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Abstract

The aim of this paper is to introduce a new sequence convergent to
the constant e.
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1 Introduction

The constant e, defined as the limit of the sequence

en =

(
1 +

1

n

)n
, n ≥ 1,

is of great importance in mathematics. Numerically, we have e = 2.71828....
It arises naturally in many areas, including calculus, complex analysis, prob-
ability, and financial mathematics. Known as the base of the natural log-
arithm, e plays a central role in describing exponential growth and decay
processes. The number e is essential to solving some differential equations,
including differential equations that model real world phenomena.

Consequently, several researchers have been concerned with finding new
sequences that converge to e, even sacrificing simplicity.
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2 An auxiliary result

A main aspect in the theory of convergent sequences is the speed of conver-
gence. The faster a sequence converges to its limit, the more useful it is; for
example, in problems involving the estimation of its limit.

An important tool for measuring the speed of convergence is the following
consequence of Stolz-Cesàro lemma, first time used in this form by Mortici
[5]:

Lemma 1. Let xn be a sequence convergent to zero, such that

lim
n→∞

nk (xn − xn+1) = l,

for some real k > 1 and l 6= 0. Then

lim
n→∞

nk−1xn =
l

k − 1
.

This lemma shows us that if xn − xn+1 converges to zero like n−k, then
xn converges to zero like n−(k−1).

Lemma 1 was proven to be a useful tool for accelerating some conver-
gencies, establishing new fast sequences related to factorial function, gamma
function, or classical constants such as e or π. For details, see [1]- [4].

Note that the sequence en converges increasingly to e like n−1, as

lim
n→∞

n

((
1 +

1

n

)n
− e
)

= −1

2
e.

Analogously, the sequence e′n =
(
1 + 1

n

)n+1
converges decreasingly to e like

n−1, as

lim
n→∞

n

((
1 +

1

n

)n+1

− e

)
=

1

2
e.

In fact, for all α ∈ [0, 1] \ {1/2} , the sequence
(
1 + 1

n

)n+α
, n ≥ 1, converges

to e like n−1. It is only the sequence

e′′n =

(
1 +

1

n

)n+ 1
2

, n ≥ 1

that converges to e like n−2.
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3 The main results

In the theory of convergent sequences, many researchers are concerned with
modifying them in order to obtain new sequences that converge more rapidly.
This is often done at the expense of simplicity.

In this paper, we introduce a modified form of the sequence en that
converges more rapidly to e and keeps a simple form.

More exactly, we consider the family of sequences

en (a, b) =

(
1 +

1√
n2 + a

)n+b
,

depending on real parameters a, b. Note that

en = en (0, 0) , e′′n = en

(
0,

1

2

)
, e′n = en (0, 1) .

In our attempt to determine the parameters a and b for which the resulting
sequence en (a, b) converges most rapidly to e, we will discover and discuss
the sequence

fn =

1 +
1√

n2 + 1
6

n+ 1
2

, n ≥ 1.

This new sequence fn remains of a simple form, and converges to e like n−3.
To do this, we apply Lemma 1 to the sequence

xn = ln en (a, b) .

We have

xn−xn+1 = (n+ b) ln

(
1 +

1√
n2 + a

)
−(n+ 1 + b) ln

1 +
1√

(n+ 1)2 + a

 .

Using Maple software for symbolic computation, we deduce that

xn − xn+1 =
6b− 3

6n2
− 6a+ 12b− 7

6n3

+
18a+ 21b− 9ab− 18

6n4
− 42a+ 42b− 30ab− 9a2 − 29

6n5

+O

(
1

n6

)
.

We are in a position to use Lemma 1 in order to give the following:
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Theorem 1. a) If b 6= 1/2, then

lim
n→∞

n2 (xn − xn+1) =
6b− 3

6
and lim

n→∞
nxn =

6b− 3

6
.

b) If b = 1/2 and a 6= 1/6, then

lim
n→∞

n3 (xn − xn+1) =
1− 6a

6
and lim

n→∞
n2xn =

1− 6a

12
6= 0.

Consequently, for all a 6= 1/6, the sequence(
1 +

1√
n2 + a

)n+ 1
2

, n ≥ 1

converges to e like n−2.
c) If b = 1/2 and a = 1/6, then

xn − xn+1 = − 7

8n4
+

5

8n5
+O

(
1

n6

)
.

Moreover,

lim
n→∞

n4 (xn − xn+1) = −7

8
and lim

n→∞
n3xn = − 7

24
6= 0.

Consequently, the sequence

fn =

1 +
1√

n2 + 1
6

n+ 1
2

, n ≥ 1

converges to e like n−3.

4 An asymptotic expansion and some estimates

We give the following:

Theorem 2. The following asymptotic expansion holds true, as n→∞ :1 +
1√

n2 + 1
6

n+ 1
2

= exp

{
1− 1

24n3
+

7

160n4

− 97

2880n5
+

649

24 192n6
− 1087

48 384n7
+O

(
1

n8

)}
.
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Proof. By taking the logarithm, we have to expand the function

(
n+

1

2

)
ln

1 +
1√

n2 + 1
6

 .

