.

The following univalence theorem on the boundary is well known (see,
for example, [25] Lemma 1.1, p. 13): Let f be analytic in D and injective
on the boundary OD. Then, f is univalent in D and maps D onto the inner
domain of the (closed) Jordan curve J = f(0D).

For the function f defined by the above item (ii), we have f € Ayr(9).
Using the 2D plot of the MAPLE™ computer software, the image of the
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boundary D by the functions f (see Figure 2(b)), we see that f (OD) is a
simple curve; hence, f is univalent on OD. Therefore, according to the above
result, we conclude that f € S; hence, Ay (9) NS # O for some values of
the parameter ¥ € [0, 1].
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=037

(a) The images of \ng(eie) (blue (b) The image of f (OD).
color) and A4z (%) (red color), 6 €
[0, 27).

Figure 2: Figures for Remark 2(ii)

(iii) Let us consider the function f(z) = z 4+ az? + bz® + c2* for a =
0.5, b = 0.2, ¢ = 0.1 and let us take ¥ = 0.8. From the 2D plot of the
MAPLE™ computer software we represent the images of the boundary oD
by the functions \11,9]/"\ and Ayp, in Figure 3(a). For similar reasons, like item
(ii) we have Wy f(2) < Aap(2). In conclusion, | € Aup(V) for the above given
values of the parameters. But, representing with a 2D plot of the MAPLE™
computer software the image of the circle |z| = 0.9 by the functions f (see
Figure 3(b)), we see that f(0.9 el%), 0 € [0,2n) is not a simple curve; hence,
f is not univalent in . Consequently, we have A4, (9) ¢ S for the general
choices of the parameter ¥ € [0, 1].

(iv) Not only polynomial functions belong to these classes A4 (9), as can
1+az

we see in the next examples. Taking fo(z) = z- for the particular case

z
a=20.5,b=0.1, 9 = 0.7, we similarly obtain the images of the boundary

0D by the functions Wy fo and Ayg,, shown in Figure 4(a), and, for the same
reasons as in the above item, we conclude that f. € Ay4r(9) for these values of
the parameters. We could mention the same property for the transcendental
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Figure 3: Figures for Remark 2(iii)

function fo(z) = ze% with a = 0.5, where for ¥ = 0.9, using a proof similar
to those of item (ii) (see Figure 4(b)), we obtain fo € Asr (V).
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[0, 27).

Figure 4: Figures for Remark 2(iv)
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(vi) Definition 1 of the class A4r () generates the next natural question.:
whether for every function f € A there exists ¥ € [0,1], such that the
function f belongs to the class Aqr(9).

We will provide below a negative answer to this question, i.e., there exists
a function g € A, such that for any ¥ € [0,1] we have Vyg(z) A A4r(2).
The proof of this fact will be presented below, where we provide an example

of such a function.
sin(5z)

Letting g(z) = € A, from Formula (3) we easily obtain

sin(5z)

D.
(1 =9+ VYcos(5z)) 5z’ 7€

Hy(z) = Wyg(z) =

The point z, = 0 is a reqular point for the function Hy. If for the
value ¥ € [0,1] such that Hy, is not analytic in some point zy € D\ {0},
then zo will be a pole for Hy, hence the function Hy, will not be analytic
in D. This implies Wy, 9(z) A A4r(z) that is g ¢ A4r(9), and moreover
Hy,(D) ¢ Ay, (D) because Hy,(D) is an unbounded domain while Ayr, (D) is
a bounded one.

We will prove that there not exists any values of 9 € [0,1] such that Hy
is analytic in D and Hy(z) A Aar(z). Contrary, if there exists a v* € [0, 1]
such that Hy«(z) < A4p(z), since Ayp is a univalent function in D, this
subordination is equivalent to Hy«(0) = Ay, (0) =1 and

Hy« (]D)) C A4L(D). (4)
It’s easy to check that
—sinb sinb sinb
Hy(-1) = = [-0.676...,—0.191...
o(=1) 5(19—1—19(:085)E [5(:055’ 5 ] [ ’ ]

for all ¥ € [0,1], while ReAyr(z) > 0, z € D. This implies that there
exists a neighborhood V of z = —1 such that Hy«(V N D) ¢ Ay (D). Hence,
Hy«(D) ¢ Ayr,(D) that contradicts the inclusion (4).

Thus, for the function g(z) = sin(5z) € A there does not exist 9 € [0, 1]
such that g € A4r(9), therefore

Ag {A4L(ﬁ) -9 e [o, 1]}.

