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1 Introduction and preliminaries

We let A denote the class of analytic functions defined in the open unit disk
D := {z ∈ C : |z| < 1}, having the power-series expansion of the type

f (z) = z +

∞∑
n=2

an z
n, z ∈ D. (1)

Also, we let S denote the class of all functions of A that are univalent
in D.

If F and G are analytic functions in D, and if there exists a function w
analytic in D with w(0) = 0 and |w(z)| < 1 in D, such that F = G ◦ w,
then we say that F is subordinated to G, written F (z) ≺ G(z) (see, for
example, [16] p. 368). Using the Schwarz lemma, it is easy to show that
F (z) ≺ G(z) implies F (0) = G(0) and F (D) ⊂ G(D), and assuming that G
is univalent in D then the next equivalence holds:

F (z) ≺ G(z)⇔ F (0) = G(0) and F (D) ⊂ G(D). (2)

The classic Fekete–Szegő problem [14] involves finding the exact limits
of the functional

∣∣a3 − µa22∣∣ for a compact-function family or f ∈ A with
any µ ∈ C; for further details, one may refer to [30].

The sharp bounds of this inequality for a few subclasses S∗ and K were
found in [12].

Gandhi in [15] introduced a set of bounded turning functions connected
to a three-leaf function. In 2022, in the articles [4,31] the authors introduced
and studied different subclasses of analytic functions defined by subordina-
tion to the four-leaf function (see Figure 1, made with MAPLETM computer
software) that is given by

Λ4L(z) := 1 +
5

6
z +

1

6
z5, z ∈ D.

With the aid of a four-leaf function, we define the following subclass of
A, using the notion of subordination, as follows:

Definition 1. A function f ∈ A is said to be in the class A4L(ϑ) if

Ψϑf(z) :=
f(z)

(1− ϑ)z + ϑzf ′(z)
≺ Λ4L(z), (3)

where 0 ≤ ϑ ≤ 1.
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Figure 1: The image of Λ4L(D).

Remark 1. Some relevant special cases of the class A4L(ϑ) could be obtained
as follows:

(i) For ϑ = 1, the class A4L(1,Λ) =: Y4L will be

Y4L =

{
f ∈ A :

f(z)

zf ′(z)
≺ Λ4L(z)

}
.

(ii) Fixing ϑ = 0 in (3), we obtain the class A4L(0,Λ) =: N4L, which is

N4L =
{
f ∈ A :

f(z)

z
≺ Λ4L(z)

}
.

The reason for taking the above left-hand-side expression consisted in
the fact that we could obtain a subordination condition where appeared the

usual expressions
f(z)

z
and

f(z)

zf ′(z)
. For special values of the parameters ϑ,

some of these functions vanished or the formula became more simple and,
as we can see in the further Remark 1, we could simply obtain expressions
subordinated to the four-leaf function.

Many results regarding some subclasses defined by subordinations with
different functions with significant geometrical properties (e.g., the limaçon
function, convex functions in one direction, the cosine function, the nephroid
function, etc.) were studied by the second author in many papers (see, for
example, [6, 23, 24, 29]). The novelty of these subclasses and of this paper
consists in the fact that such subordinations with similar expressions to
the left-hand side of the subordination (3) were not studied in some other
previous articles.
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Remark 2. (i) If ϕ is an analytic function in D then ϕ is said to be a
starlike function with respect to w0 = ϕ(0) if ϕ is univalent in D and ϕ(D)
is a starlike domain with respect to w0, that is the segment [w0, ϕ(z)] lies
in ϕ(D) for all z ∈ D. It is well known that the function ϕ is starlike with
respect to w0 = ϕ(0) if and only if ϕ′(0) 6= 0 and

Re
zϕ′(z)

ϕ(z)− w0
> 0, z ∈ D.

Since Λ4L(0) = 1, Λ′4L(0) = 5/6 6= 0 and

Re
zΛ′4L(z)

Λ4L(z)− Λ4L(0)
= 5 Re

1 + z4

5 + z4
> 0, z ∈ D,

it follows that the four-leaf function Λ4L is starlike (univalent) in D with
respect to w0 = Λ4L(0) = 1. Moreover, from the fact that

(
Λ4L(1) +

Λ4L(−1)
)/

2 = 1 it follows that the domain Λ4L(D) is symmetric with re-

spect to the point w0 = 1, and because Λ4L(z) = Λ4L(z), z ∈ D the domain
Λ4L(D) is symmetric with respect to the real axis.