This can be done by using the standard series of the logarithm function:

ln (1 + x) =

∞∑
k=1

(−1)k−1

k
xk

and the generalized binomial series (1 + x)r for r = −1
2 :

1√
1 + x

= (1 + x)−
1
2 =

∞∑
k=0

(
−1

2

k

)
xk.

A direct way is to use again the Maple software. The proof is complete.

Let us now state the following:

Theorem 3. The following inequalities hold true, for all integers n ≥ 1 :

exp

{
1− 1

24n3

}
<

1 +
1√

n2 + 1
6

n+ 1
2

< exp

{
1− 1

24n3
+

7

160n4

}
.

Proof. The left-hand inequality can be equivalently written as

(
n+

1

2

)
ln

1 +
1√

n2 + 1
6

 > 1− 1

24n3
,

or

ln

1 +
1√

n2 + 1
6

 >
1− 1

24n3

n+ 1
2

.

As

ln (1 + x) > x− 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 − 1

6
x6, x > 0,
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it suffices to observe that

1√
n2 + 1

6

− 1

2
(
n2 + 1

6

) +
1

3
(
n2 + 1

6

)√
n2 + 1

6

− 1

4
(
n2 + 1

6

)2 +
1

5
(
n2 + 1

6

)2√
n2 + 1

6

− 1

6
(
n2 + 1

6

)3
>

1− 1
24n3

n+ 1
2

.

This is equivalent to(
1 +

1

3
(
n2 + 1

6

) +
1

5
(
n2 + 1

6

)2
)

1√
n2 + 1

6

>
1− 1

24n3

n+ 1
2

+
1

2
(
n2 + 1

6

) +
1

4
(
n2 + 1

6

)2 +
1

6
(
n2 + 1

6

)3 ,
so we have to prove that u > 0, where

u (n) =

(
1 +

1

3
(
n2 + 1

6

) +
1

5
(
n2 + 1

6

)2
)2

1

n2 + 1
6

−

(
1− 1

24n3

n+ 1
2

+
1

2
(
n2 + 1

6

) +
1

4
(
n2 + 1

6

)2 +
1

6
(
n2 + 1

6

)3
)2

.

We have

u (n) =
P (n− 2)

3600n6 (2n+ 1)2 (6n2 + 1)6
> 0, n ≥ 2,

where

P (n) = 58 786 560n14 + 1630 160 640n13 + 20 880 815 040n12

+163 659 916 800n11 + 876 180 053 376n10

+3385 681 047 936n9 + 9723 075 891 408n8

+21 036 928 029 120n7 + 34 353 801 586 080n6

+41 947 056 386 352n5 + 37 432 962 400 932n4

+23 394 794 060 496n3 + 9468 256 624 380n2

+2115 309 639 600n+ 169 539 284 375

> 0.



C. Mortici 153

It follows that u (n) > 0, for all integers n ≥ 2.
The right-hand side inequality is equivalent to(

n+
1

2

)
ln

1 +
1√

n2 + 1
6

 < 1− 1

24n3
+

7

160n4
,

or

ln

1 +
1√

n2 + 1
6

 <
1− 1

24n3 + 7
160n4

n+ 1
2

.

As

ln (1 + x) < x− 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 − 1

6
x6 +

1

7
x7, x > 0,

it suffices to

1√
n2 + 1

6

− 1

2
(
n2 + 1

6

) +
1

3
(
n2 + 1

6

)√
n2 + 1

6

− 1

4
(
n2 + 1

6

)2 +
1

5
(
n2 + 1

6

)2√
n2 + 1

6

− 1

6
(
n2 + 1

6

)3
+

1

7
(
n2 + 1

6

)3√
n2 + 1

6

<
1− 1

24n3 + 7
160n4

n+ 1
2

.

This is equivalent to(
1 +

1

3
(
n2 + 1

6

) +
1

5
(
n2 + 1

6

)2 +
1

7
(
n2 + 1

6

)3
)

1√
n2 + 1

6

<
1− 1

24n3 + 7
160n4

n+ 1
2

+
1

2
(
n2 + 1

6

) +
1

4
(
n2 + 1

6

)2 +
0

6
(
n2 + 1

6

)3 ,
so we have to prove that v < 0, where

v (n) =

(
1 +

1

3
(
n2 + 1

6

) +
1

5
(
n2 + 1

6

)2 +
1

7
(
n2 + 1

6

)3
)2

1

n2 + 1
6

−

(
1− 1

24n3 + 7
160n4

n+ 1
2

+
1

2
(
n2 + 1

6

) +
1

4
(
n2 + 1

6

)2 +
1

6
(
n2 + 1

6

)3
)2

.
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But

v (n) = − Q (n− 2)

2822 400n8 (2n+ 1)2 (6n2 + 1)7
< 0, n ≥ 2,

with

Q (n) = 45 320 333 731 077 449 318 400n34

+3054 906 423 145 204 914 585 600n33 + ...,

a 34-th degree polynomial with all coefficients positive. The required in-
equality is also true for n = 1 (by direct computation), so the proof is
complete.
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