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Abstract

Motivated by the definition of multiplicative derivative, a new class
of functions is defined by expressing differential characterizations be-
longing to a family of Bazilevi¢ and pseudo-starlike functions as a con-
vex combination. Estimates involving the initial coefficients of the
functions, which belong to the defined function class, are the main re-
sults. Some examples along with graphs have been used to establish
the inclusion and closure properties.

Keywords: multiplicative calculus, analytic function, univalent func-
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1 Introduction

Let R, C and NV denote the set of real numbers, the set of complex numbers,
and the set of natural numbers, respectively. Multiplicative calculus is a
calculus that involves exponential functions. Explicitly, for a positive real
valued function f, the multiplicative derivative f* : R — R is defined by

1
* . f(x + h) h fl(lj) [l f( )]/
P =i (H0) " = e,
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where f’(x) is the classical derivative. The x-derivative of f at z belonging
to a small neighbourhood of a domain in a complex plane, where f is non-
vanishing and differentiable, is given by

) =" @NE and (o) = P @HEIM s (1)

From (1), it is clear that f*(z) is not defined if f(0) = 0. So, the following
question arises: why do we need such a restrictive calculus given that we
have a calculus that is much versatile and applicable to most of the physical
phenomena. The partial answer to this question is that the multiplicative
derivative has been a useful mathematical tool for economics and financial
mathematics. Let A denote the collection containing analytic functions in
U ={z: |z| < 1} that have a series of the form

f(2) =2z+az* +azz® +---.

Also, let S denote the collection of functions in A that are univalent in /. P
is the class of Carathéodory’s function (see [7]), a class of analytic functions
with normalization p(0) = 1 and which map the unit disc onto a right half-
plane. Starlike and convex functions, the well-known geometrically defined
subclasses of A, have the following analytic characterizations, respectively

A cp g EE) p

f(2) f'(z)

We denote the class of starlike and convex functions by S* and C, respec-
tively. Ma-Minda [16] studied an analytic function 1 satisfying the condi-
tions:

(i) Rev > 0, U,
(i) ¥(0) =1, ¥'(0) > 0;

(iii) % maps U onto a starlike region with respect to 1 and symmetric with
respect to the real axis.

Also, they assumed that 1 (z) has a series expansion of the form
Y(z) =1+ Miz+ Mpz> + Mg2® +--- . (Mi>0;z€U), (2)

and introduced and studied the following subclasses of using subordination
of analytic functions:

2f'(2)
f(z)

sw={reas T <pe}
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" ()
zf'(z
C(y) = {f cA: 70 <¢(z)}.

By choosing v to map the unit disc in some specific regions such as parabolas
[2], cardioid [17,25], lemniscate of Bernoulli [19], booth lemniscate [18] in
the right half of the complex plane, various interesting subclasses of starlike
and convex functions can be obtained. For a detailed study, refer to [5,8~
10,14,22-24,26-29).

Recently, Wanas et al. [30, Definition 1.] studied convex combinations of
two analytic characterizations, namely Bazilevi¢ functions and the pseudo-
starlike as follows:

ARG ()
Re{(l Ve T e

where 8 > 0, A > 1, 0 < v < 1. The collection of functions f € A that
satisfy the condition (3) will be denoted by R(f5; v; A).

Breaz et al. [6] and Karthikeyan and Murugusundaramoorthy [13] re-
cently introduced new classes of meromorphic and analytic functions, respec-
tively, by replacing the ordinary derivative with a multiplicative derivative
in the classes of meromorphic star-like and analytic star-like function.

Motivated by the recent study of [6,13] and the definition of the function
class R(B; v; A), we now introduce the following class.

}>0 (feA zel), (3)

Definition 1. For 8 > 1, 0 <~y <1, B being any fired number greater than
or equal to zero except 1, let M(B; 7; 0; 1) denote the class of functions in
f € X satisfying the condition

25\ ?
it ()
=g T7
[f(2)] f(2)

where 1 € P is defined as in (2) and these powers are considered at the
main branch, that is log1l = 0.

By considering 8 = =0 in (4), the class M(3; v; 6; 1) reduces to the
family R (1) recently studied by Karthikeyan and Murugusundaramoorthy
n [13]. Also, notice that R(¢)) can be obtained by letting § =~ =1 in (4).