We have Re Λ4L(z) > 0, z ∈ D because

Re Λ4L(z) = Re

(
1 +

5

6
z +

1

6
z5
)

= 1 + Re

(
5

6
z +

1

6
z5
)
≥ 1−

∣∣∣∣56z +
1

6
z5
∣∣∣∣

≥ 1− 5

6
|z| − 1

6
|z5| > 1− 5

6
− 1

6
= 0, z ∈ D,

hence, Re Λ4L(z) > 0, z ∈ D.
(ii) We will emphasize that the class A4L(ϑ) is not empty. Considering

f̃(z) = z + az2 + bz3, for the particular case a = 2, b = 0.1, ϑ = 0.4, using
the 2D plot of the MAPLETM computer software we obtain the images of the
boundary ∂D by the functions Ψϑf̃ and Λ4L, shown in Figure 2(a). Since
Λ4L, as we showed above, is univalent in D, the equivalence (2) yields that
the subordination Ψϑf̃(z) ≺ Λ4L(z) holds whenever Ψϑf̃(0) = Λ4L(0) = 1
and Ψϑf̃(D) ⊂ Λ4L(D) (see Figure 2(b)). In conclusion, f̃ ∈ A4L(ϑ) for
the above values of the parameters; hence, the class A4L(ϑ) is not empty for
non-trivial values of the parameters.

The following univalence theorem on the boundary is well known (see,
for example, [25] Lemma 1.1, p. 13): Let f be analytic in D and injective
on the boundary ∂D. Then, f is univalent in D and maps D onto the inner
domain of the (closed) Jordan curve J = f(∂D).

For the function f̃ defined by the above item (ii), we have f̃ ∈ A4L(ϑ).
Using the 2D plot of the MAPLETM computer software, the image of the
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boundary ∂D by the functions f̃ (see Figure 2(b)), we see that f̃ (∂D) is a
simple curve; hence, f̃ is univalent on ∂D. Therefore, according to the above
result, we conclude that f̃ ∈ S; hence, A4L(ϑ) ∩ S 6= ∅ for some values of
the parameter ϑ ∈ [0, 1].

(a) The images of Ψϑf̃
(
eiθ
)

(blue

color) and Λ4L

(
eiθ
)

(red color), θ ∈
[0, 2π).

(b) The image of f̃ (∂D).

Figure 2: Figures for Remark 2(ii)

(iii) Let us consider the function f̂(z) = z + az2 + bz3 + cz4 for a =
0.5, b = 0.2, c = 0.1 and let us take ϑ = 0.8. From the 2D plot of the
MAPLETM computer software we represent the images of the boundary ∂D
by the functions Ψϑf̂ and Λ4L in Figure 3(a). For similar reasons, like item
(ii) we have Ψϑf̂(z) ≺ Λ4L(z). In conclusion, f̂ ∈ A4L(ϑ) for the above given
values of the parameters. But, representing with a 2D plot of the MAPLETM

computer software the image of the circle |z| = 0.9 by the functions f̂ (see
Figure 3(b)), we see that f̂

(
0.9 eiθ

)
, θ ∈ [0, 2π) is not a simple curve; hence,

f̂ is not univalent in D. Consequently, we have A4L(ϑ) 6⊂ S for the general
choices of the parameter ϑ ∈ [0, 1].

(iv) Not only polynomial functions belong to these classes A4L(ϑ), as can

we see in the next examples. Taking fc(z) = z · 1 + az

1 + bz
for the particular case

a = 0.5, b = 0.1, ϑ = 0.7, we similarly obtain the images of the boundary
∂D by the functions Ψϑfc and Λ4L, shown in Figure 4(a), and, for the same
reasons as in the above item, we conclude that fc ∈ A4L(ϑ) for these values of
the parameters. We could mention the same property for the transcendental



Coefficient estimates for analytic functions 98

(a) The images of Ψϑf̂
(
eiθ
)

(blue

color) and Λ4L

(
eiθ
)

(red color), θ ∈
[0, 2π).

(b) The image of f̂
(
0.9 eiθ

)
, θ ∈

[0, 2π).

Figure 3: Figures for Remark 2(iii)

function fe(z) = z eaz with a = 0.5, where for ϑ = 0.9, using a proof similar
to those of item (ii) (see Figure 4(b)), we obtain fe ∈ A4L(ϑ).

(a) The images of Ψϑfc
(
eiθ
)

(red

color) and Λ4L

(
eiθ
)

(blue color), θ ∈
[0, 2π).

(b) The image of Ψϑfe
(
eiθ
)

(red color)

and Λ4L

(
eiθ
)

(blue color), θ ∈ [0, 2π).

