
Ann. Acad. Rom. Sci.
Ser. Math. Appl.

ISSN 2066-6594 Vol. 17, No. 2/2025

AN APPROACH TO GÂTEAUX AND
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Abstract

The aim of this paper is to present an approach to Gâteaux and
Fréchet differentiability based on delta-convex functions. We extend
some results by Ivan and Raşa and by Marumo and Takeda.
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1 Introduction

Ivan and Raşa [1] extended the notion of divided difference as follows.
Let X be a real Hilbert space, C ⊂ X convex. For a function f : X → R,

x, y ∈ C, x 6= y, a ∈ (0, 1) , we denote:

(x, a, y; f) = (1− a) f (x) + af (y)− f ((1− a)x+ ay) .

The number
(x, a, y; f)(
x, a, y; ‖·‖2

)
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mania; National University of Science & Technology Politehnica Bucharest; Academy of
Romanian Scientists, 3 Ilfov, 050044, Bucharest, Romania
‡marinescuds@gmail.com, National College “Iancu de Hunedoara”, Hunedoara, Ro-

mania

137

DOI   10.56082/annalsarscimath.2025.2.137



An approach to Gâteaux and Fréchet differentiability 138

is called the divided difference with knots x, (1− a)x + ay, y (|| · || is the
norm of X).

It is proven in [1] that ∣∣∣∣∣∣ (x, a, y; f)(
x, a, y; ‖·‖2

)
∣∣∣∣∣∣ ≤ 1

2
M,

for every function f : C → R twice Fréchet differentiable, with ‖f ′′ (y)‖ ≤
M, y ∈ C. Here, C ⊂ X is open and convex.

Marumo and Takeda [2, Lemma 3.1] proved that if f : Rn → R is twice
differentiable on Rn such that∥∥52f (x)−52f (y)

∥∥ ≤Mf ‖x− y‖ , x, y ∈ Rn,

for some Mf > 0, then∥∥∥∥∥5f
(

k∑
i=1

λixi

)
−

k∑
i=1

λi 5 f (xi)

∥∥∥∥∥ ≤ Mf

2

∑
1≤i<j≤k

λiλj ‖xi − xj‖2 ,

for all λ1, ..., λk ≥ 0, with λ1 + ... + λk = 1 and x1, ..., xk ∈ Rn. This result
was applied for solving some minimum nonconvex problems.

Boţ et al. [3] proved the next

Theorem 1. Let X be a real Hilbert space, Y a reflexive Banach space,
F : X → Y continuous and L > 0. The following assertions are equivalent:
i) F is Fréchet differentiable on X and the differential F ′ : X → (X,Y )∗ is
L-Lipschitz.
ii) the following inequality holds true:∥∥∥∥∥F

(
n∑

i=1

λixi

)
−

n∑
i=1

λiF (xi)

∥∥∥∥∥ ≤ L

2

∑
1≤i<j≤n

λiλj ‖xi − xj‖2 ,

for all λ1, ..., λn ≥ 0, with λ1 + ...+ λn = 1 and x1, ..., xn ∈ X.

In this paper, we present a new approach based on delta-convex functions
and the results from [8], or on the results stated by Marinescu and Mortici [9,
Theorem 7]. We refer to the following

Theorem 2 (Marinescu and Mortici). Let X,Y be normed spaces and C ⊂
X convex. Let F : C → Y be delta-convex with the control-function f : C →
R. Then

‖pF (s)− pF (t)‖ ≤ |pf (s)− pf (t)| ,
for all s, t ∈ [0, 1].



C. Mortici, D.-Ş. Marinescu 139

2 The results

The delta-convex functions were first introduced by Busemann and Feller
[4]. These functions play an important role in non-smooth optimization,
especially in situations where standard convexity conditions are too limiting.
Since their introduction, delta-convex functions have been widely explored
and applied in various areas, including optimization, control theory, and
economics.

Let X,Y be normed spaces and C ⊂ X non-empty and convex. Then
a function F : C → Y is delta-convex if and only if there exists a so called
control-function f : C → Y such that, for every x, y ∈ C and a ∈ [0, 1] , the
following inequality holds:

‖(1− a)F (x) + aF (y)− F ((1− a)x+ ay)‖

≤ (1− a) f (x) + af (y)− f ((1− a)x+ ay) .

For details and further properties, see, e.g., [5]- [7] and all references therein.
For every n ∈ N, n ≥ 2, x1, x2, ..., xn ∈ C, a1, a2, ..., an ≥ 0, with

a1 + a2 + ...+ an = 1, denote by

x =

n∑
i=1

aixi.

