Ann. Acad. Rom. Sci.
Ser. Math. Appl.
ISSN 2066-6594 Vol. 17, No. 2/2025

IMPLICIT NEUTRAL TEMPERED v-CAPUTO
FRACTIONAL DIFFERENTIAL COUPLED
SYSTEMS WITH DELAY IN GENERALIZED
BANACH SPACES*

Nawal Bettayeb! Abdelkrim Salim* Jamal Eddine Lazreg®
Mouffak Benchohra¥

Communicated by A. Petrugel
DOI 10.56082/annalsarscimath.2025.2.55

Abstract

This article is a subject of some results of the existence, uniqueness,
and Ulam-Hyers stability of solutions for a class of implicit neutral frac-
tional differential coupled systems involving the tempered ¥-Caputo
fractional derivative with delay. The results are based on the Perov
fixed-point theorem for contractions and the Krasnoselskii fixed-point
theorem in generalized Banach spaces. Furthermore, the Ulam-Hyers
stability of the proposed system is studied. To illustrate our results,
we give an example.
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1 Introduction

Fractional calculus, which extends differentiation and integration to non-
integer orders, has garnered significant attention in both theoretical studies
and practical applications across various research domains. Its versatility
has made it an essential tool in the field. Recently, research on fractional cal-
culus has notably increased, with investigations exploring various outcomes
under different conditions and forms of fractional differential equations and
inclusions. For more details on the applications of fractional calculus, read-
ers are directed to the works of Baleanu et al. [6], Kilbas et al. [19], Samko et
al. [36], and Zhou [42]. Additionally, Abbas et al. [1,2] have studied several
problems involving advanced fractional differential and integral equations,
presenting various applications. Benchohra et al. [7-9] have demonstrated
the existence, stability, and uniqueness of solutions for diverse problems
using various fractional derivatives and different types of conditions.

Tempered fractional calculus has recently emerged as an important class
of fractional calculus operators. This class generalizes various forms of frac-
tional calculus and features analytic kernels, allowing it to describe the tran-
sition between normal and anomalous diffusion. Buschman initially defined
fractional integration with weak singular and exponential kernels in [12],
and further elaboration on this topic can be found in [16,22,33,34]. A no-
table development occurred when Almeida [5] used the concept of the frac-
tional derivative in the Caputo sense to introduce the 1-Caputo derivative
with respect to another function 1, which generalizes a class of fractional
derivatives. Medved et al. [23] further modified this concept by defining the
tempered -Caputo derivative. Additionally, Salim et al. [35] introduced a
new definition for the tempered (k,1)-fractional operator and established
various properties associated with it.

Implicit neutral problems represent a class of differential equations in-
volving both the dependent variable and its derivatives. These problems
occur in various fields such as biology, physics, and engineering, and they
present significant challenges in mathematical analysis and numerical solu-
tions. For more information, refer to the monographs by Hale [15], Hale and
Verduyn Lunel [14], Hino et al. [17], Kolmanovskii and Myshkis [20], and
the references therein, as well as [21]. The incorporation of tempered frac-
tional derivatives into implicit neutral problems offers a novel perspective,
providing a deeper understanding of their behavior and characteristics.
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In [11], we have investigated the existence result of solutions for the
following implicit neutral fractional problem involving tempered -Caputo
fractional differential equations with finite delay:

D57 (1) = p(m,30)) = X (730, §D5= (v(n) = (0, )

n € A:=[0,x], v(n) = x(n); n € [-0,0],

where 0 < ( <1, w >0,0 < k < o0, § > 0, chg,w;w is the tempered
1-Caputo fractional derivative of order {, = is a Banach space with the
norm || - ||, p : A xIlp - =, N: AxIlp x E — = are given functions,
x € Iy and IIy := C([-0,0],=Z). For any n € A, they defined v, € IIy by
Yu(s) =~(n+s); for se[-0,0]

Coupled systems involving fractional differential equations are of interest
in various scientific and engineering fields. These systems generally comprise
multiple equations, which can be interconnected through their derivatives or
the variables they describe. For more information, see publications [3,9,10]
and the references therein. Such systems are used to model fractional-order
dynamics in contexts like viscoelastic materials, biological processes, and
complex networks.