The class M(3; 7; 0; ¢) is non-empty. Letting v = %, 6=3,0= % and

f(2) = 222 in (4), then left hand side of (4) will yield an expression

(1 — "}/) = ¢(2)7 (4)

5z 52 3/2
125e5 = 1(5“Z)<65*Z>

Lo =56=5 "3 5
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which maps U onto a cardioid in the right half plane. Similarly, letting
v = %, B=0,0= % and f(z) = z (1 + %)3 in (4), we can easily see that
resulting expression

3
zZ 22 zZ 22 2
K(z) = §€7(7++4z) #3 + 1 <e7(7++42> >2 43
7 z(1+2) 7 z(1+2)

would maps U on to the right half plane. However, K(z) will not always
map the unit disc on to the right half plane, for all admissible values of ~,
B and 6.

2 Initial coefficients and Fekete-Szego inequality

Now, we will find the solution to the Fekete-Szegd problem for
feMB; v 6 ¢).
o0
Lemma 1. [21, p. 41] Let d(z) = 1+ Y. dpz¥ € P. Then
k=1

do) <2 (n=1,2,3,...),

and inequality holds if and only if

n . .
6za—i—?ww/n +z

p(z) - Z O elot2miv/n _ 5

v=1
for some o and 61,...,0, >0 with 61 +do + -+ + d, = 1.

Ma-Minda [16, p. 162] obtained the bounds of ‘dg - pd%‘ for d(z) =

o0

1+ dipz* € P when pis real. Generalizing the inequality of Livingston [15,
k=1

Lemma 1], recently Efraimidis [11] obtained the following result.

oo

Lemma 2. [11, Theorem 1] If d(z) = 1+ 3. dp2¥ € P, and p is a complex
k=1

number, then

|dn — pdidn—| < 2max {1;[2p — 1]},
foralll <k <n-—1.
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Theorem 1. If f(z) € M(B; v; 0; ©), then for 8 # 1 we have

|ag| < [IMi] 4+ 1+ [Ty ] (5)

‘1_AB,'7‘

My Qp, ~/M1

ol < 2L [ {1,

A
} + ‘1 /B\’; + Q41+ T%G]‘

’1—/\57,\/’ Ml
o [0+ D0+ 1) 4+ 2514+ L] + QL+ T2 (6)
and for all p € C
| M| My _ Qp,,M M
’a3—pa2} < ’1_ l’y| [maX{]\ﬁ_ % + [l—pA;W]}
R Q[T+ Y] — Tl L [0+ 1)Y 0+ 1
I-Ag, B 7,0 [1=A5,] 2[Mi] )T+
25, 2p[14Y ]2
T [ Tl Q[+ T 0] — S ] )
where Ag~, Tr g and Qg are given by
Apy = B(=7), Typ=7(0-1) (8)
Ag~ —3A 2
Q, = Ca=3ant? )
[1—Agy]
The inequality is sharp for each p € C.
Proof. As f € M(B; v; 0; 1), by (4) we have
227 (2) 0
1 Besz(;)Z) z <e f(z) )
(1-)° +7 = [w(z)]. (10)
[F f(z)
Thus, let ¥ € P be of the form ¥(z) =1+ > 2 ¥,,2" and defined by
1
¥(z) = w, z€eU.
1—w(z)

On computation, the right hand side of (10)

Plw(z)] =1+ 220, +Ml[2—192%<1—%i)]22+-.-. (11)
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The left hand side of (10) will be of the form

27\’
22 /(z) zl e f(z)
2176672
35 [1 =7 (1—62) +2a2B(1 — ) + (821 —7) —38(1 —7) +2) a3
—2a3 (1 —Ags)] 22+ . (12)
From (11) and (12), we obtain
1 V1M,
=— -1-7 1
T T ) [ 2 7’0)} (13)
and
M 93 My | Q3,M Ag,
4= _2[1—1\1%] {192 -2 (1 — At l) + 0 {1—&% + Q41+ T%G]}
2A
_ML1 {[(9 + 1) o0+ 1]+ 1—15[;? [14+Ty0] + Qsq[1 + T%HP}] ’ (14)

where Ag ., T, and Qg , are given as in (8) and (9). Equation (5) can be
obtained by applying Lemma 1 in (13). Applying Lemma 1 and Lemma 2
in (14), we get (6).

Now, to prove the Fekete-Szegd inequality for the class M(8; v; 6; ¥),
we consider

M 92 My Qg M
|as — pa3| = 1[192— 1(1 2+5”1>

2 \" M 2

ﬁ?’y 1
! {1 - Aﬂﬁ Bﬂ[ %0]} lwl {[( ) 0 ]

2A
+ ﬁ[l + Y0l + Qa1+ TW]ZH
77
91 M- 2
+ 1Y . 1 1—1—T%9)
[1—Ag,] 2

| _ 0 (1 My QM1 pM
= [ (1 e e )

A 2p[14+7T
+ { 1—15\7% + Q41+ 0] - M} - ]\/1[1{[(9 + )Ty +1]