To prove our main results, we will use the next preliminary results.
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We say a function p belongs to the class P of Carathéodory functions
(see [9,10]) if and only if it has the series expansion

oo
p(z) =1+ chzk, zeD, (5)
k=1

and Rep(z) > 0 for all z € D.

Lemma 1. Let p € P be of the form (5). Then:
(i) Form>1
len] < 2. (6)

The inequality holds for alln > 1 if and only if p(z) = (14+Xz)/(1 — Az2),
Al = 1.
(i9) Also, if pn € C then

ener — penci] < 2max {1 |2 — 1]} (7)

for all n,k > 1.
If 0 < w < 1 the inequality s sharp for the function

p(z) = (1 + z”*k) / (1 — z”*k). In the other cases, the inequality is sharp

for the function p(z) = (1 + 2)/(1 — 2).
(tit) Moreover, if B € [0,1] with B(2B — 1) < D < B, we have

|cs — 2Beiey + Dej| < 2. (8)

We note that inequality (6) is the well-known result of the Carathéodory
lemma [9] (see also [25, Corollary 2.3, p. 41], [11, Carathéodory’s Lemma,
p. 41)).

Inequality (7) represents Theorem 1 of [13], while for x > 0 and sharpness
for the case 0 < p < 1 is [26, Lemma 2.3]. This last result for particular
case {1 = 1 was proved in a more general form for p(0) = ¢y in [22, Lemma
1, p. 546]. Inequality (8) refers to [1, Lemma 3, p. 66.].

2 Initial coefficient estimates for class A, (V)

The first theorem gives us the upper bounds for the first five coefficients |ay,|
for the functions belonging to A4z () as follows:
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Theorem 1. If the function f € A4 () is given by (1), then

5 1
< —
|a2|—6’1_219‘7196[071]\{2}7 (9)
5 50 11
< 2 2 L e\ {5. 1
|a3|—611—319|max{ ’3|1—219|}’ clo, ]\{3’2}’ (10)
5
< — ~ 0.
aal < G =gy ¥ € 100 = 0.2025090285], (11)

where xq is the solution in [0,1] of the equation
792 — 28202° 4 233927 — 720 + 72 = 0. (12)

Proof. Supposing that f € Ayr(9) has the form (1), then there exists a
function w analytic in D with w(0) =0 and |w(z)| < 1, z € D, satisfying

f(z)

A= 0)z 1+ 927 (2) = Ay (w(2)), z€D. (13)
It is easy to check that
i ﬁ)f(j)ﬁzﬁ(z) =1+ (1—20)asz + [(1 — 39)ag — 20(1 — 29)a3] 2*
(14)

+ [(1 — 49)as — 9(5 — 120)azas + 49*(1 — 29)a3] 2* + ..., z € D.
Letting the function [ defined by

14 w(z

l(2): ;:l—i—Zlnz”,zeD,
n=1

1wz
since |w(z)| < 1 in D, it follows that [ € P.
A simple computation gives

584& :%llz—i—% (JQ—;ﬁ) 22—1—% <z3—z1z2+iz§”> B

(15)
and by replacing the power series expansion of (15) in the right-hand side
of the relation (13) we obtain

f(2) _ 5 5la ﬁ 2
G- 0zrof Tt 2 2)?

w(z) =

5 5 5 5\ 3
+ <1213 12l1l2+48l1)2 +, ZE]D) (16)
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Equating the first three coefficients of (14) and (16) we have

a9 :12(15_219)11, 9 S [0, 1] \ {;} y (17)
5 1 50 11
CLBZM |:12—2<1—3(1_219>>l%:|,196[0,1]\{3,2}7 (18)
5 50/(5 — 120)
“TTa(1 — ) { [12(1 —20)(1—30) 1} il (19)

5 [9(5—129)(3 — 119) 10092 6] 5
- 5 + s— | +isp,
24 | 3(1—-29)2(1—-39)  3(1-29)2 5

196[0,1]\{1,;,;}.

First, using the inequality (6) in (17) we obtain the inequality (9).