In [13], the authors studied the existence and uniqueness of solutions to
the following delayed coupled system of the form:

CDZ;&& (0) = F1(6, 15, 625)
o 0 € J =[5, )],
D% &) (0) = Fa(6, &5, €25),

with the following initial conditions

£1(0) = @1(6), i
{52(5):732(5)7 § € [ — (,ml,

where CDZ’;{)H CD’_: ;ﬁ are the y-Caputo fractional derivative of order &, u €
(0, 1], respectively, F1, Fy : JXC([51—C, 5], R")x C([501 -, 51|, R") - R"
are given continuous functions, s and o are positive constants such that
1 < 29, ¢ > 0 is a constant delay and w,ws : [51 — (, 3] — R™ are two
continuous functions. For any function z defined on [»; — (, 5] and zs the
element of C'([51 — (, 71],R™).

Ulam-Hyers stability is a concept in functional equation theory, originat-
ing from Ulam’s 1940 question about the conditions for an approximately
additive function to be close to an exact additive function, see [38]. Hyers
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provided a partial answer in 1941, proving that if a function approximates
an additive condition, there is an exact additive function close to the approx-
imate one, see [18]. This concept has been extended to various functional
equations and mathematical settings, significantly influencing their study
and applications in various fields. Further elaboration on this topic can be
found in [25,29-31,41].

Motivated by the papers mentioned earlier, we discuss the existence
uniqueness and Ulam-Hyers stability of solutions to the following delayed
coupled system involving implicit neutral tempered -Caputo fractional
equations, for § € J,

gggl’wl;w (M(d) - @1(57 Md)) = Nl 5a 8y s chghwuw (N(d) — 01 (5, ,M(S)) R
009%7“]2;11] (ﬂ(é) - 92(& ﬁ&)) = N2 5a /‘L(Svﬁ(ﬁ OCQ%MQ;w (ﬁ((s) — pg(&, ﬁ(;)) ,
(1)

with the initial conditions

{,[1,(5) = ¢1(9), , 8 € [-r,0], (2)

a(0) = ¢2(9),

where 0 < (, < 1, w, >0, J:=1[0,7], T > 0, chg],w];zp are the tempered
y-Caputo fractional derivatives of order (;; 7 = 1,2, R™; m € N* is the
Euclidean Banach space with a suitable norm || - ||, p, : J x , — R™, R, :
I xQ x Q. x R™ — R™; 53 = 1,2, are given continuous functions, ¢, €
Q5 9=1,2,and Q, = C([-r,0],R™). For any § € J, we defined pu;s € €2, by

us(0) = p(d+6); for 6e[—r0.

This paper is arranged as follows: Section 2 introduces some preliminar-
ies, definitions, lemmas and auxiliary results that are used throughout this
work. In Section 3, we prove the uniqueness and existence of solutions for
the coupled system (1)-(2) by using Perov’s and Krasnoselskii’s fixed point
theorems in generalized Banach spaces. Moreover we establish the Ulam-
Hyers stability of this system. Finally, we present an example to show the
validity of our results.

2 Preliminaries

First, we give the definitions and the notations that we will use through-
out this paper.
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Let C(J) = C(J,R™) be the Banach space of all continuous functions
from J into R™ with the supremum (uniform) norm

([l oo := sup [| ().
ey

As usual, C™(J,R™) be the space of continuous functions, n-times con-
tinuously differentiable functions from J into R™.

Consider 2, := C(]—r,0],R™) the Banach space with the norm

lulle, = sup (8]l
oe[—r,0]

And the Banach space  := C([—r,T],R™) with the norm

lulle = sup |[|u(d)]]-

el—rT

Obviously, the product space T := € x €2 is a generalized Banach space,
endowed with the vector-valued norm

()l = <”“”9) |

7]l

2.1 Tempered vy-fractional calculus

Definition 1 (The tempered i-fractional integral [23]). Let ( > 0, p €
CJ),w >0 and 1 € CL(J,R™) is an increasing differentiable function such
that ¥'(8) # 0 for all § € [0,T]. Then, the tempered -fractional integral of
order € is defined by:

o5 V() = O oI5 (VO u(5))

5o (3)
= [ 6@ @),

0

where \I/?d}(&w) = e—w(w(a)—w(wij([?)(5),¢(w)}<—1 and ofg;w is the ¢-Riemann-

Liouville fractional integral [23], defined by:

. 10
50 = 5 [ V@0 @ @@
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Definition 2 (The tempered 1-Caputo fractional derivative [23]). Let i) €
C™(J,R™) is an increasing differentiable function such that ¢'(0) # 0 for all
5€[0,T],n—1<¢<n;neNT w>0. The tempered 1-Caputo fractional
derivative of order ( is defined as:

§05“ () = =¥ Fof (eww(é)u@))
_ww
/ W (@) (6) — (@)D (¥ () ) oo,

n
where Dy, = [w’#@)d%] and chg,zp denotes the 1-Caputo fractional deriva-
tive [23], given by:

§250) = 1y [ W) o D

Remark 1. If we modify the parameter w, and the function 1, the tempered
W-Caputo fractional derivative interpolate the following fractional deriva-
tives:

e The Caputo tempered fractional derivative ((5) =0) [37];

The -Caputo fractional derivative (w=0) [8,9];

The Caputo fractional derivative (w =10, ¥(d) =4) [8,9];

the Caputo-Hadamard fractional derivative (w =0, ¥(5) =1nd) [8,9].
Lemma 1. [23] Let p € C*(J,R™), w>0and n—1 < { <n. Then we

have:
o5 [§ 05 u(o)|

1(0) - 0§ O VO e (ot ) o
k=0

In particular, if p € C*(J,R™), then, ((];@g,w;w [glg’wwu(é)} = u(9).

Lemma 2. [I11] Let0 < ¢ <1, andbh:J — R™, Q:J — R™ be two
continuous functions. Then the problem

§D5Y (1(8) — b(8)) = Q(8); d €3, (5)

7(5) = (;5((5), d€ [_T7 O]v (6)
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has a unique solution defined by
e WOV O)g(0) -
@)= B+ fo V(6 w) w (@)Q(w)dew; § €3 -

Y(6) = ¢(d); ne€[-r0]

Lemma 3. Let (;, € (0,1]; 3 = 1,2 be fized and p, : J x £, — R™, R, :
IXx Qe x Qe x R = R™: 9=1,2, are a given continuous functions. Then
(1)-(2) is equivalent to

et WO=0O (g (0) — 1(0, ¢1)] + p1(6, 15)

p(0) =1 + fo T (6, @) (@)X (@, i, Tig, th (@) de; 5 €3, (8)

¢1(0); 6 € [-r,0],

and
e=w2(W0)=¥(0) ]9 (0) — 02(0, ¢2)] + p2(3, Tis)
ao) =< + f(fq:g;%w(a,w)w(wmg(w,uw,ﬁw,02(w))dw; iey, (9

$2(0); 6 €[-r0],
where ¥,(+); 7= 1,2 satisfy the following functional equation

0;(0) = Ry(0, ps, g5 U, (9))-

2.2 Generalized Banach spaces

Let p, p € R™ with pp = (:ula/@a--'num)) = (:U’17H27"'7 ﬁm)
By p < we mean p, <, for y=1,...,m.

Il = (lpal, (2l - - s [pml)-

ma‘X(M?ﬁ) = (max(uhﬁl)? ma‘x(/j’Qa ﬁ2)7 ce 7max(um7 ﬁm))

If ye R then p <+ means p, <v; 3=1,....,m
And
RY ={peR™, pyeRy, y=1,...,m}.

Definition 3. [27] Let T be a nonempty set. By a vector-valued metric on
T we mean a map d: T x T — R™ with the following properties:
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(1) d(p, @) >0 for all p, 7 € Y, and if d(p,r) = 0 then p = i;
(ii) d(p, @) = d(fi, p) for all p,fi € Y;
(iii) d(p, &) = d(p, 1) + (5, €) for all p,mEE T,

We call the pair (T, d) a generalized metric space with

dl (M7 ﬁ)
d2 (H’ ﬁ)
d(,u, ﬁ) = .
don (11, 71)
Notice that d is a generalized metric space on Y if and only if d;; y=1,...,m

are metrics on T.

Definition 4. [4] A square matriz M of real numbers is said to be conver-
gent to zero if and only if its spectral radius p(M) is strictly less than 1. In
other words, this means that all the eigenvalues of M are in the open-unit
disc, i.e., |\ < 1, for every A € C with det(M — AI) = 0, where I denotes
the unit matriz of My, xm(R).