Figure 4: Figures for Remark 2(iv)
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(vi) Definition 1 of the class A4L(ϑ) generates the next natural question:
whether for every function f ∈ A there exists ϑ ∈ [0, 1], such that the
function f belongs to the class A4L(ϑ).

We will provide below a negative answer to this question, i.e., there exists
a function g ∈ A, such that for any ϑ ∈ [0, 1] we have Ψϑg(z) 6≺ Λ4L(z).
The proof of this fact will be presented below, where we provide an example
of such a function.

Letting g(z) :=
sin(5z)

5
∈ A, from Formula (3) we easily obtain

Hϑ(z) := Ψϑg(z) =
sin(5z)(

1− ϑ+ ϑ cos(5z)
)

5z
, z ∈ D.

The point z∗ = 0 is a regular point for the function Hϑ. If for the
value ϑ0 ∈ [0, 1] such that Hϑ0 is not analytic in some point z0 ∈ D \ {0},
then z0 will be a pole for Hϑ0 hence the function Hϑ0 will not be analytic
in D. This implies Ψϑ0g(z) 6≺ Λ4L(z) that is g /∈ A4L(ϑ), and moreover
Hϑ0(D) 6⊂ Λ4L(D) because Hϑ0(D) is an unbounded domain while Λ4L(D) is
a bounded one.

We will prove that there not exists any values of ϑ ∈ [0, 1] such that Hϑ

is analytic in D and Hϑ(z) 6≺ Λ4L(z). Contrary, if there exists a ϑ∗ ∈ [0, 1]
such that Hϑ∗(z) ≺ Λ4L(z), since Λ4L is a univalent function in D, this
subordination is equivalent to Hϑ∗(0) = Λ4L(0) = 1 and

Hϑ∗(D) ⊂ Λ4L(D). (4)

It’s easy to check that

Hϑ(−1) =
− sin 5

5(ϑ− 1− ϑ cos 5)
∈
[

sin 5

5 cos 5
,
sin 5

5

]
= [−0.676 . . . ,−0.191 . . .]

for all ϑ ∈ [0, 1], while Re Λ4L(z) > 0, z ∈ D. This implies that there
exists a neighborhood V of z = −1 such that Hϑ∗(V ∩ D) 6⊂ Λ4L(D). Hence,
Hϑ∗(D) 6⊂ Λ4L(D) that contradicts the inclusion (4).

Thus, for the function g(z) =
sin(5z)

5
∈ A there does not exist ϑ ∈ [0, 1]

such that g ∈ A4L(ϑ), therefore

A 6⊂
{
A4L(ϑ) : ϑ ∈ [0, 1]

}
.

To prove our main results, we will use the next preliminary results.
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We say a function p belongs to the class P of Carathéodory functions
(see [9, 10]) if and only if it has the series expansion

p(z) = 1 +

∞∑
k=1

cnz
k, z ∈ D, (5)

and Re p(z) > 0 for all z ∈ D.

Lemma 1. Let p ∈ P be of the form (5). Then:
(i) For n ≥ 1

|cn| ≤ 2. (6)

The inequality holds for all n ≥ 1 if and only if p(z) = (1+λz)/(1−λz),
|λ| = 1.

(ii) Also, if µ ∈ C then

|cn+k − µcnck| ≤ 2 max {1; |2µ− 1|} (7)

for all n, k ≥ 1.
If 0 < µ < 1 the inequality is sharp for the function

p(z) =
(
1 + zn+k

)/ (
1− zn+k

)
. In the other cases, the inequality is sharp

for the function p(z) = (1 + z)
/

(1− z).
(iii) Moreover, if B ∈ [0, 1] with B(2B− 1) ≤ D ≤ B, we have∣∣c3 − 2Bc1c2 + Dc31

∣∣ ≤ 2. (8)

We note that inequality (6) is the well-known result of the Carathéodory
lemma [9] (see also [25, Corollary 2.3, p. 41], [11, Carathéodory’s Lemma,
p. 41]).

Inequality (7) represents Theorem 1 of [13], while for µ ≥ 0 and sharpness
for the case 0 < µ < 1 is [26, Lemma 2.3]. This last result for particular
case µ = 1 was proved in a more general form for p(0) = c0 in [22, Lemma
1, p. 546]. Inequality (8) refers to [1, Lemma 3, p. 66.].