The equality (18) implies
1 50
lp— = (1 - o | 2
T2 < 31— 219)> L

5
12]1 — 3]
1
and using inequality (7) forn =k =1 and p = 5 we obtain (10).
From (19) it follows that
LZ—Q 1 59(5 — 1299) 11
12]1 — 49| |° 2 24(1—29)(1—39)| '?
5 <6 9(5 — 129)(3 — 119) 1092 > 3
2 - g

, (20)

lag| =

las] =

5 3(1—20)2(1—39) 3(1—20)2

S [1 L 59(129 —5) } "
12[1 — 49| 2 24(29 — 1)(30 — 1)
5 (6  9(129 —5)(119 — 3) 1092 3
T (5 320 —1)2(30 —1)  3(20 — 1)2) o

and we will compare the right-hand side of the above relation with (8).
Assuming that 9 € [0, 1], then

| 59(120 — 5)
0<B=- <1
SPE T ue—n@e-n =
85 /389

35 /649 85 /389
Ul - X2 00396, — + —— ~0.434] ,
24 24 264 ' 264
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59(129 — 5
L, 50020 -5)

1
5=3 24(20 — 1)(39 — 1)

~p_? §+ 0(120 —=5)(119 - 3)  109?
=7 24\5 " 320-1)2(39—-1) 3(20 —1)2
15 V159 11
=0, — - —=~0.21 —
s9e S [0,11 T 7]u[3,2},

and
C:=B(2B—-1)<D& e S3:=]0,x9 ~ 0.2028090285] ,

where x( is the solution in [0, 1] of the equation (12). Thus, all the above
three inequalities hold if and only if

9e §:=51NSyNSs =10,z ~ 0.2028090285] ,
and all the requirements of Lemma 1(iii) are satisfied, hence (8) leads us to

(11). O

By fixing the parameter ¥ = 0 and ¥ = 1 in Theorem 1 we state the
following:

Corollary 1. 1. If the function f € Ny, is given by (1) then

5
las| < =

) )
‘a2’ S ) ‘a3’ S - = .
6 6

67
2. If the function f € Yar, is given by (1) then

ol <2 la < 5] _ %
- —maxq ;- = —.
@2 =% 1= pmax by = 5

In [14] Fekete and Szegd proved the well-known result
2 _27"1'
max{ }ag —an‘ :f e S} =142 T-x, pe0,1],
and in our next theorem we consider the corresponding problem for the
family A4z (0), as follows.
Theorem 2. If the function f € A4r(¥) has the form (1) and p € C, then

5 549 — (3 +2)9 + pf
—nall < ———— 1; 21
jas — pa3| < 6|1 — 30 max{ ’ 6(20 — 1) 2D

whenever ¥ € [0,1] \ {:1)), ;}
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Proof. If f € A4r(9) has the form (1), as in the proof of the previous
theorem, using (17) and (20), we obtain

2o (o o Y Ny, 25
jas “%}_‘12(1—319) Lo\ a2y ) T g —aap

_ 5 _i441927(15u+34)19+5u+612
T 12130 % 12 (20 — 1) 2l
and Lemma 1(ii) lead us to (21). O

Taking the parameter 99 = 0 and ¥ = 1 in Theorem 1 we get the following
corollary, while for u = 1 we obtain the second one, respectively:

Corollary 2. 1. If the function f € Ny has the form (1) and p € C, then

) 5
’ag—,ua%‘ < 6max{ ,’:’}

2. If the function f € Y41, has the form (1) and u € C, then

5 5|13 —
‘ag—uag‘ < 12max{l;|3'u}.

Corollary 3. If the function f € A4r (V) has the form (1) and 9 € [0, 1] \

11
{372}, then
5 [49% — 59 + 1]

‘ag—a2|§Lmax 1 .
21 = 6]1 — 30 ©6(20 — 1)2

3 Coefficient inequalities for the inverses of
functions belonging to Ay (9) NS

If F is a set of analytic functions in the unit disk D, then the Koebe domain
of the set F is defined as the largest domain contained in f(D) for all f € F,
and it is denoted by KC(F).

The Koebe-Bieberbach one quarter theorem [16, Theorem 2, p. 49] en-
sures that the image of D for every univalent function f € A contains the
disk with center in the origin and of radius %, that is I(S) = 1/4. Thus,

every univalent function f has an inverse f~! satisfying

|

fﬁl(f(z)) =z z€Dand f(ffl(w)) =w, |w| <ro(f), ro(f) >
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A function f € A is said to be bi-univalent in I if both f and f~! are
univalent in I, assuming that f~! has an analytic extension tho D. We

notice that the class of bi-univalent functions defined in the unit diskﬁl_)iis
z

are members of the bi-univalent function class, however the Koebe funlctiofl
is not a member.