2A o1 )
R S =l



K.R. Karthikeyan 17

Using the triangle inequality and Lemma 2 in the above equality, we can
obtain (7). O

Letting v = 0 in Theorem 1, we get:

Corollary 1. Let f € A satisfy the condition

oy (2)
—_— < z).
f(2)] 7
Then for 8 # 1 we have,
ool < = 1041+ 1.
| M| (B —2)M; 3
a3l < = [max{l’ M, (B-1) }+‘1/5 2| 15”’

and for a complex number p,

|as —pa§| < Hﬁg [max{%ﬁ (B(ﬂQ)J\)/h 1 oM }+ ’2(1—;))’
1

Letting v = 1 in Theorem 1, we get:

Corollary 2. Let f € A satisfy the condition

227 (2) 0
zle f(®

f(z)

< P(2).

Then,
|ag| < [|My] + 16 — 1] + 1],

M2 2
las| < |Mi| [max{l, ' — M, }—i— 120 + —— 2|M | |36 @

My

and for a complex number p,

jas — paj)|

< || [mx{% - <1—p>M1} +20001 - )] + 51003 - 2p>|}
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1
Letting # = 1 and ¢ (z) = GZ%) *Y® in Theorem 2, we get:

Corollary 3. Let f € A satisfy the condition

&5
zle 1= 1
14 zy/a) 2ve
0< 1). 15
o] e MCELED )
Then,
las| < 2, and las| < g

Also, for a complex number p,

1 1
‘ag—pa%|SmaX{Q—p}—|—2|1—p\+2|3—2p|.

1
Proof. The function F,(z) = (ifig) Y is convex univalent in U (see [12,

Theorem 2.4]) and has a power series expansion of the form
1
1+ zy/a 2ve
Y(z) = (1\F>
—zy/a

So replacing My, =1, My = % and @ = 1 in Corollary 2, we get the desired
result. O

1, 1 1
:1+z+2z2+3<a+2>23+---.

Taking 8 = 0 in Corollary 1, we have the following:
Corollary 4. [13, Corollary 1] Let f € R(v). Then,

lag| < 14 | M|
My 3
< |M 1, |— - M 2
o < a0 s {1 72 a0+ 5 2
and for a complex number p,
M. 1
— pad| < |M 1; |2 — My (1— 211 — p| + =3 —2p| .
|ag — paz| < |M;| |max g~ Mi@=p)) 2] p|+2|M1|| Pl

Remark 1. Alternatively, Corollary 4 can be obtained if we let 6 = v =1
in Theorem 1.

Letting 1(z) = (14 z)/(1 — z) in Corollary 4, we get:
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Corollary 5. Let f € A satisfy the condition

s
Re[Z— ] >o0.
z)
Then,
15
lag| < 3, jas| < -

and for a complex number p,

1
|as — pas| < [Mi [max {1; |2p = 1} +2[1 = p| + 3 3= 20| | .

3 Coefficient estimates of f1(2)

It is well-known from Koebe 1/4-quarter theorem that every function f(z) =

z4 >0 5 a,z" in S has an inverse f~!, defined by f71(f(2)) = 2,2 €U

and f(f~}(w)) = w, (Jw| < r; r > 1/4) where

gw) = fFHw) = w — agw? + (203 — az)w? — (5@% — bagas + ay) wh

(16)

The functions in M(3; 7; 6; ¥) need not be univalent, but since f'(0) =

1 # 0forall f € M(B;; 0; ¢) and f(0) = 0, there exists an inverse function

in some small disk with center at w = 0. The next result is valid only for

the functions in M(f; ~; 0; 1) which are univalent.

Theorem 2. Let f € M(B; v; 0; 1)) and let f~1 be the inverse of f defined

by

FHw) =w+ > b, (jw| <r;r>1/4).
k=2

Then, for B # 1, we have

1
b < ——— [IMa] + 1+ [T+ 0]
1= Apyl !
and
| M My _ QM 2M
|bs| < ‘1_&377’ {max {Mf — ==+ [1_/\;,7] }
Ag, A[14+7T, 0]
+ | 1or T Qe[+ Tl - [1—A;:] + gy [0+ 1) Yo + 1]

2A5,4

4[147, ¢]?
e (L4 Ty p] + Qg [L+ T 0] — A4 0]

[1-As,4]

|
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Also, for all T € C

b2 |M | My _ QM1 (7=2)M;
‘bg TbQ‘ < Tns| [max{Ml — + | +

Agy
1*AB»7

2(r—2)[1471, 4]
[1—AM]

2A 2(7—2)[14+7, ¢]?
+ T (14 Y] + Q[+ T ) — WH (17)

where Ag~, Y9 and Qg is defined as in (8) and (9). The inequality is
sharp for each T € C.