2 Initial coefficient estimates for class A4L(ϑ)

The first theorem gives us the upper bounds for the first five coefficients |an|
for the functions belonging to A4L(ϑ) as follows:
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Theorem 1. If the function f ∈ A4L(ϑ) is given by (1), then

|a2| ≤
5

6|1− 2ϑ|
, ϑ ∈ [0, 1] \

{
1

2

}
, (9)

|a3| ≤
5

6|1− 3ϑ|
max

{
1;

5ϑ

3|1− 2ϑ|

}
, ϑ ∈ [0, 1] \

{
1

3
,
1

2

}
, (10)

|a4| ≤
5

6(1− 4ϑ)
, ϑ ∈ [0, x0 ' 0.2028090285] , (11)

where x0 is the solution in [0, 1] of the equation

792x4 − 2820x3 + 2339x2 − 720x+ 72 = 0. (12)

Proof. Supposing that f ∈ A4L(ϑ) has the form (1), then there exists a
function w analytic in D with w(0) = 0 and |w(z)| < 1, z ∈ D, satisfying

f(z)

(1− ϑ)z + ϑzf ′(z)
= Λ4L (w(z)) , z ∈ D. (13)

It is easy to check that

f(z)

(1− ϑ)z + ϑzf ′(z)
= 1 + (1− 2ϑ)a2z +

[
(1− 3ϑ)a3 − 2ϑ(1− 2ϑ)a22

]
z2

(14)

+
[
(1− 4ϑ)a4 − ϑ(5− 12ϑ)a2a3 + 4ϑ2(1− 2ϑ)a32

]
z3 + . . . , z ∈ D.

Letting the function l defined by

l(z) :=
1 + w(z)

1− w(z)
= 1 +

∞∑
n=1

ln z
n, z ∈ D,

since |w(z)| < 1 in D, it follows that l ∈ P .
A simple computation gives

w(z) =
l(z)− 1

l(z) + 1
=

1

2
l1z +

1

2

(
l2 −

1

2
l21

)
z2 +

1

2

(
l3 − l1l2 +

1

4
l31

)
z3 + . . . ,

(15)
and by replacing the power series expansion of (15) in the right-hand side
of the relation (13) we obtain

f(z)

(1− ϑ)z + ϑzf ′(z)
=1 +

5

12
l1z +

(
5l2
12
− 5l21

24

)
z2

+

(
5

12
l3 −

5

12
l1l2 +

5

48
l31

)
z3 + . . . , z ∈ D. (16)
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Equating the first three coefficients of (14) and (16) we have

a2 =
5

12(1− 2ϑ)
l1, ϑ ∈ [0, 1] \

{
1

2

}
, (17)

a3 =
5

12(1− 3ϑ)

[
l2 −

1

2

(
1− 5ϑ

3(1− 2ϑ)

)
l21

]
, ϑ ∈ [0, 1] \

{
1

3
,
1

2

}
, (18)

a4 =
5

12(1− 4ϑ)

{[
5ϑ(5− 12ϑ)

12(1− 2ϑ)(1− 3ϑ)
− 1

]
l1l2 (19)

− 5

24

[
ϑ(5− 12ϑ)(3− 11ϑ)

3(1− 2ϑ)2(1− 3ϑ)
+

10ϑ2

3(1− 2ϑ)2
− 6

5

]
l31 + l3

}
,

ϑ ∈ [0, 1] \
{

1

4
,
1

3
,
1

2

}
.

First, using the inequality (6) in (17) we obtain the inequality (9).
The equality (18) implies

|a3| =
5

12|1− 3ϑ|

∣∣∣∣l2 − 1

2

(
1− 5ϑ

3(1− 2ϑ)

)
l21

∣∣∣∣ , (20)

and using inequality (7) for n = k = 1 and µ =
1

2
we obtain (10).

From (19) it follows that

|a4| =
5

12|1− 4ϑ|

∣∣∣∣l3 − 2

[
1

2
− 5ϑ(5− 12ϑ)

24(1− 2ϑ)(1− 3ϑ)

]
l1l2

+
5

24

(
6

5
− ϑ(5− 12ϑ)(3− 11ϑ)

3(1− 2ϑ)2(1− 3ϑ)
− 10ϑ2

3(1− 2ϑ)2

)
l31

∣∣∣∣
=

5

12|1− 4ϑ|

∣∣∣∣l3 − 2

[
1

2
+

5ϑ(12ϑ− 5)

24(2ϑ− 1)(3ϑ− 1)

]
l1l2

+
5

24

(
6

5
+
ϑ(12ϑ− 5)(11ϑ− 3)

3(2ϑ− 1)2(3ϑ− 1)
− 10ϑ2

3(2ϑ− 1)2

)
l31

∣∣∣∣ ,
and we will compare the right-hand side of the above relation with (8).
Assuming that ϑ ∈ [0, 1], then

0 ≤ B =
1

2
+

5ϑ(12ϑ− 5)