Like we mentioned in the Remark 2(ii) for some values of the parameter
¥ € [0,1] we have Ay (9) NS # 0, while the Remark 2(vi) shows that
A ¢ {A(9) : 9 € [0,1]}, hence S ¢ {A4r(9) : ¥ € [0,1]}. These facts
motivate the below studies regarding the coefficients of the inverses of the
functions from the classes A4 (¥) N'S.

z
not empty. For example, the functions z, , —log(1—2) and 3 log
-z

Theorem 3. If f € Ayp(9) and f~H(w) = w+ > d,w™ is the inverse
n=2
function of f in the Koebe domain K (A4r(9)) of the class Asr(0), then

) 1
< 1 _
|d2|—6|1_2197196[07]\{2}7
5 5[20% — 40 + 1| 11
< 1: ; 1 -z

11
and for any complex number h and ¥ € [0, 1]\ {3, 2} we have

5492 — (8 —3h)9 4+ 2 — A
~ 61— 30 '

5
2
’dg—hd2’<’max{1, 6@ 17

Proof. If
FHw) =w+ ) dyw", w € K (A (0))

n=2

is the inverse function of f, it can be seen that
f_l(f(z)) =z 2z€D and f(f_l(w)) =w, w € K (Agp(9)). (23)
Since
! <z + Z anz") =2z, 2€D, (24)
n=2
from (23) and (24) one can obtain

2+ (ag + do)2% 4 (a3 + 2a9dy +d3) 2 4+ - =2, z € D. (25)
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By equating the corresponding coefficients of (25) we get
d2 = —az, (26)
d3 = 20,% — as, (27)
and from relations (17) together with (26) we get

5

=2

l.
Using Lemma 1(i) it follows

5
dy] < —2>
| 2|_6|1—219|’

and according to (27), if we set ;= 2 in (21) we have

5 5202 — 40 + 1
= lag — 203 < —2 1; .
ds| = [as — 205] < 6|1 — 30| max{ T 3(20 - 1)2

To find an upper bound of the Fekete-Szeg6 functional for the inverse
function, from (26) and (27), for any i € R we have

’dg - hd%’ = ’2@% — a3 — hag} = ‘ag —(2- h)ag|.

Finally, if we let p := 2 — & in the (21) we obtain our conclusion (22). O

4 Initial logarithmic coefficient bounds for
functions of the classes A4 (1)

Inspired by recent works like [2,3], in this section we determine the coefficient
bounds and Fekete—Szeg6 problem associated with the logarithmic function.

If the function f € A given by (1) is analytic in I such that M # 0 for
z

all z € D, then the well-known logarithmic coefficients d,, := d,,(f), n € N,
of f are given by

1 =2 g dpz", D. 28
08 = 2 z', 2z € (28)



G. Murugusundaramoorthy, T. Bulboacd 107

Theorem 4. Let f € Ay (9) such that fi) £ 0 for all z € D, with the
logarithmic coefficients given by (28). Then,

! 1
< ) —
il < g ﬂe[o,u\{2},

5 5 (802 — 70 + 1] ) 11
|d2|_12|1‘max{1,12(219_1)2 ,if Uelo, 1]\{3 2}a

11
and for p € C and ¥ € [0,1] \ {3,2} we have

4y — 2| < 5 L B8P Bet Y414l
= 12]1 - 39| 112 (29 — 1)2

Proof. If f € Asr(9) has the form (3), equating the first two coefficients of
the relation (28) we obtain

as 1 a3
d = — d = — _
1 9 2 2 <(13 9 > )

and using the inequality (17) it follows that

1
d| ‘ 9ef01]\d=4.
lda] = —12|1f219| €l ]\{2}

Since . )
|d2| = 5 a3—§a§,

1
taking p = 3 in (21) the above equality leads to

o] < 5 1_5\8192—719+1\
=T 39 M) 12 (20— 1)2
henever @ € [0,1]\ 4 £, %

whenever , 35

To find the Fekete-Szegd inequality for the inverse function, for any com-
plex number p we have
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1
Finally, putting p = bt in the (21) we get

’dz — god%‘ = 5Inax{1;

5 (80" —Bp+TW+1+p
121 -39 '

12 (20 — 1)2

O

5 Coefficient estimates for the quotient function
z

)

In this section we determine the coefficient bounds and Fekete-Szegd problem
associated with the function H defined by

z

fz)

where f € A such that f(z) # 0 for all z € D\ {0}.

