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Abstract

We study the convergence of infinite products of contractive map-
pings on metric spaces with graphs. In particular, we extend analogous
results of ours which have recently been obtained for powers of con-
tractive mappings.
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1 Introduction

For more than sixty years now, there has been a lot of research activity
regarding the theory of nonexpansive (that is, 1-Lipschitz) mappings and
semigroups. See, for example, [1–3, 5, 6, 9, 11–15,18, 19] and references cited
therein. In particular, the study of nonexpansive and contractive mappings
on complete metric spaces with graphs has recently become a rapidly grow-
ing area of research. See, for instance, [7,8,10–12,20]. In the present paper,
we study the convergence of infinite products of contractive mappings on
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metric spaces with graphs. We extend, in particular, the analogous results
which have recently been obtained for powers of contractive mappings [21].
For information on infinite products of operators on metric spaces, see, for
example, [4, 16,17] and references therein.

Let (X, ρ) be a metric space, and let G be a (directed) graph. Let V (G)
be the set of its vertices and let E(G) be the set of its edges. We identify
the graph G with the pair (V (G), E(G)). For each point x ∈ X and each
number r > 0, set

Bρ(x, r) := {y ∈ X : ρ(x, y) ≤ r}.

Denote by M the set of all mappings T : X → X such that for each
x, y ∈ X satisfying (x, y) ∈ E(G), we have

(T (x), T (y)) ∈ E(G) (1)

and
ρ(T (x), T (y)) ≤ ρ(x, y). (2)

A mapping T ∈ M is called G-nonexpansive. If T ∈ M, α ∈ (0, 1) and
for each x, y ∈ X satisfying (x, y) ∈ E(G), we have

ρ(T (x), T (y)) ≤ αρ(x, y),

then T is called a G-strict contraction.
A mapping T ∈ M is called G-contractive (or a G-Rakotch contraction

[13]) if there exists a decreasing function φ : [0,∞)→ [0, 1] such that

φ(t) < 1, t ∈ [0,∞)

and for each x, y ∈ X satisfying (x, y) ∈ E(G), we have

ρ(T (x), T (y)) ≤ φ(ρ(x, y))ρ(x, y).

In the sequel we assume that the infimum over the empty set is∞,∞+∞ =
∞, and that a+∞ =∞ for each a ∈ R1.

In this paper we assume that At ∈ M, t = 1, 2, . . . , is a given sequence
of operators, φ : [0,∞)→ [0, 1] is a decreasing function which satisfies

φ(t) < 1, t ∈ [0,∞) (3)

and that for each x, y ∈ X satisfying (x, y) ∈ E(G) and each integer t ≥ 1,
we have

ρ(At(x), At(y)) ≤ φ(ρ(x, y))ρ(x, y). (4)

Such a sequence of operators {At}∞t=1 is said to be contractive [13].
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2 The first result

Theorem 1. Let M, ε > 0 be given. Then there exists a natural number n0
such that for each x, y ∈ X satisfying

(x, y) ∈ E(G), ρ(x, y) ≤M, (5)

each r : {1, 2, . . . } → {1, 2, . . . } and each integer n ≥ n0, we have

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ε.

Proof. Choose an integer

n0 > 1 +Mε−1(1− φ(ε))−1. (5)

Assume that r : {1, 2, . . . } → {1, 2, . . . }, x, y ∈ X and (5) holds. By (4) and
(5), for each integer t ≥ 1, we have

ρ(Ar(t+1) · · ·Ar(1)(x), Ar(t+1) · · ·Ar(1)(y))

≤ φ(ρ(Ar(t) · · ·Ar(1)(x), Ar(t) · · ·Ar(1)(y)))

×ρ(Ar(t) · · ·Ar(1)(x), Ar(t) · · ·Ar(1)(y)) ≤ ρ(x, y) ≤M. (6)

In view of (6), it is sufficient to show that there exists an integer n ∈
{1, . . . , n0} such that

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ε.

Suppose to the contrary that this does not hold. Then in view of (6),

ρ(x, y) > ε (7)

and for each integer n ∈ {1, . . . , n0},

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) > ε. (8)

Relations (4), (7) and (8) imply that

ρ(Ar(1)(x), Ar(1)(y)) ≤ φ(ρ(x, y))ρ(x, y),

ρ(x, y)− ρ(Ar(1)(x), Ar(1)(y)) ≥ (1− φ(ρ(x, y)))ρ(x, y) ≥ (1− φ(ε))ε (9)

and that for each n ∈ {1, . . . , n0},

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y))
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−ρ(Ar(n+1) · · ·Ar(1)(x), Ar(n+1) · · ·Ar(1)(y))

≥ (1− φ(ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y))))

×ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≥ (1− φ(ε))ε. (10)

It follows from (6) and (10) that

M ≥ ρ(x, y) ≥ ρ(Ar(1)(x), Ar(1)(y))

≥ ρ(Ar(1)(x), Ar(1)(y))− ρ(Ar(n0) · · ·Ar(1)(x), Ar(n0) · · ·Ar(1)(y))

=

n0−1∑
n=1

(ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y))

−ρ(Ar(n+1) · · ·Ar(1)(x), Ar(n+1) · · ·Ar(1)(y)))

≥ (n0 − 1)(1− φ(ε))ε

and
n0 ≤ 1 +Mε−1(1− φ(ε))−1.