24(2ϑ− 1)(3ϑ− 1)
≤ 1⇔

ϑ ∈ S1 :=

[
0,

85

264
−
√

889

264
' 0.209

]

∪

[
35

24
−
√

649

24
' 0.396,

85

264
+

√
889

264
' 0.434

]
,
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B =
1

2
+

5ϑ(12ϑ− 5)

24(2ϑ− 1)(3ϑ− 1)

≥ D =
5

24

(
6

5
+
ϑ(12ϑ− 5)(11ϑ− 3)

3(2ϑ− 1)2(3ϑ− 1)
− 10ϑ2

3(2ϑ− 1)2

)
⇔ ϑ ∈ S2 :=

[
0,

15

11
−
√

159

11
' 0.217

]
∪
[

1

3
,
1

2

]
,

and
C := B(2B− 1) ≤ D⇔ ϑ ∈ S3 := [0, x0 ' 0.2028090285] ,

where x0 is the solution in [0, 1] of the equation (12). Thus, all the above
three inequalities hold if and only if

ϑ ∈ S := S1 ∩ S2 ∩ S3 = [0, x0 ' 0.2028090285] ,

and all the requirements of Lemma 1(iii) are satisfied, hence (8) leads us to
(11).

By fixing the parameter ϑ = 0 and ϑ = 1 in Theorem 1 we state the
following:

Corollary 1. 1. If the function f ∈ N4L is given by (1) then

|a2| ≤
5

6
, |a3| ≤

5

6
, |a4| ≤

5

6
.

2. If the function f ∈ Y4L is given by (1) then

|a2| ≤
5

6
, |a3| ≤

5

12
max

{
1;

5

3

}
=

25

36
.

In [14] Fekete and Szegő proved the well-known result

max
{ ∣∣a3 − µa22∣∣ : f ∈ S

}
= 1 + 2e

− 2µ
1−µ , µ ∈ [0, 1],

and in our next theorem we consider the corresponding problem for the
family A4L(ϑ), as follows.

Theorem 2. If the function f ∈ A4L(ϑ) has the form (1) and µ ∈ C, then

∣∣a3 − µa22∣∣ ≤ 5

6|1− 3ϑ|
max

{
1;

5
∣∣4ϑ2 − (3µ+ 2)ϑ+ µ

∣∣
6(2ϑ− 1)2

}
, (21)

whenever ϑ ∈ [0, 1] \
{

1

3
,
1

2

}
.
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Proof. If f ∈ A4L(ϑ) has the form (1), as in the proof of the previous
theorem, using (17) and (20), we obtain∣∣a3 − µa22∣∣ =

∣∣∣∣ 5

12(1− 3ϑ)

(
l2 −

1

2

(
1− 5ϑ

3(1− 2ϑ)

)
l21

)
− µ 25

144(1− 2ϑ)2
l21

∣∣∣∣
=

5

12 |1− 3ϑ|

∣∣∣∣l2 − 1

12

44ϑ2 − (15µ+ 34)ϑ+ 5µ+ 6

(2ϑ− 1)2
l21

∣∣∣∣ ,
and Lemma 1(ii) lead us to (21).

Taking the parameter ϑ = 0 and ϑ = 1 in Theorem 1 we get the following
corollary, while for µ = 1 we obtain the second one, respectively:

Corollary 2. 1. If the function f ∈ N4L has the form (1) and µ ∈ C, then∣∣a3 − µa22∣∣ ≤ 5

6
max

{
1;

5|µ|
6

}
.

2. If the function f ∈ Y4L has the form (1) and µ ∈ C, then∣∣a3 − µa22∣∣ ≤ 5

12
max

{
1;

5|3− µ|
3

}
.

Corollary 3. If the function f ∈ A4L(ϑ) has the form (1) and ϑ ∈ [0, 1] \{
1

3
,
1

2

}
, then

∣∣a3 − a22∣∣ ≤ 5

6|1− 3ϑ|
max

{
1;

5
∣∣4ϑ2 − 5ϑ+ 1

∣∣
6(2ϑ− 1)2

}
.

3 Coefficient inequalities for the inverses of
functions belonging to A4L(ϑ) ∩ S

If F is a set of analytic functions in the unit disk D, then the Koebe domain
of the set F is defined as the largest domain contained in f(D) for all f ∈ F ,
and it is denoted by K(F).

