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Abstract
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1 Introduction

The weak formulation of a large number of boundary value problems is ex-
pressed in terms of variational inequalities. Such kind of inequalities abound
in Mechanics, Physics and Engineering Sciences, as shows in [3,6,13,18,22]
and the references therein. Started in early sixties, the theory of variational
inequalities deals with the study of various classes of elliptic, time-dependent
and evolutionary inequalities for which it provides existence, uniqueness and
optimal control results. It uses arguments on nonlinear and convex analysis,
including the properties of monotone and pseudomonotone opertors, lower
semicontinuous functions and the subdifferential of convex functions. Com-
prehensive references in the field are [1, 2, 13, 18], for instance. Results on
the numerical analysis of different types of variational inequality problems,
including error estimates and algorithms to approximate the solution, can
be found in [7, 10].

History-dependent operators represent a special class of nonlinear opera-
tors defined on spaces of continuous functions. Such kind of operators arise
in Nonlinear Analysis, the theory of Differential and Integral Equations,
and Mechanics, as well. Two elementary exemples in Nonlinear Analysis
are provided by the integral operator and the Volterra operator. In Classi-
cal Mechanics, the curent position of a material point is determined by the
initial position and the history of the velocity function and, therefore, it is
expressed in terms of a history-dependent operator. In Contact Mechanics
it is usual to consider that the coefficient of friction depends on the total
slip or the total slip rate which, again, leads to history-dependent operators.
History-dependent operators have been introduced in [21] and then inten-
sively used in the literature. References can be found the books [20,23], for
instance.

Convergence results represent an important topic in Nonlinear and Nu-
merical Analysis and, in particular, in the study of variational inequalities.
The convergence of the solution of a penalty problem to the solution of the
original problem as the penalty parameter converges and the convergence of
the discrete solution to the solution of the continuous problem as the time
step or the discretization parameter converges to zero are only two simple
examples, among others. Motivated by important applications, a consider-
able effort was done to obtain convergence results in the study of various
inequality problems.

In this paper we deal with a convergence criterion for a special type
of variational inequalities, governed by a history-dependent operator. The
functional framework we consider is the following: X is a real reflexive
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Banach space with dual X∗, 〈·, ·〉 denotes the duality paring between X∗

and X and T > 0 represents the time interval of interest. The problem data
are the set K, the operators A and S, as well as the functions j and f ,
which will be described in the next section. With these data, the inequality
problem we consider in this paper is the following.

Problem P. Find a function u : [0, T ]→ X such that

u(t) ∈ K, 〈Au(t), v − u(t)〉+ j(Su(t), u(t), v)− j(Su(t), u(t), u(t)) (1)

≥ 〈f(t), v − u(t)〉 ∀ v ∈ K, t ∈ [0, T ].

The unique solvability of Problem P was proved in [23], based on a fixed
point argument. Inequality problems of the form (1) arise in Mechanics and
describe the contact between an elastic or viscoelastic body with a founda-
tion. There, the operator A models the elastic properties of the material,
S describes its viscoelastic properties, the function f is related to the ap-
plied forces and, finally, the set K and the function j describe the frictional
or frictionless contact boundary conditions. Details can be found in the
books [22,23], for instance.

Our current paper has two aims. The first one is to state and prove
a convergence criterion to the solution of Problem P. The second one is
to illustrate the use of this criterion in various applications. Convergence
results for history-dependent inequalities of the form (1) have been obtained
in [22–24], for instance. Nevertheless, there, only sufficient conditions for
convergence have been provided. Moreover, in part of these references, the
functional j had a particular structure and, in addition, only the Hilbertian
framework was considered. Working in the framework of a reflexive Ba-
nach space, with a general form for the function j, and obtaining necessary
and sufficient conditions which guarantee the convergence of an arbitrary
sequence of continuous functions to the solution u of problem P represents
the main traits of novelty of the current paper.

The rest of the manuscript is structured as follows. In Section 2 we list
the assumptions on the data and recall an existence and uniqueness result
in the study of Problem P, Theorem 2. Then, in Section 3 we state and
prove our main result, Theorem 3. The proof of the theorem is carried out
in several steps and is based on the fixed point structure of Problem P.
We apply Theorem 3 in Sections 4 and 5, where we introduce a penalty
method and two well-posedness concepts, respectively, in the study of the
variational inequality (1). Finally, in Section 6 we provide an example of
boundary value problem which leads to an inequality of the form (1). The
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problem models the contact of a viscoelastic membrane with an obstacle,
the unknown u being the vertical displacement field.

2 Preliminaries

We denote by ‖ · ‖X the norm on the space X and, without losing the
generality, we assume that (X, ‖ · ‖X) is strictly convex. Details can be
found in [27, Proposition 32.22]. We use notation 2X

∗
for the set of parts of

X∗. Besides the space X and its dual X∗, we also consider a real normed
space (Y, ‖ · ‖Y ). Moreover, unless it is specified otherwise, we use n to
denote a given positive integer. All the limits, lower limits and upper limits
below are considered as n → ∞, even if we do not mention it explicitly.
The symbols “→” and “ ⇀ ” denote the strong and the weak convergence
in various spaces which will be specified, except in the case when these
convergences take place in IR. For a sequence {εn} ⊂ IR+ which converges
to zero we use the short hand notation 0 ≤ εn → 0. In addition, we denote
by d(u,K) the distance between an element u ∈ X and the set K ⊂ X, that
is

d(u,K) = inf
v∈K
‖u− v‖X .

If (Z, ‖·‖Z) is a normed space, we denote by C([0, T ];Z) the space of con-
tinuous functions defined on [0, T ] with values in Z. The space C([0, T ];Z)
will be endowed with the norm of the uniform convergence, that is,

‖u‖C([0,T ];Z) = max
t∈[0,T ]

‖u(t)‖Z ∀u ∈ C([0, T ];Z).

