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Abstract

In the framework of general nonlinear theory of six-parameter shells
we derive pointwise necessary conditions for energy minimizers. We
consider conservative problems and exploit the property that the sec-
ond variation of the potential energy is non-negative if an equilibrium
state represents an energy minimizer. Then, using variational calculus
we derive the relevant Legendre-Hadamard condition in the theory of
shells. Finally, we apply the necessary Legendre-Hadamard inequality
to several isotropic strain energy functions proposed previously in the
literature on shells.
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1 Introduction

In this paper, we consider the general nonlinear theory of 6-parameter
(Cosserat) elastic shells. This is a two-dimensional model for curved shells,
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in which any point x of the deformable midsurface is endowed with six de-
grees of freedom: three for the translation and three for its rotation. Thus,
the basic kinematical variables are the deformation vector field m(x) and
the microrotation tensor field R(x). The foundations of this general shell
theory have been presented in [1–4], while several applications and further
developments can be found, e.g., in [5–10]. An existence theorem under con-
vexity assumptions has been proved in [11,12]. In these works, the shells are
assumed to be made of a classical Cauchy material. However, we mention
that the kinematical model of 6-parameter shells coincides with the kinemat-
ical model of Cosserat shells in which the three-dimensional material is a
Cosserat continuum, as considered in [13, 14]. Moreover, the balance equa-
tions have the same forms in the two approaches. The difference resides
only in the constitutive assumptions, i.e. in the expression of the strain
energy density W , which has to be specified for each particular model (ei-
ther Cauchy or Cosserat material). In this respect, a higher order refined
Cosserat shell model has been derived and investigated in [15–19], where the
strain energy density W includes terms of order O(h5) in the thickness h.

The theoretical results established in this paper hold true for a gen-
eral strain energy function W (i.e., we make no specific constitutive as-
sumptions), so they are valid for general nonlinear models of 6-parameter
or Cosserat shells. In this framework, we obtain necessary conditions of
Legendre-Hadamard type for equilibrium states which are energy minimiz-
ers. Thus, we derive a counterpart in the theory of shells of the necessary
conditions for energy minimizers in three-dimensional Cosserat elasticity
presented in [20]. We recall that the Legendre-Hadamard condition has an
important physical basis, since it implies the reality of propagation speeds
(see, e.g., [21, 22] for the classical elasticity, and [23–25] for the micropo-
lar theory). In the calculus of variations the Legendre-Hadamard inequal-
ity is also called ellipticity condition, because it expresses that the Euler
equations of the associated functional are elliptic (see, e.g., [26, 27]). More-
over, the Legendre-Hadamard inequality is a necessary condition for sta-
bility, in the sense that if the Legendre-Hadamard condition is violated in
some point x, then the configuration fields m(x) and R(x) do not represent
an energy minimizer. The strict form of the Legendre-Hadamard inequal-
ity (also called strong ellipticity condition) coincides with the well-known
material stability condition in classical elasticity (see, e.g., [28]). We men-
tion that the Legendre-Hadamard conditions for a Cosserat model of fiber-
reinforced elastic solids have been established recently in [29–31]. In the
framework of micropolar six-parametric shells regarded as two-dimensional
generalized continua, the relevant results concerning constitutive inequali-
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ties, strong ellipticity condition, and acceleration waves have been presented
first in [4, 32,33].

To derive the Legendre-Hadamard condition for 6-parameter shells we
proceed from the property that the second variation of the potential energy
is necessarily non-negative if an equilibrium state represents a minimum of
the potential energy [28, 34]. In Section 2 we present briefly the kinemat-
ical model of 6-parameter shells and the equilibrium equations, together
with the natural boundary conditions, derived from the virtual-power state-
ment. In Section 3 we consider conservative problems and compute the
first and second variations of the potential energy functional E at an equi-
librium state. Using the non-negativity property of the second variation
Ë ≥ 0 at equilibrium, we derive (in Section 4) the necessary conditions for
energy minimizers, expressed in the form of integral inequalities. Then,
we adapt the method employed in [20, 35] and use complex-valued func-
tions to obtain in Section 5 the relevant Legendre-Hadamard condition for
6-parameter (Cosserat) shells. Finally, in Section 6 we apply the Legendre-
Hadamard inequality to the case of isotropic shells and investigate three
specific constitutive models with different complexity degrees. As a result,
we obtain in each case the conditions imposed on the constitutive coeffi-
cients by the Legendre-Hadamard inequality. In particular, in the case of a
strain energy density with coupled membrane and bending terms, we obtain
necessary conditions for stability which involve both the material constants
and the geometric characteristics of the shell (such as thickness and initial
curvature of the midsurface).