The Koebe–Bieberbach one quarter theorem [16, Theorem 2, p. 49] en-
sures that the image of D for every univalent function f ∈ A contains the

disk with center in the origin and of radius
1

4
, that is K(S) = 1/4. Thus,

every univalent function f has an inverse f−1 satisfying

f−1
(
f(z)

)
= z, z ∈ D and f

(
f−1(w)

)
= w, |w| < r0(f), r0(f) ≥ 1

4
.
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A function f ∈ A is said to be bi-univalent in D if both f and f−1 are
univalent in D, assuming that f−1 has an analytic extension tho D. We
notice that the class of bi-univalent functions defined in the unit disk D is

not empty. For example, the functions z,
z

1− z
, − log(1−z) and

1

2
log

1 + z

1− z
are members of the bi-univalent function class, however the Koebe function
is not a member.

Like we mentioned in the Remark 2(ii) for some values of the parameter
ϑ ∈ [0, 1] we have A4L(ϑ) ∩ S 6= ∅, while the Remark 2(vi) shows that
A 6⊂

{
A4L(ϑ) : ϑ ∈ [0, 1]

}
, hence S 6⊂

{
A4L(ϑ) : ϑ ∈ [0, 1]

}
. These facts

motivate the below studies regarding the coefficients of the inverses of the
functions from the classes A4L(ϑ) ∩ S.

Theorem 3. If f ∈ A4L(ϑ) and f−1(w) = w +
∞∑
n=2

dnw
n is the inverse

function of f in the Koebe domain K (A4L(ϑ)) of the class A4L(ϑ), then

|d2| ≤
5

6|1− 2ϑ|
, ϑ ∈ [0, 1] \

{
1

2

}
,

|d3| ≤
5

6|1− 3ϑ|
max

{
1;

5
∣∣2ϑ2 − 4ϑ+ 1

∣∣
3(2ϑ− 1)2

}
, if ϑ ∈ [0, 1] \

{
1

3
,
1

2

}
,

and for any complex number ~ and ϑ ∈ [0, 1] \
{

1

3
,
1

2

}
we have

∣∣d3 − ~d22
∣∣ ≤ 5

6|1− 3ϑ|
max

{
1;

5
∣∣4ϑ2 − (8− 3~)ϑ+ 2− ~

∣∣
6(2ϑ− 1)2

}
. (22)

Proof. If

f−1(w) = w +
∞∑
n=2

dnw
n, w ∈ K (A4L(ϑ))

is the inverse function of f , it can be seen that

f−1
(
f(z)

)
= z, z ∈ D and f

(
f−1(w)

)
= w, w ∈ K (A4L(ϑ)) . (23)

Since

f−1

(
z +

∞∑
n=2

anz
n

)
= z, z ∈ D, (24)

from (23) and (24) one can obtain

z + (a2 + d2)z
2 + (a3 + 2a2d2 + d3)z

3 + · · · = z, z ∈ D. (25)
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By equating the corresponding coefficients of (25) we get

d2 = −a2, (26)

d3 = 2a22 − a3, (27)

and from relations (17) together with (26) we get

d2 = − 5

12(1− 2ϑ)
l1.

Using Lemma 1(i) it follows

|d2| ≤
5

6|1− 2ϑ|
,

and according to (27), if we set µ = 2 in (21) we have

|d3| =
∣∣a3 − 2a22

∣∣ ≤ 5

6|1− 3ϑ|
max

{
1;

5
∣∣2ϑ2 − 4ϑ+ 1

∣∣
3(2ϑ− 1)2

}
.

To find an upper bound of the Fekete-Szegő functional for the inverse
function, from (26) and (27), for any ~ ∈ R we have∣∣d3 − ~d22

∣∣ =
∣∣2a22 − a3 − ~a22

∣∣ =
∣∣a3 − (2− ~)a22

∣∣ .
Finally, if we let µ := 2− ~ in the (21) we obtain our conclusion (22).

4 Initial logarithmic coefficient bounds for
functions of the classes A4L(ϑ)

Inspired by recent works like [2,3], in this section we determine the coefficient
bounds and Fekete–Szegő problem associated with the logarithmic function.

If the function f ∈ A given by (1) is analytic in D such that
f(z)

z
6= 0 for

all z ∈ D, then the well-known logarithmic coefficients dn := dn(f), n ∈ N,
of f are given by

log
f(z)

z
= 2

∞∑
n=1

dnz
n, z ∈ D. (28)
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Theorem 4. Let f ∈ A4L(ϑ) such that
f(z)

z
6= 0 for all z ∈ D, with the

logarithmic coefficients given by (28). Then,

|d1| ≤
5

12|1− 2ϑ|
, if ϑ ∈ [0, 1] \

{
1

2

}
,

|d2| ≤
5

12|1− 3ϑ|
max

{
1;

5

12

∣∣8ϑ2 − 7ϑ+ 1
∣∣

(2ϑ− 1)2

}
, if ϑ ∈ [0, 1] \

{
1

3
,
1

2

}
,

and for ℘ ∈ C and ϑ ∈ [0, 1] \
{

1

3
,
1

2

}
we have

∣∣d2 − ℘d21∣∣ ≤ 5

12|1− 3ϑ|
max

{
1;

5

12

∣∣8ϑ2 − (3℘+ 7)ϑ+ 1 + ℘
∣∣

(2ϑ− 1)2

}
.