Moreover, for an operator S defined on the space of C([0, T ];X) with values
in the space C([0, T ];X), C([0, T ];Y ) or C([0, T ];X∗) we use the shorthand
notation Su(t) to represent the value of the function Su at the point t, i.e.,
Su(t) = (Su)(t), for all u ∈ C([0, T ];X) and t ∈ [0, T ]. Finally, we shall use
the short hand notation C([0, T ]) for the space C([0, T ], IR).

In the study of Problem P we consider the following assumptions.

K is nonempty closed convex subset of X. (2)

A : X → X∗ is pseudomonotone and strongly monotone, i.e.:

(a) A is bounded and un ⇀ u in X with lim sup 〈Aun, un − u〉 ≤ 0
implies that lim inf 〈Aun, un − v〉 ≥ 〈Au, u− v〉 ∀ v ∈ X.

(b) There exists mA > 0 such that
〈Au−Av, u− v〉 ≥ mA‖u− v‖2X ∀u, v ∈ X.

(3)
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S : C([0, T ];X)→ C([0, T ];Y ) is a history-dependent

operator, i.e., there exists LS > 0 such that

‖Su(t)− Sv(t)‖Y ≤ LS
∫ t

0
‖u(s)− v(s)‖Xds

∀u, v ∈ C([0, T ];X), t ∈ [0, T ].

(4)



j : Y ×X ×X → IR is a function such that:

(a) j(y, u, ·) : X → IR is convex and lower semicontinuous on X,

for all y ∈ Y, u ∈ X.

(b) There exists αj ≥ 0 and βj ≥ 0 such that

j(y1, u1, v2)− j(y1, u1, v1) + j(y2, u2, v1)− j(y2, u2, v2)

≤ αj‖u1 − u2‖X ‖v1 − v2‖X + βj‖y1 − y2‖Y ‖v1 − v2‖X
∀ y1, y2 ∈ Y, u1, u2, v1, v2 ∈ X.

(5)

αj < mA. (6)

f ∈ C([0, T ];X∗). (7)

The unique solvability of the variational inequality (1) is given by the
following existence and uniqueness result.

Theorem 1. Assume (2)–(7). Then, inequality (1) has a unique solution
with regularity u ∈ C([0, T ];X).

A proof of Theorem 2 can be found in [23, p.160], based on a fixed point
argument. For the convenience of the reader, as well as for the needs of the
next section, we present in what follows its sketch, carried out in several
steps.

Proof. Step 1. We fix η ∈ C([0, T ];X) and denote by yη ∈ C([0, T ];Y )
the function given by

yη(t) = Sη(t) ∀ t ∈ [0, T ]. (8)

Then, using standard arguments on elliptic variational inequalities, we prove
that there exists a unique function uη ∈ C([0, T ];X) such that, for all t ∈
[0, T ], the following inequality holds:

uη(t) ∈ K, 〈Auη(t), v − uη(t)〉+ j(yη(t), uη(t), v) (9)

−j(yη(t), uη(t), uη(t)) ≥ 〈f(t), v − u(t)〉 ∀ v ∈ K.
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Step 2. We define the operator Λ: C([0, T ];X)→ C([0, T ];X) by equality

Λη = uη ∀ η ∈ C([0, T ];X) (10)

and prove that this operator is history-dependent, i.e., there exists LΛ > 0
such that

‖Λη1(t)− Λη2(t)‖X ≤ LΛ

∫ t

0
‖η1(s)− η2(s)‖X ds, (11)

for all η1, η2 ∈ C([0, T ];X) and t ∈ [0, T ]. Based on this inequality we show
that a power p of the operator Λ is a contraction on the space C([0, T ];X),
which implies that Λ has a unique fixed point η∗ ∈ C([0, T ];X).

Step 3. Let η∗ ∈ C([0, T ];X) be the fixed point of the operator Λ. It follows
from (8) and (10) that, for all t ∈ [0, T ], the following equalities hold:

yη∗(t) = Sη∗(t) and uη∗(t) = η∗(t). (12)

We now write the inequality (9) for η = η∗ and then use the equalities (12) to
conclude that the function η∗ ∈ C([0, T ];X) is a solution to the variational-
variational inequality (1). This proves the existence part of the theorem.
The uniqueness part is a consequence of the uniqueness of the fixed point of
the operator Λ defined by (10). �

3 A convergence criterion

In this section we provide necessary and sufficient conditions which guaran-
tee the uniform convergence of an arbitrary sequence {un} ⊂ C([0, T ];X)
to the solution of Problem P. To this end we assume that (2)–(7) hold
and we denote by u ∈ C([0, T ];X) the solution of inequality (1) obtained in
Theorem 2. Moreover, we consider the following additional assumptions on
the operator A and function j.

A : X → X∗ is a Lipschitz continuous operator, i.e.,

there exists LA > 0 such that

‖Au−Av‖X∗ ≤ LA‖u− v‖X ∀u, v ∈ X.
(13)


There exists a function cj : IR+ → IR+

which maps bounded sets into bounded sets such that

j(y, u, v)− j(y, u, w) ≤ cj(‖y‖Y , ‖u‖X)‖v − w‖X
∀ y ∈ Y, u, v, w ∈ X.

(14)
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Note that assumptions (13) and (3)(b) imply that condition (3)(a) is
safisfied.

Next, given a sequence {un} ⊂ C([0, T ];X) we consider the following
statements.

(S1) un → u in C([0, T ];X), as n→∞.

(S2) There exists 0 ≤ εn → 0 such that

(a) d(un(t),K) ≤ εn,

(b) 〈Aun(t), v − un(t)〉+ j(Sun(t), un(t), v)

−j(Sun(t), un(t), un(t)) + εn(1 + ‖v − un(t)‖X)

≥ 〈f(t), v − un(t)〉 ∀ v ∈ K(t),

for all n ∈ N and t ∈ [0, T ].

(15)

Our result in this section is the following.
Theorem 2. Assume (2)–(7) and (14). Then, the statement (S2) im-

plies the statement (S1). The converse is true if, moreover, (13) holds.