In this work, we employ usual notation and conventions, such as the
summation convention for diagonally repeated indices. The Latin indices
i, j, . . . range over the set {1, 2, 3}, while the Greek subscripts and super-
scripts α, β, . . . range over {1, 2}. For an arbitrary second order tensor T ,
we denote by sym(T ) its symmetric part, skw(T ) is the skew part, and
‖T ‖ =

√
T · T is the norm of T . The inner product of two second order

tensors T and S is given by T · S = tr
(
TSt

)
. If M is a fourth order ten-

sor, then we designate by M[T ] the second order tensor resulting from the
linear action of M on T [21]. For a scalar function W (T ,S), we denote the
partial derivatives with respect to T and S by WT and WS , respectively,
which are second order tensors. The second partial derivatives of W are the
fourth order tensors WTT , WTS , WST and WSS . Further notations will
be introduced in the text, as they appear in the developments.
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2 Kinematical model and equilibrium equations

Let K be the three-dimensional reference configuration of a shell-like body,
in which the position vector is denoted by X(θ1, θ2, θ3), the midsurface
by Ω and the thickness by h. Here, (θi) represent convected curvilinear
coordinates (i = 1, 2, 3), where θ3 = ζ stands for the thickness coordinate.
Thus, we have

X(θ1, θ2, ζ) = x(θ1, θ2) + ζ n(θ1, θ2), (θ1, θ2) ∈ ω ⊂ R2, ζ ∈
(
− h

2
,
h

2

)
,

(1)
where x(θ1, θ2) is the position vector of points on the midsurface Ω and
n(θ1, θ2) is the unit normal to Ω. The domain ω is assumed to be a bounded
open connected domain with Lipschitz boundary ∂ω in the plane R2. Let
aα and aα be the covariant and contravariant basis vectors in the tangent
plane, respectively, such that

aα =
∂x

∂θα
, aα · aβ = δαβ , n =

a1 × a2

‖a1 × a2‖
, (2)

where δαβ is the Kronecker symbol (α, β = 1, 2). We also denote with a3 =

a3 = n the unit normal vector. Consider the tensor 1 given by

1 = aα ⊗ aα = aαβa
α ⊗ aβ = aαβaα ⊗ aβ , with aαβ = aα · aβ , (3)

and designate by a the determinant a(θ1, θ2) = det
(
aαβ
)

2×2
> 0. In what

follows, we employ the surface gradient ∇s on the midsurface Ω, which is
given by

∇sf =
∂f

∂θα
⊗ aα for any field f . (4)

Thus, we have 1 = ∇sx , and 1 is also called the first fundamental tensor
of the surface Ω.

The shell in its reference configuration is described by the position vec-
tor x(θ1, θ2) and the initial microrotation tensor Q0(θ1, θ2). Let {d0

1,d
0
2,d

0
3}

denote the three orthonormal directors which determine the microrotation
tensor Q0 in the reference configuration K. Also, let {d1,d2,d3} be the
orthonormal triad of directors attached to the deformed configuration Kc .
Then, the deformation of the shell is characterized by two fields: the de-
formation vector m(x) and the microrotation tensor R(x) = di ⊗ d0

i . The
deformation and microrotation fields m and R are regarded as being in-
dependent. Note that these fields may also depend on time, but since this
dependence is not important in our development it will not be made explicit.
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The nonlinear strain measures for 6-parameter (Cosserat) elastic shells
(see, e.g., [2, 3, 6, 12,18]) are given by

E = RT∇sm− 1 (the shell strain tensor) (5)

and

K = ax
(
RT ∂R

∂θα

)
⊗ aα (the shell bending-curvature tensor). (6)

Let us designate by I the identity tensor in the 3-space and by e = −I × I
the third order Ricci permutation tensor (see, e.g., [13]). We also denote by
“ : ” the double-dot product (scalar contraction of two indices) defined by

X : Y = XijkYjkr ai ⊗ ar and X : Z = XijkZjk ai ,

for any tensors of the form X = Xijkai ⊗ aj ⊗ ak , Y = Yijka
i ⊗ aj ⊗ ak

and Z = Zija
i ⊗ aj . Then, we can express the axial vector ax(S) of any

skew tensor S as the product

ax(S) = −1

2
e : S. (7)

Accordingly, the bending-curvature tensor (6) can be written in the form

K = −1

2
e :
(
RT ∂R

∂θα

)
⊗ aα = −1

2
e : RT

( ∂R
∂θα
⊗ aα

)
,

i.e.,

K = −1

2
e : RT∇sR. (8)

The areal strain energy density for elastic 6-parameter shells has the
form

W = W (E,K;x), (9)

and the total strain energy is given by

W =

∫
Ω
W (E,K;x) da . (10)

In this paper we assume that the function W is continuous with respect to
x and twice continuously differentiable with respect to E and K.