Theorem 1. [/0] For any nonnegative square matriz M, the following
properties are equivalent

(1) M is convergent to zero;
(i) p(M) < 1;
(iii) the matriz I — M is nonsingular and

(I-M)y'=T+M+...+M"+...;

(iv) I — M is nonsingular and (I — M)~! is a nonnegative matriz.
Example 1. [27] The matriz A € Mayo(R) defined by
&1 §2>
A= ,
(53 &4

converges to zero in the following cases:

(1) €2 = 53 = 07 51754 >0 and maX{§1,§4} <L
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(2) & =0, £,6>0, & +& <1 and -1 <& <O0.

(2) L +&=88+6=0,>1, &E>0and | — &) < 1

Definition 5. [28] Let (Y,d) be a generalized metric space. An operator
Q: T — Y is said to be contractive if there exists a matriz M convergent to
zero such that

d(Q(p), Q(R)) < Md(u, ), for all p,fr €Y.

Theorem 2. [26-28] (Perov) Let (Y,d) be a complete generalized metric
space and Q : T — Y a contractive operator with Lipschitz matriz M. Then
Q has a unique fized point pg and, for each p € T, we have

d(Q" (1), o) < M*(M)~1d(p, Q(w)), for all k € N,

Theorem 3. [2//(Krasnoselskii) Let B be a closed, convez, non-empty

subset of a generalized Banach spaces Y. Suppose that K and P map B into
T and that

(i) Ky + Pn € B for all v,n € B;
(ii) K is compact and continuous;
(iii) P is an M -contraction mapping.

Then the operator equation K~ + P~ = v has at least one solution on B.

3 Main Results

3.1 Uniqueness results

In this section, we give our main uniqueness result for the coupled system
(1)-(2)-
Definition 6. By a solution of the coupled system (1)-(2), we mean a cou-

pled continuous functions (u, 1) € Y satisfying the initial condition (2) and
the system (1) on J.

The following hypotheses will be used in the sequel.

(H1) There exist functions a,, b,, ¢, € C(J,RT); y = 1,2 where |¢;]lo0 <
1; 7 =1,2 such that:

||NJ(57 :uvﬁa g) - Nj((sa laaﬁ7 g)”

< a,(8)||p — flle, + by O)[E —Flla, + ¢, ()€ —Ell; 2= 1,2,
for 6 € J, and each i, 1, fi, i € Q,, & € €R™,



Implicit neutral tempered ¥-Caputo fractional ... 64

(Hz) There exist functions d, € C(J,R"); 7 = 1,2 where [|d,||c < 1; 7 =
1,2 such that:

19508, 1) = 95(8 ol < dy(O)[lpe = Billers 2= 1,2,

for § € J, and each u, i € Q..

Set
) = sup [[R;(6,0,0,0)|[, o = sup|p,(,0)],
d€y 0€y
Lw _ [d](T) B ¢(0)]C7 /{a‘] _ Ha]HOO nb] _ ”b]HOO . =1.2
- b Cy 3 c, — TR = 1, 4.
I +1) Tl =gl T T =gl
Theorem 4. Assume that the hypotheses (H1) — (Hz) hold. If the matrix
ldalloc + e L, LY,
M = a2 1/1 bo P (10)
SL¢ 1d2]loo + 23 Le,

converges to 0, then the coupled system (1)-(2) has a unique solution.

Proof. Define the operators N, : T — Q; 7=1,2 by
e W@ [61(0) — 01(0, ¢1)] + 91(8, p15)
W) (0) = + f3 WY (8, @) (@)1 (0, fico Tig, V1 (w))de; 6 € J, (11)

¢1(0); 9 € [-r0],

and
e=w2(V (@) =%(0) [y (0) — o(0, 2)] + 2(5, i)
Nl I)(0) =+ J§ WEH (8,2 (@)Nal, 1, T Da(2) s 6 €3, (12)