The proof of Theorem 3 is based on some preliminary results. To provide
it we use the operator Λ defined by equality (10) and consider the following
intermediate statement.

(S3) un − Λun → 0 in C([0, T ];X), as n→∞.

The first preliminary result is the following.
Lemma 1. Assume (2)–(7), (14) and let {un} ⊂ C([0, T ];X) be a

sequence which satisfies condition (15)(b). Then, there exists a constant
M > 0 which does not depend on n and t such that

‖un(t)‖X ≤M, ‖Sun(t)‖Y ≤M, ‖Λun(t)‖X ≤M, (16)

for all n ∈ N and t ∈ [0, T ].

Proof. Let n ∈ N, t ∈ [0, T ] and note that, below in this proof we use the
notation Ci, i = 1, 2, . . ., for various positive constants which do not depend
on n ant t. Fix an element v0 ∈ K. We use inequality (15)(b) with v = v0

to find that

〈Aun(t)−Av0, un(t)− v0〉 ≤ 〈Av0, v0 − un(t)〉+ j(Sun(t), un(t), v0)

−j(Sun(t), un(t), un(t)) + εn(1 + ‖un(t)− v0‖X) + 〈f(t), un(t)− v0〉.
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Then, using assumption (3)(a) yields

mA‖un(t)− v0‖2X ≤ (‖Av0‖X∗ + ‖f(t)‖X∗ + εn)‖un(t)− v0‖X (17)

+εn +
[
j(Sun(t), un(t), v0)− j(Sun(t), un(t), un(t))

]
.

We now write

j(Sun(t), un(t), v0)− j(Sun(t), un(t), un(t))

=
[
j(Sun(t), un(t), v0)− j(Sun(t), un(t), un(t)) +

+j(Sv0(t), v0, un(t))− j(Sv0(t), v0, v0)
]

+
[
j(Sv0(t), v0, v0)− j(Sv0(t), v0, un(t))

]
,

then we use assumptions (5)(b) and (14) to deduce that

j(Sun(t), un(t), v0)− j(Sun(t), un(t), un(t)) (18)

≤ αj‖un(t)− v0‖2X + βj‖Sun(t)− Sv0(t)‖Y ‖un(t)− v0‖X

+cj(‖Sv0(t)‖Y , ‖v0‖X)‖un(t)− v0‖X .

Next, we combine inequalities (17) and (18) to see that

(mA − αj) ‖un(t)− v0‖2X (19)

≤ (‖Av0‖X∗ + ‖f(t)‖X∗ + εn)‖un(t)− v0‖X

+εn + βj‖Sun(t)− Sv0(t)‖Y ‖un(t)− v0‖X

+cj(‖Sv0(t)‖Y , ‖v0‖X)‖un(t)− v0‖X

and use assumptions (4), (7) and (14) to find a constant C1 > 0 such that

‖Av0‖X + ‖f(t)‖X∗ + cj(‖Sv0(t)‖Y , ‖v0‖X) ≤ C1. (20)

Note that inequalities (19), (20) and assumption (4) yield

(mA − αj) ‖un(t)− v0‖2X

≤
(
C1 + εn + βjLS

∫ t

0
‖un(t)− v0‖X

)
‖un(t)− v0‖X + εn.
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We now use the smallness assumption (6) and the boundedness of the
sequence {εn} to see that

‖un(t)− v0‖2X ≤ C2

(
1 +

∫ t

0
‖un(t)− v0‖X

)
‖un(t)− v0‖X + C3

Then, using the elementary inequality

x2 ≤ ax+ b =⇒ x ≤ a+
√
b ∀x, a, b ≥ 0 (21)

we deduce that

‖un(t)− v0‖X ≤ C4

∫ t

0
‖un(t)− v0‖X + C5. (22)

Finally, we use (22) and the Gronwall inequality to find that

‖un(t)− v0‖X ≤ C6, (23)

which implies that
‖un(t)‖X ≤ C6 + ‖v0‖X . (24)

We now write

‖Sun(t)‖Y ≤ ‖Sun(t)− Sv0(t)‖Y + ‖Sv0(t)‖Y ,

then we use assumption (4) and inequality (23) to deduce that

‖Sun(t)‖Y ≤ LSTC6 + max
t∈[0,T ]

‖Sv0(t)‖Y . (25)

Finally, using similar arguments combined with inequality (11) we see
that

‖Λun(t)‖X ≤ LΛTC6 + max
t∈[0,T ]

‖Λv0(t)‖X . (26)

Lemma 3 is now a consequence of inequalities (24)–(26). �

The second preliminary result is the following.
Lemma 2. Assume (2)–(7). Then, the statements (S1) and (S3) are

equivalent.

Proof. Assume that the statement (S1) holds. We use inequality (11)
to see that the operator Λ : C([0, T ];X) → C([0, T ];X) is continuous and,
therefore, (S1) implies that un − Λun → u − Λu in C([0, T ];X). On the
other hand, the Step 3 in the proof of Theorem 2 shows that u = Λu. We
conclude from above that the statement (S3) holds.
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Conversely, assume that the statement (S3) holds. Denote by Λk the
powers of the operator Λ, for k = 1, 2, . . . Then, inequality (11) implies that
Λk : C([0, T ];X) → C([0, T ];X) is a Lipschitz continuous operator with
some constant Lk > 0, that is

‖Λku− Λkv‖C([0,T ];X) ≤ Lk‖u− v‖C([0,T ];X) ∀u, v ∈ C([0, T ];X). (27)

Moreover, Step 2) in the proof of Theorem 2 guarantees that there exists
p ∈ N such that Λp is a contraction on the space C([0, T ];X), i.e.,

Lp < 1. (28)

Next, we use equality Λpu = u to see that

‖un − u‖C([0,T ];X)

≤ ‖un − Λun‖C([0,T ];X) + ‖Λun − Λ2un‖C([0,T ];X)

+ . . .+ ‖Λp−1un − Λpun‖C([0,T ];X) + ‖Λpun − Λpu‖C([0,T ];X)

and, therefore, (27) we implies that

‖un − u‖C([0,T ];X)

≤
(
1 + L1 + L2 + . . .+ Lp−1

)
‖un − Λun‖C([0,T ];X)

+Lp‖un − u‖C([0,T ];X).