Let f : C → Y be a function. The function pf : [0, 1]→ Y defined by:

pf (t) =
n∑

i=1

aif ((1− t)xi + tx) , ∀ t ∈ [0, 1] ,

is called the Pečarić function associated to f, and systems x1, x2, ..., xn and
a1, a2, ..., an.

We are in a position to give the following:

Theorem 3. Let (X, ‖·‖) be a real prehilbertian space, C ⊂ X open, convex,
be a continuous function f : C → R and L > 0. The following assertions
are equivalent:
i) f is Gâteaux differentiable on C and∣∣f (x)− f (y)− < f ′ (y) , x− y >

∣∣ ≤ L ‖x− y‖2 ,
for all x, y ∈ C.
ii) the following inequality holds true:

|pf (s)− pf (t)| ≤ L

 ∑
1≤i<j≤n

λiλj ‖xi − xj‖2
 |s− t| (2− s− t) ,
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for all λ1, ..., λn ≥ 0, with λ1+...+λn = 1 and x1, ..., xn ∈ C and s, t ∈ [0, 1] .

Proof. i)⇒ii). Let us consider the functions F1, F2 : C → R,

F1 (x) = L ‖x‖2 − f (x) , F2 (x) = L ‖x‖2 + f (x) , x ∈ C. (1)

We have

−L ‖x− y‖2 ≤
∣∣f (x)− f (y)− < f ′ (y) , x− y >

∣∣ ≤ L ‖x− y‖2 . (2)

For arbitrarily fixed y, we deduce from the left-hand side inequality (2) that

f (x) + L ‖x‖2 − f (y)− L ‖y‖2 ≥< f ′ (y) + 2Ly, x− y >,

for all x ∈ C. By taking y∗ = f ′ (y) + 2Ly, we get

F1 (x)− F1 (y) ≥< y∗, x− y >,

for all x ∈ C, y ∈ Y ∗. Thus F1 is convex.
By a similar argument, F2 is also convex, i.e., f is delta-convex with the
control-function g : C → R, g (x) = L ‖x‖2 .
Further, for all s, t ∈ [0, 1] , we have

|pf (s)− pf (t)| ≤ |pg (s)− pg (t)| .

By using [10, Theorem 3.1], we get

pg (t) = L

∥∥∥∥∥
n∑

i=1

λixi

∥∥∥∥∥
2

+ (1− t)2 L
∑

1≤i<j≤n
λiλj ‖xi − xj‖2 .

In consequence,

|pg (s)− pg (t)| = L
∣∣∣(1− s)2 − (1− t)2

∣∣∣ ∑
1≤i<j≤n

λiλj ‖xi − xj‖2

= L |s− t| (2− s− t)
∑

1≤i<j≤n
λiλj ‖xi − xj‖2 .

The implication i)⇒ii) is completely proved.
ii)⇒i). We have

|(1− t) f (x) + tf (y)− f ((1− t)x+ ty)| ≤ Lt (1− t) ‖x− y‖2 (3)

= L (1− t) ‖x‖2 + Lt ‖y‖2 − Lt ‖(1− t)x+ ty‖2 ,
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which means that f is delta-convex with the control-function g (x) = L ‖x‖2 .
As g is Gâteaux differentiable on C, it follows that f is Gâteaux differentiable
on C (see [8, Proposition 3.9]). From (3), we deduce that

−Lt (1− t) ‖x− y‖2

≤ (1− t) [f (x)− f (y)]− [f (y + (1− y) (x− y))− f (y)]

≤ Lt (1− t) ‖x− y‖2 ,

for all t ∈ [0, 1] and x, y ∈ C. Thus

Lt ‖x− y‖2 ≤ f (x)− f (y)− f (y + (1− y) (x− y))− f (y)

1− t
≤ Lt ‖x− y‖2 .

By taking the limit as t↗ 1, we get:

−L ‖x− y‖2 ≤ f (x)− f (y)− < f ′ (y) , x− y >≤ L ‖x− y‖2 .

The proof is completed.

Theorem 4. Let (X, ‖·‖) be a real prehilbertian space, C ⊂ X open, convex,
f : C → R and L > 0. The following assertions are equivalent:
i) f is Fréchet differentiable on C and∥∥f ′ (x)− f ′ (y)

∥∥ ≤ L ‖x− y‖ ,
for all x, y ∈ C.
ii) The following inequality holds true:

|pf (s)− pf (t)| ≤ L

2

∑
1≤i<j≤n

λiλj ‖xi − xj‖2 |s− t| (2− s− t)

for all λ1, ..., λn ≥ 0, with λ1+...+λn = 1 and x1, ..., xn ∈ C and s, t ∈ [0, 1] .

