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Abstract

The aim of this paper is to present an approach to Gateaux and
Fréchet differentiability based on delta-convex functions. We extend
some results by Ivan and Raga and by Marumo and Takeda.
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1 Introduction

Ivan and Rasa [1] extended the notion of divided difference as follows.
Let X be a real Hilbert space, C' C X convex. For a function f : X — R,
x,y € C, x#y,a€ (0,1), we denote:

(z,0,y; f) = (1 —a) f(2) +af (y) = f (1 —a) z + ay) .

The number

(z,a,y; f)
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is called the divided difference with knots x, (1 —a)z + ay, y (|| - || is the
norm of X).
It is proven in [1] that

(a9, f) | 1
2 >~
(%%%H” ) 2

for every function f : C' — R twice Fréchet differentiable, with || f” (y)| <
M,y € C. Here, C' C X is open and convex.

Marumo and Takeda [2, Lemma 3.1] proved that if f : R” — R is twice
differentiable on R" such that

M,

|2f (2) = /2 f ()| < Myllz—yl|, =z,y€R",

for some My > 0, then
k
va (2A> S0 Fe
i=1 i=1
for all A1, ..., Az > 0, with \; + ... + Ay = 1 and 1, ...,z € R™. This result

was applied for solving some minimum nonconvex problems.
Bot, et al. [3] proved the next

< D DRI A

1<i<j<k

Theorem 1. Let X be a real Hilbert space, Y a reflexive Banach space,
F: X =Y continuous and L > 0. The following assertions are equivalent:
i) F is Fréchet differentiable on X and the differential F' : X — (X,Y)" is
L-Lipschitz.

ii) the following inequality holds true:

F (Zl Aﬂ%’) — 2&‘}7(%)

forall A\,...A\p >0, with Ay + ...+ A\, =1 and x1,...,x, € X.

<5 D AN lla g,

1<i<j<n

Sl

In this paper, we present a new approach based on delta-convex functions
and the results from [8], or on the results stated by Marinescu and Mortici [9,
Theorem 7]. We refer to the following

Theorem 2 (Marinescu and Mortici). Let X, Y be normed spaces and C C
X convex. Let F: C' =Y be delta-convex with the control-function f : C' —
R. Then

lpr (s) —pr ()| < [pf (s) —py ()],
for all s, t € [0, 1].
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2 The results

The delta-convex functions were first introduced by Busemann and Feller
[4]. These functions play an important role in non-smooth optimization,
especially in situations where standard convexity conditions are too limiting.
Since their introduction, delta-convex functions have been widely explored
and applied in various areas, including optimization, control theory, and
economics.

Let X,Y be normed spaces and C C X non-empty and convex. Then
a function F': C' — Y is delta-convex if and only if there exists a so called
control-function f: C — Y such that, for every =,y € C and a € [0, 1], the
following inequality holds:

(1 —a) F(z) + aF (y) — F(
—f

<(1—a)f@)+af @) — F(1—a)z+ay).

For details and further properties, see, e.g., [5]- [7] and all references therein.
For every n € N, n > 2, x1, x9, ..., xp, € C, a1, ag, ..., ap > 0, with

a1 +ag + ... + a, = 1, denote by

n
xr = E a; ;.
=1

Let f:C — Y be a function. The function py : [0,1] = Y defined by:

1—a)x+ ay)

(
(

n
pr)=> af(1-t)z+tx), Vtel01],
i=1
is called the Pecaric¢ function associated to f, and systems x1, xo, ..., , and
ai, ag, ..., Qn.
We are in a position to give the following:

Theorem 3. Let (X, ||-||) be a real prehilbertian space, C' C X open, convet,
be a continuous function f : C — R and L > 0. The following assertions
are equivalent:

i) f is Gateauz differentiable on C' and

f@) = f)—<f @, 2—y>|<Llz—y|?,

forall x,y € C.
it) the following inequality holds true:

()= OI<L| 3 Mhjlle— gl | s — 1] 2 s — 1),

1<i<j<n
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forall A1, ...;\p > 0, with \i+...+X, =1 and 21, ...,z € C and s,t € [0,1].
Proof. i)=+i). Let us consider the functions Fy, Fh: C — R,
Fi(z)=Lllz|* = f(z) . F(e)=Llz|*+f(x), zeC (1)

We have

~Llz =yl <|f (@) = fly) = < f®.x—y>|<Lllz—y|*. (2)
For arbitrarily fixed y, we deduce from the left-hand side inequality (2) that

f @)+ Ll = f(y) = Llyl* =< f' () + 2Ly, z —y >,
for all z € C. By taking y* = f’ (y) + 2Ly, we get
Fi(z) —Fi(y) 2<y’ 2z —y >,

for all x € C, y € Y*. Thus F} is convex.

By a similar argument, F5 is also convex, i.e., f is delta-convex with the
control-function g : ¢ = R, g (z) = L|z|*.

Further, for all s,¢ € [0, 1], we have

P (s) = s ()] < lpg (s) = pg ()] -

By using [10, Theorem 3.1], we get

+ (@=L > Al —

1<i<j<n
In consequence,
2
py(s) = pg (O] = L =s= (=0 3 Al -]
1<i<j<n
= Lis—t|2—s—1t) > XXl —al.
1<i<j<n

The implication i)=+i) is completely proved.
ii)=1). We have

(L=t) f (@) +tf (y) = F (L= t)z +ty)] < Lt (1= 1) o — g (3)
= L(1—t)[|2]* + Lt lyl* — Lt (1 — t) = + ty||,
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which means that f is delta-convex with the control-function ¢ (z) = L ||z? .
As g is Gateaux differentiable on C, it follows that f is Gateaux differentiable
on C (see [8, Proposition 3.9]). From (3), we deduce that

—Lt(1=t) |z - y|*

<A-)f@-fW-fly+Q -y (x-y) - fW)]
<Lt(l-t) |z —yl?,

for all ¢t € [0,1] and z,y € C. Thus

fly+ A -y) (x-y)—fy)

< Ltz —yl|?.
- < Lt ||z -yl

Lt|l —y|* < f(z) = f (y) —

By taking the limit as ¢ /1, we get:

~Llz—yl?<f@) —f@)-<f @, x—y><Llz—y|*.
The proof is completed. ]

Theorem 4. Let (X, ||-||) be a real prehilbertian space, C C X open, convez,
f:C =R and L > 0. The following assertions are equivalent:
i) f is Fréchet differentiable on C' and

[ (@)= f @) <Llz—yl,
forallx,y € C.
i1) The following inequality holds true:
L 2
pr (s) =pr (O] = 5 > Al =P s =t (2—s—1)
1<i<j<n
forall A1, .., \p > 0, with \i+...4+ X, =1 and 21, ...,z, € C and s,t € [0,1].

Proof. i)=-ii). The function f is Gateaux differentiable and continuous.
By [11, Lemma 2.1], we have

7@ T~ < fw)a—y>| <2 eyl

The assertion ii) follows now by Theorem 3.

ii)=1). Proceeding like in the proof of Theorem 3, we obtain that f is delta-
convex with control-function h: C' — R, h(x) = % |z|)?, z e C.

The function h is Fréchet differentiable, and by using a result stated in [8,
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Proposition 3.9], it follows that f is Fréchet differentiable. Further, f is
Gateaux differentiable and according to Theorem 3, we have:

F@ =)= < '@ e—y>| < Zle—yl?, wyec

By a result presented in [11, Lemma 2.1], we deduce that the Gateaux
differential f’ is L-Lipschitz. As f is Fréchet differentiable, the Gateaux
differential and the Fréchet differentiable coincides. The proof is completed.

O]

3 Applications

Theorem 5. Let (X, ||-||) be a real prehilbertian space, C C X open, convez,
be a continuous function f : C — R and L > 0. The following assertions
are equivalent:

i) f is Gateaux differentiable on C' and

[ (@)= f )| < Llz—yl,
forall x,y € C.
i)
1@~ T~ <7 w2~y >| <5 le—l?,

for all x,y € C.
iii)

(4)

HOLIW (23] < fhe-ui®

forall x,y € C.