Equilibrium states of the shell are defined as states that satisfy the
virtual-power statement

Ẇ = P, (11)
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where P is the virtual power of the loads. The explicit expression of P
will be deduced below in (22). Let us derive the equilibrium equations
and natural boundary conditions for 6-parameter shells from the virtual-
power statement (11). Here, superposed dots identify variational derivatives.
These are induced by the derivatives with respect to the parameter ε , of the
one-parameter deformation and microrotation fields m(x; ε) and R(x; ε)
(evaluated at ε = 0), where m(x) = m(x; 0) and R(x) = R(x; 0) are
equilibrium fields. By the chain rule we have

Ẇ =

∫
Ω
Ẇ (E,K;x) da, with Ẇ = WE · Ė +WK · K̇. (12)

Let us determine first the variational derivatives Ė and K̇. In view of (5)
we have

Ė = (RT∇sm− 1)· = RT∇sṁ+ Ṙ
T∇sm . (13)

If we denote by

u = ṁ, Ω = ṘRT , and ω = ax(Ω), (14)

where Ω is a skew tensor, then the relation (13) becomes

Ė = RT (∇su−Ω∇sm). (15)

Further, let us show that
K̇ = RT∇sω. (16)

Indeed, using the representation (8) we get

K̇ = −1

2
e : (RT∇sR)· = −1

2
e : (Ṙ

T∇sR+RT∇sṘ)

= −1

2
e :
(
−RTΩ∇sR+RT∇s(ΩR)

)
.

(17)

Here, we have

∇s(ΩR) =
∂(ΩR)

∂θα
⊗ aα =

( ∂Ω

∂θα

)
R⊗ aα + Ω∇sR,

so the relation (17) reduces to

K̇ = −1

2
e :
(
RT ∂Ω

∂θα
R
)
⊗ aα = ax

(
RT ∂Ω

∂θα
R
)
⊗ aα

= RT ax
( ∂Ω

∂θα

)
⊗ aα = RT∇sω.
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The equation (16) is proved. Inserting (15) and (16) in (12)2 we obtain

Ẇ = RWE · (∇su−Ω∇sm) +RWK · ∇sω. (18)

We can transform the product

RWE ·Ω∇sm = RWE(∇sm)T ·Ω = skw
(
RWE(∇sm)T

)
·Ω

= 2ax
[
skw

(
RWE(∇sm)T

)]
· ω

and, hence, the variational derivative (18) takes the form

Ẇ = RWE · ∇su− 2 ax
[
skw

(
RWE(∇sm)T

)]
· ω +RWK · ∇sω. (19)

Next, we integrate the last equation and use relations of the type

T · ∇sv = Divs(T
Tv)− v ·DivsT , (20)

where Divs is the surface divergence given by DivsT = ∂T
∂θα a

α and Divsv =
∂v
∂θα ·a

α, for any tensor field T and vector field v, respectively. Thus, applying
the divergence theorem for surfaces (see, e.g., [34, 36]), the virtual-power
equation (11) becomes

−
∫

Ω

{
Divs(RWE)·u+ Divs(RWK)·ω + 2ax

[
skw

(
RWE(∇sm)T

)]
·ω
}

da

+

∫
∂Ω

[
(RWE)ν · u+ (RWK)ν · ω

]
d` = P,

(21)
where ν is the exterior unit normal vector to the boundary curve ∂Ω, lying
in the plane tangent to Ω. We see that the virtual power has the following
form

P =

∫
Ω

(f · u+ l · ω)da+

∫
∂Ω

(t · u+ c · ω) d` , (22)

where f and l are densities of force and couple acting in Ω, while t and c
are densities of force and couple acting on the boundary ∂Ω.