$2(8); 6 € [-r,0],

where ¥,(-); 7= 1,2 satisfy the following functional equation

ﬁj((s) = Nj((sv s s 19](5))-

Consider the continuous operator N : T — T defined by

(N (1)) (8) = (N1 1))(6), (N2, 12))(6))- (13)
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Clearly, the fixed points of the operator A are solutions of the coupled
system (1)—(2). We shall show that N satisfies all conditions of Theorem 2.
Let (i, 1), (jii, ) € Q. Then for each ¢ € [—r,0], we have

N1 (1, 70)(6) — Na(fa, 1) (8)]| = 0.
And for each § € J, we have
IV (1 7)) = Na (i, ) (0) | < [l91(3, 126) — 01.(6, fis) |

0
+ [ V6@ @) o) - () d,
0
(14)
where 91 (+), 91(-) € R™ satisfy the following functional equations

D1(6) = Ry (6, ps, 15, 91(8)) and 91(8) = Ry (6, ps, g, 1(6)).
From (Hjp), we have

[91(8) — D1(8)]]
< a1(0)|lus — fislle, + b1(8)|[7s — slle, + c1(8)[91(6) — D1()]].

Then,
191 = V1ll < llarllsollee — Alle + b1llscllz — BEllo + llerllocl[91 — 1l

This gives

Pilleo 1 7
= [lerfloo (15)

k2w — Allo + 2 E — uIIQ

laa | _
[0 — 191||Q_1 =l = Bllo+ T =

[le1]]oo

From (Hz), (14) and (15), we get

[(T) - $(O)]°
NS

IV (11, 72)(6) = N3 (7, ) (O)] < i (8) a5 — sl +
x (& = ille + s = Fillo
< (Neslloo + w2 LE ) 1w = ille + mE2 LE 1 = il

Hence,

Wi (1) = Nl )l < (dilloo + 5228 ) I = llo + 02 LE = Filla-
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Similarly, we get

N2 (1, 70) = Na(@, Ml < w2 LE Nl — Alla + (lldalloo + 12 LE, ) 17— Allo-
¢ G

Consequently,

IV (i, 1) = N (B )|y < M| (ps ) = (i 7)1 v-

Since M converges to zero, then Theorem 2 implies that (1)-(2) has a unique
solution in Y. O

3.2 Existence results

In this section, we give our main existence result for the coupled system

(1)~(2).
Theorem 5. Assume that the hypotheses (Hy) — —(Hzg) hold. If the matriz
M Hdl\looJrf;?llLZ né’iLéﬁb .
Kes L, ldalloc + Nes Le,

converges to 0, then the coupled system (1)-(2) has at least one solution.
Proof. Consider the operators K = (K1,K2), P = (P1,P2) : T — T defined
by

Kp, 1) = (K, 1), Ko (11 12)),

and
P(u, 1) = (Pi(p, 1), P21, 7)),
such that
{’Cl(ﬂa/‘)((s) =10 ns)i 5 3. (17)
Ka(p, 1) (0) = 92(0, 1s);
with
{/c1<u,u><6> =a0: 5, a8)
Ka(p, 11)(8) = ¢2(6);
and

{Pl(ﬂ,u)@) = 71 COONG,(0) — p1(0, )] + oI DO

P, 70)(8) = e—w2(w(6>—w(o))[¢2(0) — 02(0, )] + OIHCQ,UJQ;T/J%((S);
(19)
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with

{Pl(u,u)@) =% sl (20)

Pa(p, ) (6) = 0;
where ¥,(-) € R™; j = 1,2 satisfy the following functional equation

,(8) = N, (0, ps, fig, 94(0)).

Obviously, both I and P are well defined due to (H;) and (Hz). Further-
more, the operator A/ given by (13) may be written as

N (1) = (Ki(p, 1), Ko(p, 1)) + (Pr(p, ), Pa(p, 7)) (21)
Let
Ay ={(w,m) € T [|(wm)llr < xt,
with x = (x1,x2) € R% such that

X1 = 01A1 + 022,
X1 > 03A1 + 049,

where A1, A2 and o,; 7 = 1,4 are positive real numbers that will be speci-
fied later. Moreover, notice that A, is closed, convex and bounded subset
of the generalized Banach space Y. We shall prove that K and P, satisfy all
conditions of Theorem 3. The proof will be given in three steps.

Step 1. K(u, i) + P(ii, ) € Ay whenever (u, i), (i, ) € Ay.