This, however, contradicts (5). The contradiction we have reached proves
Theorem 1.

Corollary 1. Assume that x, y ∈ X and that there exist a natural number
q and points xi ∈ X, i = 0, . . . , q, such that

x0 = x, y = xq,

(xi, xi+1) ∈ E(G), i = 0, . . . , q − 1.

Let γ > 0. Then there exists a natural number n0 such that for each r :
{1, 2, . . . } → {1, 2, . . . } and each integer n ≥ n0, we have

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ γ.

Proof. Set
M = max{ρ(xi, xi+1) : i = 0, . . . , q − 1},

ε = γ/q

and let a natural number n0 be as guaranteed by Theorem 1.
Assume that r : {1, 2, . . . } → {1, 2, . . . } and that n ≥ n0 is an integer.

In view of the choice of n0, for each i ∈ {0, . . . , q − 1}, we have

ρ(Ar(n) · · ·Ar(1)(xi), Ar(n) · · ·Ar(1)(xi+1)) ≤ ε = γ/q
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and this implies that

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ γ.

This competes the proof of Corollary 1.

Corollary 2. Assume that

(x, x) ∈ E, x ∈ X,

sup{ρ(x, y) : x, y ∈ X} <∞

and that there exists an integer q ≥ 1 such that for each ξ, η ∈ X, there exist
points xi ∈ X, i = 0, . . . , q, satisfying

x0 = ξ, η = xq,

(xi, xi+1) ∈ E(G), i = 0, . . . , q − 1.

Let γ > 0 be given. Then there exists a natural number n0 such that for each
x, y ∈ X, each mapping r : {1, 2, . . . } → {1, 2, . . . } and each integer n ≥ n0,
we have

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ γ.

Proof. Set
M = sup{ρ(x, y) : x, y ∈ X},

ε = γ/q

and let a natural number n0 be as guaranteed by Theorem 1.
Assume that x, y ∈ X, r : {1, 2, . . . } → {1, 2, . . . } and that n ≥ n0 is an

integer. Then there exist points xi ∈ X, i = 0, . . . , q, such that

x0 = x, y = xq,

(xi, xi+1) ∈ E(G), i = 0, . . . , q − 1.

In view of the choice of n0 and Theorem 1, for each i ∈ {0, . . . , q − 1}, we
have

ρ(Ar(n) · · ·Ar(1)(xi), Ar(n) · · ·Ar(1)(xi+1)) ≤ ε = γ/q

and this implies that

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ γ.

This completes the proof of Corollary 2.
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3 The second result

The following distance was introduced in [20].
For each x, y ∈ X, define

ρ1(x, y) := inf{
q−1∑
i=0

ρ(xi, xi+1) : q ≥ 1 is an integer,

xi ∈ X, i = 0, . . . , q, x0 = x, xq = y, (xi, xi+1) ∈ E(G), i = 0, . . . , q − 1}.
(11)

It is not difficult to see that for each x, y, z ∈ X, ρ1(x, y) ∈ [0,∞],

ρ1(x, y) ≥ ρ(x, y),

ρ1(x, z) ≤ ρ1(x, y) + ρ1(y, z),

and if ρ1(x, y) = 0, then x = y. The pseudometric ρ1 plays an important
role in [20] and in the present paper because under certain assumptions it
turns out that if a mapping T is G-nonexpansive (respectively, a G-strict
contraction), then it is nonexpansive (respectively, a strict contraction) with
respect to the pseudometric ρ1. Clearly, in general the pseudometric ρ1 is
not symmetric and its values are not necessarily finite.

In this section we assume that there exists a number ∆̄ > 0 such that
the following assumption holds.

(A) If (x0, x1), (x1, x2) ∈ E(G) satisfy ρ(x0, x1) ≤ ∆̄, ρ(x1, x2) ≤ ∆̄,
then (x0, x2) ∈ E(G).

It turns out that this assumption holds for many important graphs; see,
for instance, the examples below.

Example 1. Assume that ∆ > 0 and that for each x, y ∈ X, (x, y) ∈ E(G)
if and only if ρ(x, y) ≤ ∆. Clearly, (A) holds with ∆̄ = ∆/2.