Hence,

(1− Lp)‖un − u‖C([0,T ];X)

≤
(
1 + L1 + L2 + . . .+ Lp−1

)
‖un − Λun‖C([0,T ];X)

and, using inequality (28), we find that

‖un − u‖C([0,T ];X)

≤ 1

1− Lp
(
1 + L1 + L2 + . . .+ Lp−1

)
‖un − Λun‖C([0,T ];X).

We now use assumption (S3) to see that the statement (S1) holds, which
concludes the proof. �

The third preliminary result we need is as follows.
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Lemma 3. Assume (2)–(7) and (14). Then, the statements (S2) implies
the statement (S3). The converse is true if, moreover, (13) holds.

Proof. Assume the statement (S2). Let n ∈ N, t ∈ [0, T ], and let ũn be
the function defined by

ũn = Λun. (29)

Then, using the definition of the operator Λ in the proof of Theorem 2, it
follows that

ũn(t) ∈ K, 〈Aũn(t), v − ũn(t)〉+ j(Sun(t), ũn(t), v) (30)

−j(Sun(t), ũn(t), ũn(t)) ≥ 〈f(t), v − ũn(t)〉 ∀ v ∈ K.

Recall that the space (X, ‖ · ‖X) is a assumed to be strictly convex and
K is a nonempty closed subset of X. Then, we are in a position to define
the projection operator PK : X → K by equality

v = PKξ ⇐⇒ v ∈ K and ‖v − ξ‖X = min
w∈K
‖w − ξ‖X = d(ξ,K), (31)

for any ξ ∈ X. Details can be find in [9, p.52], for instance. We denote
vn(t) = PKun(t) and wn(t) = un(t)− PKun(t). Then,

un(t) = vn(t) + wn(t), vn(t) ∈ K(t) (32)

and, since d(un(t),K) = ‖wn(t)‖X , condition (S2) (a) implies that

‖wn(t)‖X ≤ εn. (33)

We now use condition (S2)(b) with v = ũn(t) ∈ K to see that

〈Aun(t), ũn(t)− un(t)〉 (34)

+j(Sun(t), un(t), ũn(t))− j(Sun(t), un(t), un(t))

+εn(1 + ‖ũn(t)− un(t)‖X) ≥ 〈f(t), ũn(t)− un(t))〉.

On the other hand, we use the regularity vn(t) ∈ K in (32) and test with
v = vn(t) in (30) to find that

〈Aũn(t), vn(t)− ũn(t)〉+ j(Sun(t), ũn(t), vn(t)) (35)

−j(Sun(t), ũn(t), ũn(t)) ≥ 〈f(t), vn(t)− ũn(t)〉.
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We now add inequalities (34), (35) to obtain that

〈Aun(t), un(t)− ũn(t)〉+ (Aũn(t), ũn(t)− vn(t)〉

≤ j(Sun(t), un(t), ũn(t))− j(Sun(t), un(t), un(t))

+j(Sun(t), ũn(t), vn(t))− j(Sun(t), ũn(t), ũn(t))

+εn(1 + ‖ũn(t)− un(t)‖X) + 〈f(t), un(t)− vn(t)〉.

and, therefore,

〈Aun(t), un(t)− ũn(t)〉+ (Aũn(t), ũn(t)− un(t)〉

≤ (Aũn(t), ũn(t)− un(t)〉+ (Aũn(t), vn(t)− ũn(t))

+
[
j(Sun(t), un(t), ũn(t))− j(Sun(t), un(t), un(t))

+j(Sun(t), ũn(t), un(t))− j(Sun(t), ũn(t), ũn(t))
]

+
[
j(Sun(t), ũn(t), vn(t))− j(Sun(t), ũn(t), un(t))

]
+εn(1 + ‖ũn(t)− un(t)‖X) + 〈f(t), un(t)− vn(t)〉.

We now use assumptions (3)(a), (5)(b), (14) and equality un(t) = vn(t)+
wn(t), to find that

(mA − αj)‖un(t)− ũn(t)‖2X (36)

≤ ‖Aũn(t)‖X∗‖wn(t)‖X + cj(‖Sun(t)‖Y , ‖ũn(t)‖X)‖wn(t)‖X

+εn + εn‖un(t)− ũn(t)‖X + ‖f(t)‖X∗‖wn(t)‖X .

Next, (29), (16) combined with the properties of the operators A, S and the
functions cj , f allows us to find a constant D which does not depend on n
and t such that

‖Aũn(t)‖X∗ + cj(‖Sun(t)‖Y , ‖ũn(t)‖X) + ‖f(t)‖X∗ ≤ D. (37)

Therefore, inequality (36) combined with (37) and (33) implies that

(mA − αj)‖un(t)− ũn(t)‖2X ≤ εn‖un(t)− ũn(t)‖X + (D + 1)εn

and, moreover, the smallness assumption (6) guarantees that

‖un(t)− ũn(t)‖2X ≤
εn

mA − αj
‖un(t)− ũn(t)‖X +

D + 1

mA − αj
εn. (38)
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We now use (38), the elementary inequality (21) and the convergence εn → 0
to find that

max
t∈[0,T ]

‖un(t)− ũn(t)‖X → 0.

This implies that that un− ũn → 0 in C([0, T ];X) and, using equality (29),
we conclude that the statement (S3) holds.