Let (p,71), (@i, 1) € Ay. Then for each § € [—r,0], we have

11 (i, ) O) | < [l D1l 2, -
Thus,
1K1 (ks Bl < ¢l - (22)

For each ¢ € J, we have

1K1 (2, ) (O)]| = [l 01.(3, pas)
< |lp1(6, us) — 91(3,0)[| + llp1(5,0) ||
< d1(0) || uslle, + eI
< ldillollelle2 + 7

Hence, we get
11 (1t ) oo < llda ool palle2 + 1- (23)
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So from (22) and (23), we get

1K1 (s m)lla = 1K (s )l + 1 (12 1) oo
< llorlla, + lldillocllulla + 1-

Similarly, we get
12, )l < ll@2lle, + lldalloc[Elle + ©5-

Thus the above inequalities can be written in the vectorial form as follows
Ki(p, )HQ) <Han> [p1lle, + @i

K ” <A(ER) + L I 24

el < (i ie) <4 (o) + (e £of) - e

where H ”
d1|so 0 )
A= . 25
( 0 [dale (25)

Also, from (Hsz) and (15) we have
[P (e, ) (9)

< 61 0) | + llo1 (0, b1 | + /

X Ry (@, pem g, 1 () | dw
< [lo1(0)[| + ||K)1( ¢1) — 91(0,0)[| + [[©1(0, 0)]]
6 ¢G1—1
o [ HO e
X (HNl(w :uwnuw,ﬂl( )) - Nl(wvoaov O)H + HNl(w?OaOaO)”) dw
[¥(T) — ¢(0)]!
L(G+1)

* () — (@) !

<ll¢1lle, + ldillssllérlle, + o7 +
x (ratlallo + nEtIElo + ;)
< (14 ldillso)llnlle, + 9 + LERT + K& LE ullq + nbt LE ||l o-
Hence, we get
1P ()l < L+ dillo) 61l + 0F + LE NG + 62 LY ||l + 0 LE, |7l -

Similarly, we get

1Pa(ps )l < (1+ [ldaloo) 2l + 93 + LERS + £ L llnllo + 022 LE, |-
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Thus, we have

Pl < ([prte)

§ . 26)
<B(Huun)+ (4 i), + gt + ZERT)
=7 \Elle) T\ @+ Idalloo) 62l + 93 + LE N3

where

T

. (@;Li} nC;L$>
¢ .

KZSLCz UCSLCz

Combining (24) and (26), it follows that

[yt 2l

27
@+ il + 20 + 285 27
2+ lldzloo )l G2l + 205 + LE N3

1K ) e + 1P, ) < A (”“”Q) B <”ﬁHﬂ>

Now we look for x = (x1,x2) € R? such that K(u, ) + P(fi, ) € A, for

any (u, @), (i, @) € Ay. To this end, according to (27), it is sufficient to

show
() ()= ()
X2 A2 X2
where M is the matrix given by (10) and

(M) (@4 i) 9nlle, + 207 + LEN;
A9 (2+ Hd2”oo)H¢2||QT +2p§+L? N;

1

()< (2)

Since the matrix M converges to zero. It yields, from Theorem 1 that the
matrix (I — M) is nonsingular and (I — M)~! has nonnegative elements.
Therefore, (28) is equivalent to

(o)== (3):

X1 2> 01A1 + 02)a,
X1 = 03A1 + 042,

Thus,

Then we obtain
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where
o3 04

a-an= (2 7).

which means that K(u, i) + P(f, 1) € A,

Step 2. P is compact and continuous.
Claim 1. P is compact.
Firstly, we prove that P is uniformly bounded on A,. From (24), and for
each (u,f1) € Ay we can get ||P(u, )]y < oo. This proves that P is uni-
formly bounded.

Next, Let 61,02 € J, be such that §; < d2 and let (pu,71) € Ay. From
(H2) and (15), we get

1P1 (s 1) (62) = P 1) (61

31

: /0 | w02, @) — W (51, ) | 0 (2) [N (@ 1, P 91 (0)) oo
02

[0 o ) @ 1)
1

o1
< (8l + sl + ) [ |92 o) = 92 61,0 | 0/ ()

£ | pllo + n8 Bl + R
I'(Gi+1)

61
< (xtva+ e+ ) [ [ w6 @) - 0 61, )| o ()i
0

[¥(d2) — ¢(51)]<1].