Since the fields u and ω are independent and arbitrary, we obtain from
(21), (22) and the fundamental lemma of calculus of variations the following
equilibrium equations

Divs(RWE) + f = 0 and

Divs(RWK) + 2 ax
[
skw

(
RWE(∇sm)T

)]
+ l = 0 in Ω,

(23)

and the boundary conditions

(RWE)ν = t on ∂Ωt , (RWK)ν = c on ∂Ωc , (24)
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where ∂Ωt is the part of the boundary ∂Ω where position is not assigned, and
∂Ωc is the subset of ∂Ω where microrotation is not assigned. We consider
that position is assigned on ∂Ω \ ∂Ωt and microrotation is assigned on ∂Ω \
∂Ωc . Thus, the variations u and ω satisfy

u = 0 on ∂Ω \ ∂Ωt and ω = 0 on ∂Ω \ ∂Ωc . (25)

Accordingly, the fields u and ω are called admissible if they fulfill the condi-
tions (25) and have the degree of regularity implied by the foregoing deriva-
tion.

Equations (23) and (24) represent the equilibrium conditions for six-
parameter (Cosserat) elastic shells. These equations have been presented
previously in the literature on shells (see, e.g., [2, 3, 6, 12]) using various
notations.

Remark 1. One can write alternatively the equilibrium equation (23)2

using the vector invariant
(
·
)
× (also called Gibbsian cross) instead of the

operator ax
(
skw(·)

)
. Indeed, for any second order tensor T , the vector

invariant T× satisfies the relation

T× = −2 ax(skwT ) . (26)

Here, we recall that the vector invariant T× is defined for any tensor ex-
pressed in the form T =

∑3
i=1 x(i) ⊗ y(i) by the relation (see, e.g., [37])

T× =
( 3∑
i=1

x(i) ⊗ y(i)

)
×

=
3∑
i=1

x(i) × y(i) . (27)

Then, the second equilibrium equation (23)2 can be written in the equivalent
form

Divs(RWK)−
[
RWE(∇sm)T

]
× + l = 0 in Ω. (28)

3 First and second variations of the energy at
equilibrium

In this paper, we consider conservative problems. Thus, we assume the
existence of a potential energy E such that

E =W −L (modulo an additive constant), (29)
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where L is a load potential, whose variational derivative is equal to the
virtual power, i.e. L̇ = P. Then, by virtue of (11) we have

Ė = Ẇ − L̇ = Ẇ − P = 0.

Thus, equilibrium states can be seen as states that render the potential
energy stationary, i.e.

Ė = 0 (for all admissible u, ω). (30)

This is a restatement of the virtual-power principle (11). Therefore, we see
that energy minimizers necessarily satisfy the equilibrium equations (23)
and the boundary conditions (24).

In what follows, we confine our attention to dead–load problems. These
are conservative problems in which the load potential has the form (modulo
an additive constant)

L =

∫
Ω

(f ·m+N ·R)da+

∫
∂Ωt

t ·m d`+

∫
∂Ωc

M ·R d` , (31)

where f , t are assigned configuration–independent vector fields, whileN ,M
are assigned configuration–independent tensor fields. The vector f corre-
sponds to the density of force acting in Ω, and t is as in the boundary
condition (24)1 . In view of the relations

N · Ṙ = NRT ·Ω = skw(NRT ) ·Ω = 2 ax
[
skw(NRT )

]
· ω ,

we see that

L̇ =

∫
Ω

(f · u+ l · ω)da+

∫
∂Ωt

t · ud`+

∫
∂Ωc

c · ω d` , (32)

where

l = 2 ax
[
skw(NRT )

]
and c = 2 ax

[
skw(MRT )

]
. (33)

Hence, we notice that the couple density l and the couple traction c are
configuration–dependent in the dead–load problem. In this respect, it is
known that configuration–independent couples are associated with non–
conservative problems [38].

In view of the above relations (18), (29) and (32), the first variation of
the energy is given by

Ė =

∫
Ω

(
RWE ·∇su+RWK ·∇sω −RWE(∇sm)T ·Ω− f ·u− l·ω

)
da

−
∫
∂Ωt

t · ud`−
∫
∂Ωc

c · ω d` .

(34)
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The first variation (34) vanishes for all admissible fields u and ω if and only
if {m,R} is an equilibrium state.

Let us consider now the second variation of the energy at equilibrium.
If the equilibrium state {m,R} is an energy minimizer, then it is necessary
that the second variation of the energy in {m,R} is non-negative, i.e.