Proof. 1)=ii) is a result presented in [11, Lemma 2.1].

ii)=-iii) is a consequence of Theorem 3.

iii)=-1) The inequality (4) shows that the functions F} and Fh defined in
(1) are semiconvex. They are also continuous, so they are convex. Now,
by proceeding in a similar way as in the proof of Theorem 3 (implication
ii)=1)), we deduce that f is Gateaux differentiable and f” is L-Lipschitz. [

Theorem 6. Let (X, ||-||) be a real prehilbertian space, C' C X open, convet,
be a continuous function f : C — R and L > 0. The following assertions
are equivalent:

i) f is Fréchet differentiable on C' and

£ (@)= f )| < Lllz—yl,
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forall x,y € C.
i)
1@ T~ <7 W) .2y >| <% el

for all x,y € C.

T T L
f( );f(y)_f< ;y>‘§8,x_y”2’

for all xz,y € C.

Proof. The conclusion follows in a similar way as the proof of Theorem 5,
using in this case the results stated in [12, Lemma 2.64] and Theorem 4. [

A consequence of Theorems 5-6 is the following

Theorem 7. Let (X, ||-||) be a real prehilbertian space, C C X open, convez,
be a continuous function f : C — R and L > 0. The following assertions
are equivalent:

i

forall x,y € C.
ii1) f is Gateaux differentiable on C' and

£ (@) = f )| < Lllz—yl,

forall x,y € C.
iit) f is Fréchet differentiable on C' and

1" (@) = f @) <Llz—yl,
for all x,y € C.

Finally, remark that the results stated by Ivan and Rasa [1] and Marumo
and Takeda [2] are particular cases of Theorem 6.

Theorem 3 is a generalization of Applications 2.2.-2.3 stated in [6].

Proposition 2.2 presented in [13] is a consequence of Theorem 3.



An approach to Gateaux and Fréchet differentiability 144

References

[1]

[11]

[12]

M. Ivan and I. Rasa, The rest in some approximation formulae,
Séminaire de la Théory de la Meilleure Approximation, Convexité et
Optimisation, 2002, 87-92.

N. Marumo and A. Takeda, Parameter-free accelerated gradient
descent for nonconvex minimization, SIAM J. Optim. 34 (2024),
https://doi.org/10.1137/22M1540934.

R.I. Bot, M.N. Dao and T. Liu, On the equivalence of a
Hessian-free inequality and Lipschitz continuous Hessian, preprint,
http://arxiv.org/abs/2504.17193v2.

H. Busemann and W. Feller, Kriimmungseigenschaften Konvexer
Flachen, Acta Math. 66 (1936), 1-4.

R. Ger, Stability aspects of delta-convexity, Real Anal. Exch. 20 (1995),
402-404.

D.-S. Marinescu and E. Paltdanea, Properties of Pecari¢-type functions
and applications, Res. Math. 76 (2021), 149.

A. Olbrys, A support theorem for delta (s,t)-convex mappings, Aeq.
Math. 89 (2015), 937-948.

L. Vesely and L. Zajicek, Delta-convex mappings between Banach
spaces and applications, Disertationes Math., Instytut Matematyczny
Polskiej Akademi Nauk (Warszawa), 1989.

D.-S. Marinescu and C. Mortici, Jensen-type inequalities for Lipschitz
functions and delta-convex functions, submitted.

D.-S. Marinescu, M. Monea, M. Opincariu and M. Stroe, Some equiv-
alent caracterizations of inner product spaces and their consequence,
Filomat 29 (2015), 1587-1599.

D. Wachsmuth and G. Wachsmuth, A simple proof of the Baillon-
Haddad theorem on open subsets of Hilbert spaces, arXiv:2204.00282
[math.FA].

H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, Springer, 2011.



C. Mortici, D.-S. Marinescu 145

[13] D. Azagra, E. LeGruyer and C. Mudarra, Explicit formulas for C'!!
and Ccl(;;iv extensions of 1-jets in Hilbert and superreflexive spaces, J.
Funct. Anal. 274 (2018), 3003-3032.