Assume now that, in addition, condition (13) is satisfied. Also, assume
that the statement (S3) holds, let n ∈ N, t ∈ [0, T ], v ∈ K, and keep the
notation (29). Then, since ũn(t) ∈ K, it follows that

d(un(t),K) ≤ ‖un(t)− ũn(t)‖X ≤ δn (39)

with δn been given by

δn = max
t∈[0,T ]

‖un(t)− ũn(t)‖X . (40)

Next, we use (30) to deduce that[
〈Aun(t), v − un(t)〉+ j(Sun(t), un(t), v)

−j(Sun(t), un(t), un(t))− 〈f(t), v − un(t)〉
]

+〈Aũn(t), v − ũn(t)〉+ j(Sun(t), ũn(t), v)

−j(Sun(t), ũn(t), ũn(t)) ≥ 〈f(t), v − ũn(t)〉

+
[
〈Aun(t), v − un(t)〉+ j(Sun(t), un(t), v)

−j(Sun(t), un(t), un(t))− 〈f(t), v − un(t)〉
]

and, after some algebra, we obtain that

〈Aun(t), v − un(t)〉+ j(Sun(t), un(t), v)− j(Sun(t), un(t), un(t)) (41)

+
[
〈Aũn(t), v − ũn(t)〉+ 〈Aun(t), un(t)− v〉

]
+
[
j(Sun(t), un(t), un(t))− j(Sun(t), un(t), v)

+j(Sun(t), ũn(t), v)− j(Sun(t), ũn(t), ũn(t))
]

+
[
〈f(t), v − un(t)〉 − 〈f(t), v − ũn(t)〉

]
≥ 〈f(t), v − un(t)〉.
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We now estimate the three terms between brackets in inequality (41).
First, we write

〈Aũn(t), v − ũn(t)〉+ 〈Aun(t), un(t)− v〉

= 〈Aũn(t), un(t)− ũn(t)〉+ 〈Aũn(t)−Aun(t), v − un(t)〉

≤ ‖Aũn(t)‖X∗‖un(t)− ũn(t)‖X + ‖Aũn(t)−Aun(t)‖X‖v − un(t)‖X ,

then we use assumptions (13), Lemma 3 and notation (40) to see that

〈Aũn(t), v − ũn(t)〉+ 〈Aun(t), v − un(t)〉 ≤ Nδn + LAδn‖v − un(t)‖X , (42)

with N being a positive constant which does not depend on n and t.
Second, we use assumptions (5)(b), (14) to see that

j(Sun(t), un(t), un(t))− j(Sun(t), un(t), v)

+j(Sun(t), ũn(t), v)− j(Sun(t), ũn(t), ũn(t))

=
[
j(Sun(t), un(t), un(t))− j(Sun(t), un(t), v)

+j(Sun(t), ũn(t), v)− j(Sun(t), ũn(t), un(t))
]

+
[
j(Sun(t), ũn(t), un(t))− j(Sun(t), ũn(t), ũn(t))

]
≤ αj‖un(t)− ũn(t)‖X‖v − un(t)‖X

+cj(‖Sun(t)‖Y , ‖ũn(t)‖X)‖un(t)− ũn(t)‖X

and, using (16), (40) and the properties of the function cj it follows that

j(Sun(t), un(t), un(t))− j(Sun(t), un(t), v) (43)

+j(Sun(t), ũn(t), v)− j(Sun(t), ũn(t), ũn(t))

≤ αjδn‖v − un(t)‖X +N ′δn.

Here, again, N ′ is a positive constant which does not depend on n and t.
Finally,

〈f(t), v − un(t)〉 − 〈f(t), v − ũn(t)〉

= 〈f(t), ũn(t)− un(t)〉 ≤ ‖f(t)‖X∗‖ũn(t)− u(t)‖X .
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and, therefore, (40) shows that

〈f(t), v − un(t)〉 − 〈f(t), v − ũn(t)〉 ≤ N ′′δn, (44)

with N ′′ being a positive constant which does not depend on n and t.
Then, combining inequalities (41)–(44) we find that

〈Aun(t), v − un(t)〉+ j(Sun(t), un(t), v)− j(Sun(t), un(t), un(t)) (45)

+(N +N ′ +N ′′)δn + (αj + LA)δn‖v − un(t)‖X ≥ 〈f(t), v − un(t)〉.

Therefore, using (45) and notation

εn = max
{

(N +N ′ +N ′′)δn, (αj + LA)δn, δn

}
(46)

we see that

〈Aun(t), v − un(t)〉+ j(Sun(t), un(t), v)− j(Sun(t), un(t), un(t)) (47)

+εn(1 + ‖v − un(t)‖X) ≥ 〈f(t), v − un(t)〉.

On the other hand, (39) and (46) imply that

d(un(t),K) ≤ εn (48)

and, since ũn = Λun, assumption (S3) and notation (40) imply that

δn → 0. (49)

Then, using (46) and (49) we find that

εn → 0. (50)

We now combine relations (47), (48) and (50) to see that condition (S2)
is satisfied, which concludes the proof. �

We now have all the ingredients to provide the proof of Theorem 3.

Proof. Assume (2)–(7) and (14). We use Lemmas 3 and 3 to see that
the following implications hold: (S2) =⇒ (S3) =⇒ (S1). We conclude
from above that the statement (S2) implies the statement (S1).

Assume now that, in addition, (13) holds. Then, Lemmas 3 and the con-
verse part in Lemma 3 show that the following implications hold: (S1) =⇒
(S3) =⇒ (S2). It follows from here that, in this case the statement (S1)
implies the statement (S2), which concludes the proof. �
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Remark 1. We end this section with the remark that, under assump-
tions (2)–(7), (13) and (14), Theorem 3 provides necessary and sufficient con-
ditions which describe the convergence of any sequence {un} ⊂ C([0, T ];X)
to the solution u of Problem P and, therefore, it represents a convergence
criterion. Note that this theorem was obtained under the additional assump-
tions (13) and (14) which are not necessary in the statement of Theorem
2. Removing or relaxing these assumptions is an interesting problem which
deserves to be investigated in the future.