Ë [m,R] ≥ 0 (35)

for all vector fields u and ω satisfying the boundary conditions (25).
In order to compute the second variation, we consider again the one pa-

rameter family of deformation and microrotation fields m(x; ε) and R(x; ε)
such that m(x) = m(x; 0) and R(x) = R(x; 0) are equilibrated. Denoting
with a prime (·)′ the derivative with respect to ε, we can write the variations

u(x) = ṁ(x) = m′(x; 0) and y(x) = m̈(x) = m′′(x; 0). (36)

Let us introduce the skew tensor field W (x; ε) given by

W (x; ε) = R′(x; ε)RT (x; ε) (37)

and define the skew tensors Ω(x) and Φ(x) by

Ω(x) = W (x; 0) = Ṙ(x)RT (x) and Φ(x) = W ′(x; 0) = Ẇ (x),
(38)

as well as the axial vectors

w(x; ε) = ax
(
W (x; ε)

)
, ω(x) = ax

(
Ω(x)

)
= w(x; 0),

ϕ(x) = ax
(
Φ(x)

)
= ẇ(x).

Then, we can write

R′′(x; ε) = W ′(x; ε)R(x; ε) +W (x; ε)R′(x; ε)

= W ′(x; ε)R(x; ε) +W 2(x; ε)R(x; ε).

Putting ε = 0 in the last relation, we deduce

R̈ = ΦR+ Ω2R . (39)

Next, we compute the derivatives of terms appearing in E ′ (cf. (34))(
RWE ·∇sm′

)′
= RWE ·∇sm′′+WRWE ·∇sm′+R

(
WE

)′ ·∇sm′ , (40)

and(
RWK · ∇sw

)′
= RWK · ∇sw′ +WRWK · ∇sw +R

(
WK

)′ · ∇sw , (41)
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and(
RWE(∇sm)T ·W

)′
= RWE(∇sm)T ·W ′ +WRWE(∇sm)T ·W

+RWE(∇sm′)T ·W +R
(
WE

)′
(∇sm)T ·W .

(42)
Also, we have

(l·w
)′

= l·w′+2 ax
[
skw(NRT )′

]
·w = l·w′+N(R′)T ·W = l·w′+NRT ·W 2

(43)
and a similar equation holds for (c · w

)′
. Using relations (40)-(43) and

putting here ε = 0, we can write the second variation of the energy at
equilibrium in the form

Ë =

∫
Ω

(
RWE ·∇sy +RWK ·∇sϕ−RWE(∇sm)T ·Φ− f ·y − l·ϕ

)
da

−
∫
∂Ωt

t·y d`−
∫
∂Ωc

c·ϕd` +

∫
Ω

(
2ΩRWE ·∇su+ ΩRWK ·∇sω

−ΩRWE(∇sm)T ·Ω
)

da+

∫
Ω

(
R
(
WE

)· · ∇su+R
(
WK

)· · ∇sω
−R

(
WE

)·
(∇sm)T ·Ω−NRT ·Ω2

)
da−

∫
∂Ωc

MRT ·Ω2 d`.

(44)
Since y = 0 on ∂Ω \ ∂Ωt and ϕ = 0 on ∂Ω \ ∂Ωc , we see that the first three
integrals in the right-hand side of (44) vanish, by virtue of (30) with (34).
Further, inserting here the derivatives(
WE

)·
= WEE [Ė] +WEK [K̇] and

(
WK

)·
= WKE [Ė] +WKK [K̇],

(45)
we obtain the final form of the second variation of the energy at equilibrium

Ë =

∫
Ω

(
RT∇su ·WEE [RT∇su] + 2RT∇su ·WEK [RT∇sω]

+RT∇sω ·WKK [RT∇sω]
)

da+

∫
Ω
F (m,R,u,Ω) da−

∫
∂Ωc

MRT ·Ω2d`,

(46)
where we have denoted by F the expression

F (m,R,u,Ω) = 2ΩRWE ·∇su+ ΩRWK ·∇sω −ΩRWE(∇sm)T ·Ω
−2RT∇su ·WEE [RTΩ∇sm]− 2RTΩ∇sm ·WEK [RT∇sω]

+RTΩ∇sm ·WEE [RTΩ∇sm]−NRT ·Ω2.
(47)
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Notice that the second derivatives WEE and WKK possess major symme-

tries, and it holds
(
WEK

)T
= WKE , so we have

A ·WEK [B] = B ·WKE [A] ,

for any second order tensors A, B.