H(z):=

o0
1+ Zutzt, z €D, (29)
t=1

f(z)

Theorem 5. Let f € Ay (9) of the form (1) such that ——= # 0 for all
z
z €D, and let H be given by (29). Then,
< 2 wep it (30)
=61 — 20 ’ 2 [
5 5|49 =59+ 1)| | 11
< 1; ¥ €[0,1 -, =
(31)
5 5492 — (5 —3p)d + 1 — p)|
—l < — 1; 2

forpE(Ccmdﬁe[O,l]\{;,;}

Proof. 1f f € A4r(9) with f(2) # 0 for all z € D\ {0}, the function H given
by (29) is well defined. A simple computation gives

H(Z):i:1_a2z—|—(a%—ag)ZQ—l—(a%+2a2a3—a4)z3+..., z €D,
(33)
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and equating the coefficients of z and 2% on the both sides of (29) and (33)
we get
up = — az, (34)
Using (34), the estimate (30) follows immediately from (9). The bound
given in (31) for |us| follows from Corollary 3.
For p € C, using (34) and (35) we get

|ug — pui| = |az — (1 - p)a3

and by taking p := 1 — p in the inequality (21) we get the desired result
(32). O

?

6 Krushkal inequalities for the class A, (V)

In this section we will show that for the well-known inequality

ab — ag(n_l) < op(n=1) _ pp (36)

we can find smaller upper bound for the subclass A4z (¢) and for the specific
values n = 4 and p = 1. This inequality was originally presumed and
proved by Krushkal for the class of normalized univalent functions S and
the integers n > 3, p > 1, while it is sharp since the equality occurs for the
Koebe function (see [19] Theorem 6.1, p. 17).

For n = 4 and p = 1 we obtain the following upper bound for the left-
hand side of (36).

Theorem 6. If the function f € A4r(9) has the form (1), then

3

lay — a3 ¥ € [0, 23 ~ 0.1282573496] ,

5
| <
6|1 — 49|
where x3 is the smallest solution in [0,1] of the equation
15842 — 64322 + 569823 — 212922 + 3642 — 22 = 0. (37)
Proof. If f € A4r(9), from (17) and (19) we obtain

- 5 59(5 — 120)
a1—a; = 12(1 — 40) { [12(1 —20)(1 - 39) 1] iz
5 (0(5 —129)(3 — 119) 1092 5(1 — 499) 6>

24\ 31 —29)2(1—39)  3(1—20)2  6(1—209)3 5

196[0,1]\{}1,;,;},



Coefficient estimates for analytic functions 110

hence,
5 1 59(5 — 1209)
3] _ —9.- |1
a1 =z = 5 b2y [1 12(1— 29)(1 —319)} itz
5 (6 96-120)3-119)  100*°  5(1—49) 3
24 \5  3(1-29)2(1-39) 3(1-29)2 6(1—20)3

(38)

Comparing the right-hand side of the above relation with (8), for ¥ €
0.1\ {23, 3} we et

1 59(5 — 129)
B=- )
27 12(1—29)(1—39)
b 2 (6 0(5-120)(3-119) 109>  5(1 —49)
24 \5  3(1-29)2(1-39) 3(1-29)2 6(1—20)3
Since 9 € [0, 1], we obtain
1 59(5 — 129)
<B=_|1- <1
0< 2[ 12(1—20)(1—30)] =le
85 /889
35 /649 85 /889
U[24_24 ~ 0.396, 500 + e 0.434],

1 1
B>Dode M =0,z ~0.230] U (3,:(;2 ~ 0.372] U (2,1} ,

where z1 and z9 are the solution in [0, 1] of the equation
2642 — 9842% + 12302% — 499z + 61 = 0,
and
C:=B(2B-1)<D<&
1
V€ Ms:=1[0,x3 ~ 0.1282573496] U | x4 ~ 0.3796254135, 2> ,

where x3 and x4 are the solution in [0, 1] of the equation (37).

Consequently, all the above three inequalities hold if and only if

e M:=M NMyNMs= [O,.’Eg ~ 01282573496] R

and all the assumptions of Lemma 1(iii) are fulfilled. Finally, combining (8)
with (38) we obtain the desired result. O
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7 Conclusions

In this study, we focused on a subclass of bounded turning functions asso-
ciated with a four-leaf-type domain. We made some useful findings for this
class, including the bounds of the first four initial coefficients, the Fekete—
Szeg6-type inequality, and the Krushkal inequality. The actual results do
not overlap any of these nor the structure of the subclasses, because the sub-
ordinations by expressions such as the left-hand side of subordination (3)
had not already appeared. Taking into account the upper bounds given in
Theorem 1, an interesting open problem that could start a real challenge is to
find the estimate |a,| holds for all n € N\ {1} for the function class A4r(¥).
In the future, this work can be applied to derive the boundaries of Hankel
determinants of second, third, fourth, and fifth order for various subclasses
of univalent functions as discussed in [5,7,8,17,18,20,21,27, 28, 32,33].
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