Proof. If f ∈ A4L(ϑ) has the form (3), equating the first two coefficients of
the relation (28) we obtain

d1 =
a2
2
, d2 =

1

2

(
a3 −

a22
2

)
,

and using the inequality (17) it follows that

|d1| =
∣∣∣a2

2

∣∣∣ ≤ 5

12|1− 2ϑ|
, ϑ ∈ [0, 1] \

{
1

2

}
.

Since

|d2| =
1

2

∣∣∣∣a3 − 1

2
a22

∣∣∣∣ ,
taking µ =

1

2
in (21) the above equality leads to

|d2| ≤
5

12|1− 3ϑ|
max

{
1;

5

12

∣∣8ϑ2 − 7ϑ+ 1
∣∣

(2ϑ− 1)2

}

whenever ϑ ∈ [0, 1] \
{

1

3
,
1

2

}
.

To find the Fekete-Szegő inequality for the inverse function, for any com-
plex number ℘ we have

∣∣d2 − ℘d21∣∣ =

∣∣∣∣12
(
a3 −

a22
2

)
− ℘a

2
2

4

∣∣∣∣ =
1

2

∣∣∣∣a3 − ℘+ 1

2
a22

∣∣∣∣ .



Coefficient estimates for analytic functions 108

Finally, putting µ =
℘+ 1

2
in the (21) we get

∣∣d2 − ℘d21∣∣ =
5

12|1− 3ϑ|
max

{
1;

5

12

∣∣∣∣(8ϑ2 − (3℘+ 7)ϑ+ 1 + ℘

(2ϑ− 1)2

∣∣∣∣} .

5 Coefficient estimates for the quotient function
z

f(z)

In this section we determine the coefficient bounds and Fekete-Szegő problem
associated with the function H defined by

H(z) :=
z

f(z)
= 1 +

∞∑
t=1

utz
t, z ∈ D, (29)

where f ∈ A such that f(z) 6= 0 for all z ∈ D \ {0}.

Theorem 5. Let f ∈ A4L(ϑ) of the form (1) such that
f(z)

z
6= 0 for all

z ∈ D, and let H be given by (29). Then,

|u1| ≤
5

6|1− 2ϑ|
, ϑ ∈ [0, 1] \

{
1

2

}
, (30)

|u2| ≤
5

6|1− 3ϑ|
max

{
1;

5
∣∣4ϑ2 − 5ϑ+ 1)

∣∣
6(2ϑ− 1)2

}
, if ϑ ∈ [0, 1] \

{
1

3
,
1

2

}
,

(31)

|u2 − ρu21| ≤
5

6|1− 3ϑ|
max

{
1;

5
∣∣4ϑ2 − (5− 3ρ)ϑ+ 1− ρ)

∣∣
6(2ϑ− 1)2

}
, (32)

for ρ ∈ C and ϑ ∈ [0, 1] \
{

1

3
,
1

2

}
Proof. If f ∈ A4L(ϑ) with f(z) 6= 0 for all z ∈ D \ {0}, the function H given
by (29) is well defined. A simple computation gives

H(z) =
z

f(z)
= 1− a2z +

(
a22 − a3

)
z2 +

(
a32 + 2a2a3 − a4

)
z3 + . . . , z ∈ D,

(33)
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and equating the coefficients of z and z2 on the both sides of (29) and (33)
we get

u1 =− a2, (34)

u2 =a22 − a3. (35)

Using (34), the estimate (30) follows immediately from (9). The bound
given in (31) for |u2| follows from Corollary 3.

For ρ ∈ C, using (34) and (35) we get∣∣u2 − ρu21∣∣ =
∣∣a3 − (1− ρ)a22

∣∣ ,
and by taking µ := 1 − ρ in the inequality (21) we get the desired result
(32).

6 Krushkal inequalities for the class A4L(ϑ)

In this section we will show that for the well-known inequality∣∣∣apn − ap(n−1)2

∣∣∣ ≤ 2p(n−1) − np (36)

we can find smaller upper bound for the subclass A4L(ϑ) and for the specific
values n = 4 and p = 1. This inequality was originally presumed and
proved by Krushkal for the class of normalized univalent functions S and
the integers n > 3, p ≥ 1, while it is sharp since the equality occurs for the
Koebe function (see [19] Theorem 6.1, p. 17).