Example 2. Let X be a closed set in a Banach space (E, ‖ · ‖) ordered by a
closed and convex cone E+ such that ‖x‖ ≤ ‖y‖ for each x, y ∈ E+ satisfying
x ≤ y, ρ(x, y) = ‖x− y‖, x, y ∈ X, and (x, y) ∈ E(G) if and only if x ≤ y.
Clearly, (A) holds.

Lemma 1. Let 0 < ε < ∆̄/2 and let x, y ∈ X satisfy

ε ≤ ρ1(x, y).

Then

ρ1(x, y) = inf{
q−1∑
i=0

ρ(xi, xi+1) : q ≥ 1 is an integer,
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xi ∈ X, i = 0, . . . , q, x0 = x, xq = y, (xi, xi+1) ∈ E(G), i = 0, . . . , q − 1,

max{ρ(xi, xi+1) : i = 0, . . . , q − 1} ≥ ε/4}.

For the proof of this lemma, see [21].
Clearly, for each x, y ∈ X and each integer t ≥ 1,

ρ1(At(x), At(y)) ≤ ρ1(x, y).

Lemma 2. Assume that 0 < ε < ∆̄/2 and let x, y ∈ X satisfy

ε ≤ ρ1(x, y) <∞.

Then for each integer t ≥ 1,

ρ1(At(x), At(y)) ≤ ρ1(x, y)− 4−1ε(1− φ(ε/4)).

Proof. Assume that t, q ≥ 1 are integers and that xi ∈ X, i = 0, . . . , q,
satisfy

x0 = x, xq = y, (12)

(xi, xi+1) ∈ E(G), i = 0, . . . , q − 1, (13)

max{ρ(xi, xi+1) : i = 0, . . . , q − 1} ≥ ε/4. (14)

By (4) and (11)-(13), we have

ρ1(At(x), At(y)) ≤
q−1∑
i=0

ρ(At(xi), At(xi+1)) (15)

and for i = 0, . . . , q − 1,

ρ(At(xi), At(xi+1)) ≤ ρ(xi, xi+1). (16)

In view of (14), there exists an integer

j ∈ {0, . . . , q − 1}

such that
ρ(xj , xj+1) ≥ ε/4. (17)

It follows from (4) and (17) that

ρ(At(xj), At(xj+1)) ≤ φ(ρ(xj , xj+1))ρ(xj , xj+1) ≤ φ(ε/4)ρ(xj , xj+1),

ρ(xj , xj+1)− ρ(At(xj), At(xj+1)) ≥ (1− φ(ε/4))ρ(xj , xj+1)
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≥ (1− φ(ε/4))ε/4.

By (15), (16) and the above relation, we have

ρ1(At(x), At(y)) ≤
q−1∑
i=0

ρ(xi, xi+1)− (1− φ(ε/4))ε/4.

When combined with (4), this implies that

ρ1(At(x), At)) ≤ ρ1(x, y)− (1− φ(ε/4))ε/4.

This completes the proof of Lemma 2.

Theorem 2. Let M > 0 and ε ∈ (0, ∆̄/2) be given. Then there exists
a natural number nε such that for each r : {1, 2, . . . } → {1, 2, . . . }, each
x, y ∈ X satisfying

ρ1(x, y) ≤M, (18)

and each integer n ≥ nε, we have

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ε. (19)

Proof. Choose an integer

nε > 1 + 4Mε−1(1− φ(ε)/4)−1. (20)

Assume that r : {1, 2, . . . } → {1, 2, . . . }, x, y ∈ X and that (18) holds. It is
sufficient to show that there exists an integer n ∈ {1, . . . , nε} such that (19)
holds.

Suppose to the contrary that (19) does not hold. Then

ρ1(x, y) > ε (21)

and for each integer n ∈ {1, . . . , nε)},

ρ1(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) > ε. (22)

Relations (21), (22) and Lemma 2 imply that

ρ1(Ar(1)(x), Ar(1)(y)) ≤ ρ1(x, y)− 4−1(1− φ(ε/4))ε

and that for each n ∈ {1, . . . , nε},

ρ1(Ar(n+1) · · ·Ar(1)(x), Ar(n+1) · · ·Ar(1)(y))
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≤ ρ1(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y))− 4−1(1− φ(ε/4))ε.

When combined with (18), the above relation implies that

M ≥ ρ1(x, y) ≥ ρ1(Ar(1)(x), Ar(1)(y))

≥ ρ1(Ar(1)(x), Ar(1)(y))− ρ1(Ar(nε) · · ·Ar(1)(x), Ar(nε) · · ·Ar(1)(y))

=

nε−1∑
n=1

(ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y))

−ρ(Ar(n+1) · · ·Ar(1)(x), Ar(n+1) · · ·Ar(1)(y)))

≥ 4−1(nε − 1)(1− φ(ε/4))ε

and
nε ≤ 1 + 4Mε−1(1− φ(ε/4))−1.

This, however, contradicts (20). The contradiction we have reached com-
pletes the proof of Theorem 2.
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