4 A penalty method

Since Problem P is governed by a set of constraints K, for both theoretical
and numerical reasons, it is useful to approximate it by using a penalty
method. A classical penalty method consists in replacing a constrainted
problem by an unconstrainted problem depending on a penalty parameter,
which have a unique solution that converges to the solution of the original
problem, as the penalty parameter converges to zero. Various results in
the study of penalty methods for variational inequalities can be found in
[7, 8, 12,22], for instance.

In this section we illustrate the use of Theorem 3 in the study of a
penalty method associated to inequality (1) and, to this end, we need some
preliminaries. First, we recall that, since X is assumed to be a strictly
convex space, the normalized duality map J : X → 2X

∗
, defined by

J x = {x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖2X = ‖x∗‖2X∗ } ∀x ∈ X,

is a single-valued operator. Details can be found in [4, Proposition 1.3.27]
and [27, Proposition 32.22]. Therefore, J : X → X∗ and

〈J x, x〉 = ‖x‖2X ∀x ∈ X. (51)

Consider now the projection operator PK defined by (31), denote by IX the
identity mapping of X and let P : X → X∗ be the operator given by

P = J (IX − PK). (52)

Then, following [19, p.267], it results that P is a penalty operator of K, that
is, P is bounded, demicontinuous, monotone and K = {x ∈ X | Px = 0X∗ }.

Consider now a sequence {λn} ⊂ IR such that

λn > 0 ∀n ∈ N, (53)

λn → 0, as n→∞ (54)
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and, for each n ∈ N, consider the following problem.

Problem Pn. Find a function un ∈ C([0, T ];X) such that, for all t ∈ [0, T ],
the inequality below holds:

〈Aun(t), v − un(t)〉+
1

λn
〈Pun(t), v − un(t)〉+ j(Sun(t), un(t), v)〉 (55)

− j(Sun(t), un(t), un(t)) ≥ 〈f(t), v − un(t)〉 ∀ v ∈ X.

Note that, in contrast to Problem P, in Problem Pn the constraint
u(t) ∈ K is removed and is replaced with an additional term which contains
the penalty parameter λn. For this reason, we refer to Problem Pn as a
penalty problem associated to Problem P.

We have the following existence, uniqueness and convergence result.

Theorem 3. Assume that (2)–(7), (14), (53) and (54). Then:

a) For each n ∈ N there exists a unique solution un ∈ C([0, T ];X) to
Problem Pn.

b) The solution un of Problem Pn converges to the solution u of Prob-
lem P, i.e.,

un → u in C([0, T ];X), as n→∞. (56)

Proof. a) Let n ∈ N. As already mentioned, the operator P defined by
(52) is bounded, demicontinuous and mootone. Therefore, using a standard
result (Proposition 27.6 in [27]) it follows that P is pseudomonotone. So,
since λn > 0, the sum A + 1

λn
P is a pseudomnotone operator too, for

each n ∈ N. The unique solvability of Problem Pn follows now as a direct
consequence of Theorem 2.

b) Let n ∈ N and t ∈ [0, T ]. Then, using the properties of the operator
P , for any v ∈ K we have

〈Pun(t), v − un(t)〉 = 〈Pun(t)− Pv, v − un(t)〉 ≤ 0

and, combining this inequality with (55) and (53), we deduce that the se-
quence {un} satisfies condition (15)(b) with εn = 0. Therefore, Lemma 3
guarantees that the bounds (16) hold.

Next, we use (55) and assumption (14) to see that

1

λn
〈Pun(t), un(t)− v〉 ≤ 〈Aun(t), v − un(t)〉

+j(Sun(t), un(t), v)− j(Sun(t), un(t), un(t)) + 〈f(t), un(t)− v〉

≤
[
‖Aun(t)‖X∗ + ‖f(t)‖X∗ +

(
cj(‖Sun(t)‖Y , ‖un(t)‖X)

)]
‖un(t)− v‖X
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and, using the bounds (16) we deduce that

1

λn
〈Pun(t), un(t)− v〉 ≤ E‖un(t)− v‖X , (57)

with E being a positive constant which does not depende on n, t and v.
On the the hand, using (52) and (51) we have

〈Pun(t), un(t)− PKun(t)〉 = ‖un(t)− PKun(t)‖2X . (58)

We now write (57) with v = PKun(t) ∈ K and use (58) to deduce that

‖un(t)− PKun(t)‖X ≤ Eλn. (59)

Inequality (59) combined with assumption (54) shows that condition (15)(a)
is satisfied, with εn = Eλn.

To conclude, the sequence {un} satisfies both conditions (15)(a) and
(15)(b) and, therefore, it satisfies the statement (S2). We now use Theorem
3 in order obtain the convergence (56), which concludes the proof. �

Remark 2. A pointwise convergence result for penalty problems in the
study of history-dependent inequalities of the form (1) has been obtained
in [23, p. 168]. There, the proof was based on arguments of pseudomono-
tonicity and compactness. In contrast, the convergence result (56) is an
uniform convergence result and, moreover, its proof results as a consequence
of the convergence criterion in Theorem 3.

5 Well-posedness results

Well-posedness concepts of nonlinear problems represent an important topic
in Analysis which has known a significant development in the last decades.
Originating in the papers of Tykhonov [25] and Levitin-Polyak [14] (where
the well-posedness of minimization problems was considered), well-posedness
concepts have been extended to a large number of problems, including non-
linear equations, inequality problems, inclusions, fixed point problems, and
optimal control problems. In particular, the well-posedness of variational in-
equalities was studied for the first time in [16,17]. Comprehensive references
in the field are [5, 11,15,26,28] and, more recently, [20].

The well-posedness concepts depend on the problem considered, vary
from author to author, and even from paper to paper. Nevertheless, all these
concepts are based on two main ingredients: the existence and uniqueness
of the solution to the corresponding problem and the convergence to it of
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a special class of sequences, the so-called approximating sequences. In this
section we introduce two well-posedness concepts in the study of Problem
P and discuss their relationship. We start with the following definition.