[1)(62) — (61)]"

_l’_

I'(Gi+1)
Similarly
P2 (1 1) (62) = P, 1) (61
o1
< (s oline +35) [/0 |92 (62, ) - w22 (61, )| ' () dm
[(32) — (1))
" I'(¢+1) }
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Therefore,

1P 6) = P60 = (2660 i)
(K2 X1 + 1B x2 + RY) S| (53, ) — B2 (51, ) || ¢ (w) deo

W (82)—1(31)]1 |
+

IN

(re2xs +ni3xe +33) | fo" | W (62, ) — WV (01, )| ¥ () dew

¥(82)—(51)]62 ]
+

—)0, as 51 —)62.

Consequently, P(A,) is equicontinuous. By Arzela-Ascoli theorem, we con-
clude that P is compact.

Claim 1. P is continuous.

Let (u™, ") be a sequence such that (", ") — (u, @) in A,. Then, we
have

6
[Pr(u™, 7")(6) = Prlp m)(0)]| < /0 V(8,0 (@) |97 (@) — 9:(8)|deo,
where 91 (-), 97 (-) satisfy the following functional equations

91(6) = N (6, 5, Tis, 91(6)) and 97(5) = R (6, i, 7, 05 (6)).

From (15), we have

§ g—wlth(8)—v(w)] _ ()Gl
1P (", B (6) = Pr (i, 1) (0)] < /0 F[zé(é)) Y (@)]

x (ret " = plle + 21" — El) de.

V(@)

By the Lebesgue dominated convergence theorem, we get
|PL(p", @2") — Pr(p, )|l — 0, as n — +o0.
Similarly, we can get
P2, 5") = Papt, @)llo —> 0, as n — +o0.

Hence, P(A,) is continuous.
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Step 3. K is A-contraction mapping on A, .
Let (p, 1), (@1, 1) € Ay, for each § € J. By Theorem 4, we have

IN (e, 10) = K, @)l < All (s 78) — (7)1

Since the matrix A converges to zero and thus, K is A-contraction mapping
on A,.

Hence, all the assumptions of Theorem 3 are fulfilled. Consequently, by
applying Krasnoselskii’s fixed point theorem, we deduce that the operator
N = K + P defined in (21) has at least one fixed point (u, ) € A,, which
corresponds to the solution of the coupled system (1)-(2). O

3.3 Stability results

In this section, we study the Ulam-Hyers stability of the coupled system
(1)-(2), by means of integral representation of its solution given by u(d) =
N (1, 1) (0), 1(6) = Na(p, ) (5), where N7 and N3 are defined by (11) and
(12).

For each 6 € J, we define the following nonlinear operators H, : T —
Q; 7=1,2 by:

§DEY (7(0) — p2(67is)) = R (6 s, Tis §DFY (7(8) ~ p2(6,705)) )
= Ha(fi, 12)(9),
(29)
For some €1, €3 > 0, we consider the following inequality:
~ = 6 <
@ <a, ;o 0
[Ha (1, 1) (6)] < e,

Definition 7. [39] the coupled system (1)-(2) is Ulam-Hyers stable if there
exist positive constants o,; 7 = 1,4 such that for each €1, €2 > 0 and for

each solution (i, 1) € T of inequality (30), there exists a solution (u, i) € T
of (1)-(2) with

(1(0) — u(d)]| <
{mu HO)| < e+ e oo )

I7(8) = B(O)II < eser + eae,
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Theorem 6. Let the assumptions of Theorem J hold. Then the coupled
system (1)—(2) is Ulam-Hyers stable.

Proof. Let (u, ) € T be the solution of the coupled system (1)-(2) satisfy-
ing (11) and (12). Let (fi,71) € T be any solution satisfying (30):

From (29), we get
é
fu(8) — Ni(fi, 12)(8) 2/0 W (5, @) (@) Ha (i, i) (@) e, (32)
and
~ ~ 6 ~
(6) = Nl 7)(0) = [ @) (el ) ). (39

From (32) and (33), we have

<

¥ el =v@[y)(§) — h(w)]1 1
/0 IN(SY)

and

§ g—wath(6)—¢(w / L
: /0 I'(G) V(@)|[Ha(f, p)(@)||dew (35)
< Lies.
Thus, by (H1), (H2) and inequalities (34), (35), we get