Proof. i)⇒ii). The function f is Gâteaux differentiable and continuous.
By [11, Lemma 2.1], we have∣∣f (x)− f (y)− < f ′ (y) , x− y >

∣∣ ≤ L

2
‖x− y‖2 .

The assertion ii) follows now by Theorem 3.
ii)⇒i). Proceeding like in the proof of Theorem 3, we obtain that f is delta-
convex with control-function h : C → R, h (x) = L

2 ‖x‖
2 , x ∈ C.

The function h is Fréchet differentiable, and by using a result stated in [8,
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Proposition 3.9], it follows that f is Fréchet differentiable. Further, f is
Gâteaux differentiable and according to Theorem 3, we have:∣∣f (x)− f (y)− < f ′ (y) , x− y >

∣∣ ≤ L

2
‖x− y‖2 , x, y ∈ C.

By a result presented in [11, Lemma 2.1], we deduce that the Gâteaux
differential f ′ is L-Lipschitz. As f is Fréchet differentiable, the Gâteaux
differential and the Fréchet differentiable coincides. The proof is completed.

3 Applications

Theorem 5. Let (X, ‖·‖) be a real prehilbertian space, C ⊂ X open, convex,
be a continuous function f : C → R and L > 0. The following assertions
are equivalent:
i) f is Gâteaux differentiable on C and∥∥f ′ (x)− f ′ (y)

∥∥ ≤ L ‖x− y‖ ,
for all x, y ∈ C.
ii) ∣∣f (x)− f (y)− < f ′ (y) , x− y >

∣∣ ≤ L

2
‖x− y‖2 ,

for all x, y ∈ C.
iii) ∣∣∣∣f (x) + f (y)

2
− f

(
x+ y

2

)∣∣∣∣ ≤ L

8
‖x− y‖2 , (4)

for all x, y ∈ C.

Proof. i)⇒ii) is a result presented in [11, Lemma 2.1].
ii)⇒iii) is a consequence of Theorem 3.
iii)⇒i) The inequality (4) shows that the functions F1 and F2 defined in
(1) are semiconvex. They are also continuous, so they are convex. Now,
by proceeding in a similar way as in the proof of Theorem 3 (implication
ii)⇒i)), we deduce that f is Gâteaux differentiable and f ′ is L-Lipschitz.

Theorem 6. Let (X, ‖·‖) be a real prehilbertian space, C ⊂ X open, convex,
be a continuous function f : C → R and L > 0. The following assertions
are equivalent:
i) f is Fréchet differentiable on C and∥∥f ′ (x)− f ′ (y)

∥∥ ≤ L ‖x− y‖ ,
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for all x, y ∈ C.
ii) ∣∣f (x)− f (y)− < f ′ (y) , x− y >

∣∣ ≤ L

2
‖x− y‖2 ,

for all x, y ∈ C.
iii) ∣∣∣∣f (x) + f (y)

2
− f

(
x+ y

2

)∣∣∣∣ ≤ L

8
‖x− y‖2 ,

for all x, y ∈ C.

Proof. The conclusion follows in a similar way as the proof of Theorem 5,
using in this case the results stated in [12, Lemma 2.64] and Theorem 4.

A consequence of Theorems 5-6 is the following

Theorem 7. Let (X, ‖·‖) be a real prehilbertian space, C ⊂ X open, convex,
be a continuous function f : C → R and L > 0. The following assertions
are equivalent:
i) ∣∣∣∣f (x) + f (y)

2
− f

(
x+ y

2

)∣∣∣∣ ≤ L

8
‖x− y‖2 ,

for all x, y ∈ C.
iii) f is Gâteaux differentiable on C and∥∥f ′ (x)− f ′ (y)

∥∥ ≤ L ‖x− y‖ ,
for all x, y ∈ C.
iii) f is Fréchet differentiable on C and∥∥f ′ (x)− f ′ (y)

∥∥ ≤ L ‖x− y‖ ,
for all x, y ∈ C.

Finally, remark that the results stated by Ivan and Raşa [1] and Marumo
and Takeda [2] are particular cases of Theorem 6.

Theorem 3 is a generalization of Applications 2.2.-2.3 stated in [6].
Proposition 2.2 presented in [13] is a consequence of Theorem 3.



An approach to Gâteaux and Fréchet differentiability 144
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