For n = 4 and p = 1 we obtain the following upper bound for the left-
hand side of (36).

Theorem 6. If the function f ∈ A4L(ϑ) has the form (1), then∣∣a4 − a32∣∣ ≤ 5

6|1− 4ϑ|
, ϑ ∈ [0, x3 ' 0.1282573496] ,

where x3 is the smallest solution in [0, 1] of the equation

1584x5 − 6432x4 + 5698x3 − 2129x2 + 364x− 22 = 0. (37)

Proof. If f ∈ A4L(ϑ), from (17) and (19) we obtain

a4−a32 =
5

12(1− 4ϑ)

{[
5ϑ(5− 12ϑ)

12(1− 2ϑ)(1− 3ϑ)
− 1

]
l1l2

− 5

24

(
ϑ(5− 12ϑ)(3− 11ϑ)

3(1− 2ϑ)2(1− 3ϑ)
+

10ϑ2

3(1− 2ϑ)2
+

5(1− 4ϑ)

6(1− 2ϑ)3
− 6

5

)
l31 + l3

}
,

ϑ ∈ [0, 1] \
{

1

4
,
1

3
,
1

2

}
,
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hence,∣∣a4 − a32∣∣ =
5

12|1− 4ϑ|

∣∣∣∣l3 − 2 · 1

2

[
1− 5ϑ(5− 12ϑ)

12(1− 2ϑ)(1− 3ϑ)

]
l1l2

+
5

24

(
6

5
− ϑ(5− 12ϑ)(3− 11ϑ)

3(1− 2ϑ)2(1− 3ϑ)
− 10ϑ2

3(1− 2ϑ)2
− 5(1− 4ϑ)

6(1− 2ϑ)3

)
l31

∣∣∣∣ .
(38)

Comparing the right-hand side of the above relation with (8), for ϑ ∈
[0, 1] \

{
1
4 ,

1
3 ,

1
2

}
we get

B =
1

2

[
1− 5ϑ(5− 12ϑ)

12(1− 2ϑ)(1− 3ϑ)

]
,

D =
5

24

(
6

5
− ϑ(5− 12ϑ)(3− 11ϑ)

3(1− 2ϑ)2(1− 3ϑ)
− 10ϑ2

3(1− 2ϑ)2
− 5(1− 4ϑ)

6(1− 2ϑ)3

)
.

Since ϑ ∈ [0, 1], we obtain

0 ≤ B =
1

2

[
1− 5ϑ(5− 12ϑ)

12(1− 2ϑ)(1− 3ϑ)

]
≤ 1⇔

ϑ ∈M1 :=

[
0,

85

264
−
√

889

264
' 0.209

]

∪

[
35

24
−
√

649

24
' 0.396,

85

264
+

√
889

264
' 0.434

]
,

B ≥ D⇔ ϑ ∈ M2 := [0, x1 ' 0.230] ∪
(

1

3
, x2 ' 0.372

]
∪
(

1

2
, 1

]
,

where x1 and x2 are the solution in [0, 1] of the equation

264x4 − 984x3 + 1230x2 − 499x+ 61 = 0,

and

C := B(2B− 1) ≤ D⇔

ϑ ∈ M3 := [0, x3 ' 0.1282573496] ∪
[
x4 ' 0.3796254135,

1

2

)
,

where x3 and x4 are the solution in [0, 1] of the equation (37).
Consequently, all the above three inequalities hold if and only if

ϑ ∈ M := M1 ∩M2 ∩M3 = [0, x3 ' 0.1282573496] ,

and all the assumptions of Lemma 1(iii) are fulfilled. Finally, combining (8)
with (38) we obtain the desired result.



G. Murugusundaramoorthy, T. Bulboacă 111

7 Conclusions

In this study, we focused on a subclass of bounded turning functions asso-
ciated with a four-leaf-type domain. We made some useful findings for this
class, including the bounds of the first four initial coefficients, the Fekete–
Szegő-type inequality, and the Krushkal inequality. The actual results do
not overlap any of these nor the structure of the subclasses, because the sub-
ordinations by expressions such as the left-hand side of subordination (3)
had not already appeared. Taking into account the upper bounds given in
Theorem 1, an interesting open problem that could start a real challenge is to
find the estimate |an| holds for all n ∈ N \ {1} for the function class A4L(ϑ).
In the future, this work can be applied to derive the boundaries of Hankel
determinants of second, third, fourth, and fifth order for various subclasses
of univalent functions as discussed in [5, 7, 8, 17,18,20,21,27,28,32,33].
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