172(8) — ()| = |4(8) = N1(2, 7)(8) + N1, 7)(8) — pa(8) |
< [1(0) = Na(, ) ()] + IV (2, 70) (8) — N (e, 78) (9) |
< L e+ |ldilloo + mE L I — fillo + n2 LE, |17 = Tl

G
Hence we get
18— nlle < LE v+ (ldilloo + 58 LE) 1 — fille +n2i LE 7 = Fllo. (36)
Similarly, we have

it —7ille < LEea + k2L |l = filla + (ldalloo + 2 LE) IF— Hilla (37)
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Inequalities (36) and(37) can be rewritten in matrix form as
- ¥
(I — M) <”’f ””Q> < (g™ (38)
Iz = Flle Lf €

where M is given by (28). From Theorem 1, we deduce that (I — M) is
nonsingular and (I — M)~! has nonnegative elements. Therefore, (38) is

equivalent to
- v
(”’:‘ “"Q) <(-my T (39)
17— Tille LY €

i — pll < o1 LY & + 02 LY €2,
72 — 71| < oL, &1 + 04 L e,

Thus
6 €3, (40)

where 0,; 7 = 1,4 are the elements of (I—M)~1. Thus, (1)-(2) is Ulam-Hyers
stable. O

4 Examples

Example 2. Consider the following coupled system of implicit tempered
-Caputo fractional equations

3,2 _ 3.2
OC@(? (H(é) - 91(57 H(S)) = Nl 67 s s g©§ (M((S) - @1(& /J“(S)) )

13w _ _ _ 13y, _
SO ((6) — p2(0,115)) = No ( 6, s, Tz, §DZ ((S) — 92(0,75)) ) »

(41)
for § € J:=10,1], with the initial conditions
{u(5) =00) = (410, 620). 5\ g (12)
() = £(6) = (&1(0),&2(0), o

where (8) = 062, r

= Ng : Jx Q x Q x R2 - R2 such that
p= (1, p2), &= (B, Mo

5} Nl)

), U= (91,92), 9* = (V5,0%) with
e—0-3 w

R 5’ [ ’19 0)) = ——= sin ol )

1 (ln(l + [07(6)] + Iﬁ’{(5)l))

N Tis, 0" =
2(0, ps, fig, 9" (6)) (5—}-2)2 ‘ﬁl,é’ + !ﬁm\
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where ¥(-), ¥*(-) € R™ satisfy the following functional equations
V() = Vi(0, s, i, H(6))  and 9*(6) = Ra(6, uy, pig, 9(5)),
and p1, ©2:J X Qpx — R2 with

—5-3
e 1+ |p15] )

d, = o,
i6.1s) = (,w_e ,

_5 (In(1+ [ 5\))
5, us) = €° 5( . o
92( N(S) € Sm(’HZJD

Clearly, the functions N;, ©,; 7 = 1,2 are continuous. Moreover, for any
W, T, i, f,€ Q. 9, 9, 9%, 9* € R? and 6 € J we have

IR1(8, 1, 12, 9) — R (6, /3, 12, D) |1
< a1(0)|lp — plle, +b1(0)|[E — Ella, + c1(8)[9(6) — 9(8)|1,

HN2(57/J'7E7 19*) - N2<6a /jaﬁ7 19*)”1
< az(0)|lpe = Alle, +b200) |17 — Alle, + c2(0) 197 (0) — 9" (9) I,

and
19500, 1) = 9,0, il < d,(O)|pe = Bille,, 9= 1,2.
where || - ||1 is a norm in R? defined as follows
llle = lpal + w2l p= (u1, p2)-
The hypothesis (Hy) is satisfied with

e—2t—4 6—5—3
al((s):ma 1(6)207 Cl():(6+5)(5+6\/3)7
and 1
az(d) = 0, 52(5) = CQ((S) = (5 T 2)2

The hypothesis (Hsz) is satisfied with
6—6—3

S v

0,060 0
M‘( 0 0,39)’

and converges to 0. Hence Theorem 4 implies that the couple system (41)-
(42) has a unique solution and is Ulam-Hyers stable.

d1(6) and dy(6) = €970,

Furthermore,
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