Definition 1. A sequence {un} ⊂ C([0, T ];X) is said to be:

a) a T 1-approximting sequence if un(t) ∈ K for any n ∈ N, t ∈ [0, T ],
and there exists a sequence 0 ≤ εn → 0 such that

〈Aun(t), v − un(t)〉+ j(Sun(t), un(t), v)− j(Sun(t), un(t), un(t)) (60)

+εn‖v − un(t)‖X ≥ 〈f(t), v − un(t)〉 ∀ v ∈ K, n ∈ N, t ∈ [0, T ].

b) a T 2-approximating sequence if there exists a sequence 0 ≤ εn → 0
such that (15) holds, i.e., it satisfies condition (S2).

It is easy to see that any T 1-approximating sequence is a T 2-approximating
sequence. The example below shows that the converse is not true.

Example 1. Consider the history-dependent inequality (1) in the par-
ticular case when X = Y = IR, K = [0, 1] for all t ∈ [0, 1], Au = u for all
u ∈ IR, j(y, u, v) = yv for all y, u, v ∈ IR, f(t) = t for all t ∈ [0, 1] and

Su(t) = k

∫ t

0
u(s) ds ∀u ∈ C([0, T ]), t ∈ [0, 1],

whith k being an positive constant such that k ≥ 2. Then, problem P
consists to find a function u ∈ C([0, T ]) such that

u(t) ∈ [0, 1],
(
u(t) + k

∫ t

0
u(s) ds− t

)
(v − u(t)) ≥ 0 (61)

for all v ∈ [0, 1], t ∈ [0, 1]. It is easy to check that the function

u(t) =
1

k
(1− e−kt) ∀ t ∈ [0, 1] (62)

is the unique solution of this inequality. Moreover, the sequence {un} ⊂
C([0, T ]) defined by

un(t) =
1

k
(1− e−kt) +

1

kn
∀n ∈ N, t ∈ [0, 1]

is a T 1-approximating sequence since un(t) ∈ K for all n ∈ N, t ∈ [0, 1] and,
in addition, inequality (60) holds with εn = k+1

kn . In contrast, the sequence
{u′n} ⊂ C([0, T ]) defined by

u′n(t) =
1

k
(1− e−kt)− 1

n
∀n ∈ N, t ∈ [0, 1]
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is not a T 1-approximating sequence since un(0) = − 1
n 6∈ K, for any n ∈ N.

Let n ∈ N and t ∈ [0, 1]. We note that d(u′n(t),K) ≤ |u′n(t)−u(t)| = 1
n and,

moreover, {u′n} satisfies inequality (15)(b) with εn = k+1
n . We conclude

from above that {u′n} satisfies condition (S2) and, therefore, it is a T 2-
approximating sequence.

We now proceed with the following definition, for i = 1, 2.
Definition 2. Problem P is said to be T i-well-posed if it has a unique

solution u and every T i-approximating sequence converges in C([0, T ];X)
to u.

Denote

SP =
{
{un} ⊂ C([0, T ];X) : u→ u in C([0, T ];X)

}
,

STi =
{
{un} ⊂ C([0, T ];X) : {un} is a T i-approximating sequence

}
,

for i = 1, 2. Then, Defintion 5 states that, for i = 1, 2, Problem P is
T i-well-posed if and only if STi ⊂ SP .

We are now turn to our main result in this section.
Theorem 4. Assume (2)–(7). Then, the following statements hold.

a) Problem P is T 1-well-posed, i.e., ST1 ⊂ SP .
b) If, moreover, (14) holds, then Problem P is T 2-well-posed, i.e., ST2 ⊂

SP .
c) If, in addition, (13) and (14) hold, then ST2 = SP .

Proof. a) The unique solvability of Problem P follows from Theorem 2.
Let {un} ⊂ C([0, T ];X) be a T 1-approximating sequence. Then, (60) holds
with 0 ≤ εn → 0. Let n ∈ N and t ∈ [0, T ]. We take v = un(t) in (1) and
v = u(t) in (60), then we add the resulting inequalities to obtain that

〈Aun(t)−Au(t), un(t)− u(t)〉

≤ j(Sun(t), un(t), u(t))− j(Sun(t), un(t), un(t))

+j(Su(t), u(t), un(t))− j(Su(t), u(t), u(t)) + εn‖un(t)− u(t)‖X .

We now use assumptions (3)(a) and (5)(b) to deduce that

(mA − αj)‖un(t)− u(t)‖X ≤ βj‖Sun(t)− Su(t)‖X + εn.
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Then, the smallness condition (6), assumption (4) on the operator S and
the Gronwall argument leads to an inequality of the form

‖un(t)− u(t)‖X ≤ Cεn

with some constant C which does not depend on n and t. This implies that
un → u in C([0, T ];X). Therefore, using Definition 5 with i = 1 we find
that Problem P is T 1-well-posed.

b) Definition 5 b) shows that any T 2-approximating sequence satisfies
the statement (S2). Therefore, using Theorem 3 it follows that, under the
additional assumption (14), any T 2-approximating sequence converges in
C([0, T ];X) to the solution u. Hence, using Definition 5 with i = 2 we find
that Problem P is T 2-well-posed,

c) Assume now that (13) and (14) hold. Then, Theorem 3 and Definition
5 b) show that {un} ∈ ST2 if and ony if {un} ∈ SP , which concludes the
proof. �

A validation of Theorem 5 is as follows.
Example 2. Consider the history-dependent variational inequality (61)

in Example 5. Recall that the solution of this ineqaulity is the function (62)
and, moreover, the sequences {un} and {u′n} are T 1- and T 2-approximating
sequences, respectively. It is easy to see that these sequences converge uni-
formly to the solution (62), which validate the statement of Theorem 5. We

end this section with the following comments.

Remark 3. 1) Definition 5 shows that the inclusion ST1 ⊂ ST2 always
holds. Moreover, Example 5 shows that this inclusion is strict.