Proof. From f(z) = z+ > .2, a,2" and (16), we have

JVQB#U + T%H] - [(9 + 1)T"/,9 + 1]

1
+ 2| M|

by = —as and b3 = 2(1% — as.

The estimate for |ba| = |az| follows immediately from (13). Letting p = 2
in (7), we get the estimate |bs]. To find the Fekete-Szegé inequality for the
inverse function, consider

‘bg — Tb§| = ‘2@% —as — Ta§| = ‘ag — (7 — 2)a%‘ .
Changing p = (7 — 2) in the (7), we get the desired result. O

Remark 2. Lettingy = 8 =0 in (2), we get the result obtained Karthikeyan
and Murugusundaramoorthy [13, Theorem 2].

4 Logarithmic coefficients for functions belonging
to M(B; v; 0; 1))

Logarithmic coefficients took the spotlight when Milin in [20] studied the
properties which would imply the bounds of the Taylor coefficients of uni-
valent functions. The Milin conjecture about the inequalities of the log-
arithmic coefficients garnered the attention of several researchers because
proving Milin conjecture would imply proving Robertson conjecture and the
Bieberbach conjecture. Refer to [1,3,4] for the detailed study on properties
and significance of the logarithmic coefficients.

If the function f is analytic in U, such that @ # 0 for all z € U, then
the well-known logarithmic coefficients ¢, := ¢,(f),n € N, of f are given
by

logM:2icnz”,z€Z/l, log1 =0. (18)
o n=1
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Now, we will include additional criterion to the class M(3; ~; 0; 1), so
that logarithmic coefficients of M(3; ~v; 0; 1) is well-defined. That is, we let

BM(B; v; 0; ) = M(B; v; 0; w)ﬁ{f is analytic in U : f ) £, zEL{}
Note that for all functions BM(3; ; 0; 1), the relation (18) is well-defined.

Theorem 3. If f(z) € BM(B; v; 6; ) with the logarithmic coefficients
given by (18), then for B # 1 we have

1
< ——[|IM 1+|7T 19
erl < gy 1M+ 14 Tl (19)
| M| M. Qp M M Ag,
‘62’ g m [maX{Mf — ; -+ 2[1—/\1,8,«/] } + 17A;7,y
[1+7, 0]
+Qp4[1+ Ty ] — [1_/\;:] + g |[(0+ 1) Yo + 1]
2A 147 2
1A 6 [1 + Yo 0] + Qa1+ Tog)? — [[17A75’i]] ] . (20)
and for each € C
2 | M| M. Qg M (14p) M Ag,
|CQ - /wl} < 2|17A15ﬁ| [max{Mf s 21 Ij\g 1] } + 1—15\;,W

(1+p)[14+7 0]
[1-Ag,]

2Aﬁ ol

o [1_}_’1‘70]_}_957[ +T779]Q—M

[1-Ag5]

J

where Ag , T g and Qg are given as in (8) and (9).

Proof. From f(z) = z+ > -7, apz" and equating the first two coefficients
of relation (18), we get
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Using (13) and (14), we obtain

1 191M1
= — —-1-7
“ 2 [1 - AB,’Y] [ 2 %9)} ’
1 2
Cy = 5 <a3 — (122)
_ My [ My 900y My
41— Agy] 2 My 2 41— Ag,]
AB [1 —|—T 0]
] _IBY 40 1+7 e e I
! 1{1Aﬂn+ R v

1 2\ 5.~
[1—|—T 9]2

+ Qg [14+7T, 2_ L Y .
57[ ol ] [1_AB,7]

We obtain (19) and (20) by using Lemma 2 and taking the modulus on both
sides. To obtain (21), we consider

1 (14 p)
}CQ - ,uc%‘ = 5 |:CL3 — D) a%} .
Changing p = HT“ in (7), we get the desired result. O

Remark 3. Letting v = =0 in 3, we get the result obtained Karthikeyan
and Murugusundaramoorthy [13, Theorem 3].

5 Conclusion

In this paper, we have introduced and studied a new family which was ex-
pressed as a convex combination of differential characterizations belonging to
well-known subclasses. We have obtained bounds of the initial coefficients
of functions belonging to the defined function classes. Since the defined
function class is subordinate to a very general functions and involves lots of
parameters, our main results have lots of applications. Now, the following
question arises: (1) what are necessary and sufficient conditions for functions
to be in M(S; «; 0; ©¥)? (2) the functions in M(; 7; 6; ¥) need not be uni-
valent, so for what radius of the disc |z| < r, the functions in M(3; v; 0; ©)
would be univalent?
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