2) Definition 5 combined with inclusion ST1 ⊂ ST2 shows that the T 2-
well-posedness of Problem P implies its T 1-well-posedness. Nevertheless,
Theorem 5 states that the T 1-well-posedness of Problem P arises under less
restrictive assumptions than those used to prove its T 2-well-posedness.

3) The equality ST2 = SP in Theorem 5 c) shows that, under the ad-
ditional assumptions (13) and (14), among all the concepts which make in-
equality (1) well-posed, the T 2-well-posedness concept generates the largest
set of approximating sequences. Indeed, to prove this statement, we con-
sider a different well-posedness concept, say the T -well-posedness concept,
defined by the set of approximating sequences ST . Then, if Problem P
is T -well posed we have ST ⊂ SP and, since ST2 = SP , we deduce that
ST ⊂ ST2 , which ends the proof.
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6 An example

In this section we present an example of history-dependent variational in-
equality of the form (1) for which our results in Sections 3–5 hold. The
inequality represents the variational formulation of the following history-
dependent boundary value problem with unilateral constraints.

Problem M. Find u : [0, T ]× Ω→ IR and ξ : [0, T ]× Ω→ IR such that

u(t) ≤ g,

µ∆u(t) +

∫ t

0
b(t− s)∆u(s) ds+ ξ(t) + f0(t) ≥ 0,

(u(t)− g)
(
µ∆u(t) +

∫ t

0
b(t− s)∆u(s) ds+ ξ(t) + f0(t)

)
= 0

−ξ(t) = p(u(t))


in Ω,

u(t) = 0 on Γ.

Here Ω ⊂ IR2 is a regular domain with boundary Γ, [0, T ] represents the
time interval of interest with T > 0, g and µ are positive constants, and f0,
p are given functions which will be described below. This problem models
the equilibrium of a viscoelastic membrane which occupes the domain Ω, is
fixed on its boundary and is in contact along its surface with an obstacle,
the so-called foundation. The unknown u is the vertical displacement of the
membrane, µ is the Lamé coefficient and f0 represents the density of applied
body force. The obstacle is assumed to be made of a rigid body covered of a
layer of deformable material with thickness g. The unknown ξ represents the
reaction of this layer. The model above is obtained by taking into account
the equilibrium equation, the normal compliance contact condition for the
deformable layer and the Signorini contact condition for the rigid body. It
represents a two-dimensional version of various models of contact studied
in [20,23], for instance.

We now turn to the variational formulation of Problem M and, to this
end, we use the short hand notation X for the Sobolev space H1

0 (Ω) endowed
with the inner product

(u, v)X = (∇u,∇v)L2(Ω)2 ∀u, v ∈ X

and the associated norm ‖·‖X . Recall that the Friedrichs-Poincaré inequality
guarantees that X is a Hilbert space. We denote in what follows by X∗ the



M. Sofonea 165

dual of X and by 〈·, ·〉 the duality pairing between X∗ and X. Also, we use
x to represent a typical point in Ω∪Γ and, for simplicity, we sometimes skip
the dependence of various functions on the spatial variable x.

Next, we consider the following assumptions on the data p and f0.

p : Ω× IR→ IR+ is such that

(a) there exists Lp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2|

for all r1, r2 ∈ IR, a.e. x ∈ Ω,

(b) (p(x, r1)− p(x, r2)) (r1 − r2) ≥ 0
for all r1, r2 ∈ IR, a.e. x ∈ Ω,

(c) p(·, r) is measurable on Ω for all r ∈ IR,

(d) p(x, r) = 0 if and only if r ≤ 0, a.e. x ∈ Ω.

(63)

f0 ∈ C([0, T ];L2(Ω)). (64)

Moreover, we recall the inequalities

µ > 0, g > 0. (65)

We now define the setK, the operatorsA : X → X∗ and S : C([0, T ];X)→
C([0, T ];X∗), and the functions j : X∗ ×X ×X → IR, f : [0, T ] → X∗ by
equalities

K = { v ∈ X : v ≤ g a.e. in Ω }, (66)

〈Au, v〉 = µ

∫
Ω
∇u · ∇v dx+

∫
Ω
p(u)v dx ∀u, v ∈ X, (67)

〈Su(t), v〉 =

∫
Ω

(∫ t

0
b(t− s)∇u(s) ds

)
· ∇v dx (68)

∀u ∈ C([0, T ];X), t ∈ [0, T ], v ∈ X,

j(y, u, v) = 〈y, v〉 ∀ y ∈ X∗, u, v ∈ X, (69)

〈f(t), v〉V =

∫
Ω
f0(t) v dx ∀ v ∈ X, t ∈ [0, T ]. (70)

With these notation, by using standard arguments we deduce the follow-
ing variational formulation of Problem M, in terms of displacement.
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Problem MV . Find a displacement field u : [0, T ] → X such that, for all
t ∈ [0, T ], the inequality below holds:

u(t) ∈ K, 〈Au(t), v − u(t)〉+ j(Su(t), u(t), v)− j(Su(t), u(t), v) (71)

≥ 〈f(t), v − u(t)〉 ∀ v ∈ K.

It is easy to see that, under assumptions (63)–(65), the set K, the op-
erators A, S and the functions j, f defined by (66)–(70) satisfy conditions
(2)–(7) on the spaces X = H1

0 (Ω) and Y = X∗, with mA = µ, αj = 0 and
βj = 1. Therefore, Theorem 2 guarantees the unique solvability of problem
MV . Moreover, conditions (13) and (14) are satisfied, with LA = µ and
cj(r, s) = r for all r, s ∈ IR+. Hence, the convergence criterion provided by
Theorem 3 can be used in this case. It allows us to identify various sequences
which convergence to the solution of problem MV and to provide various
mechanical interpretation. For instance, using the arguments in [23] it is
possible to use Theorem 3 in order to show that the solution of the problem
MV depends continuously on the Lamé coefficient µ and the thickness g. In
addition, the penalty method in Theorem 4 works in the study of Problem
MV which, in addition, is both T 1- and T 2-well-posed.
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