4 Necessary conditions for energy minimizers

In this section, we derive necessary conditions which result from the non-
negativity of the second variation of the energy at equilibrium. Thus, we
apply the condition (35) for variations u and ω of a special form.

Let (θ1
0, θ

2
0) be an arbitrary fixed interior point of ω ⊂ R2 and x0 =

x(θ1
0, θ

2
0) be the corresponding interior point of the midsurface Ω ⊂ R3. Let

D be an arbitrary bounded open set of R2 and σ > 0 a constant. Using a
similar method as in [20,35], we consider variations of the following form

u
(
x(θ1, θ2)

)
=

{
σ v(ζ1, ζ2) , if (ζ1, ζ2) ∈ D

0 , if (ζ1, ζ2) 6∈ D
and

ω
(
x(θ1, θ2)

)
=

{
σ η(ζ1, ζ2) , if (ζ1, ζ2) ∈ D

0 , if (ζ1, ζ2) 6∈ D
with ζα =

θα − θα0
σ

,

(48)
where v and η are smooth vector fields compactly supported in D. We
choose the constant σ > 0 sufficiently small such that (θ1

0, θ
2
0) + σD ⊂ ω.

Then, the variations u and ω defined by (48) vanish on the boundary ∂Ω,
so they are admissible fields. Moreover, we notice that the last integral
vanishes in relation (46) (since Ω = 0 on the boundary), so we can write
the inequality (35) in the form∫

Ω′

(
RT∇su ·WEE [RT∇su] + 2RT∇su ·WEK [RT∇sω]

+RT∇sω ·WKK [RT∇sω]
)

da(x) +

∫
Ω′
F (m,R,u,Ω) da(x) ≥ 0,

(49)

where Ω′ is the subset of Ω given by Ω′ = x
(
(θ1

0, θ
2
0) + σD

)
. Taking into

account that da(x) =
√
a(θ1, θ2) dθ1dθ2 , we transform the above integrals
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to the domain (θ1
0, θ

2
0) + σD ⊂ ω and get∫

(θ10 ,θ
2
0)+σD

(
RT∇su ·WEE [RT∇su] + 2RT∇su ·WEK [RT∇sω]

+RT∇sω ·WKK [RT∇sω]
)√

a(θ1, θ2) dθ1dθ2

+

∫
(θ10 ,θ

2
0)+σD

F (m,R,u,Ω)
√
a(θ1, θ2) dθ1dθ2 ≥ 0.

(50)

In view of (48), the gradients ∇su and ∇sω are

∇su = σ
∂v

∂θα
⊗ aα =

∂v

∂ζα
⊗ aα, ∇sω = σ

∂η

∂θα
⊗ aα =

∂η

∂ζα
⊗ aα in D.

(51)
Since ω = O(σ) by definition, we have Ω = O(σ) and for the function
F (m,R,u,Ω) defined in (47) we get

F (m,R,u,Ω) = O(σ), (52)

so the last integral in (50) is of order O(σ). If we make the substitution
ζγ = 1

σ (θγ − θγ0 ) in the integrals (50), we have dθ1dθ2 = σ2dζ1dζ2 , and
the integration domain becomes D. Dividing the inequality (50) by σ2 and
using (51), we deduce∫

D

[(
RT ∂v

∂ζα
⊗ aα

)
·WEE

[
RT ∂v

∂ζβ
⊗ aβ

]
+2
(
RT ∂v

∂ζα
⊗ aα

)
·WEK

[
RT ∂η

∂ζβ
⊗ aβ

]
+
(
RT ∂η

∂ζα
⊗ aα

)
·WKK

[
RT ∂η

∂ζβ
⊗ aβ

]]√
a(θγ0 + σζγ) dζ1dζ2+O(σ) ≥ 0.

(53)
Due to our continuity and regularity assumptions we see that the above
integrand is uniformly bounded. Hence, passing to the limit σ → 0 we
obtain by the dominated convergence theorem the inequality∫

D

[(
RT

0

∂v

∂ζα
⊗ aα0

)
·W 0

EE

[
RT

0

∂v

∂ζβ
⊗ aβ0

]
+2
(
RT

0

∂v

∂ζα
⊗ aα0

)
·W 0

EK

[
RT

0

∂η

∂ζβ
⊗ aβ0

]
+
(
RT

0

∂η

∂ζα
⊗ aα0

)
·W 0

KK

[
RT

0

∂η

∂ζβ
⊗ aβ0

]]√
a(θ1

0, θ
2
0) dζ1dζ2 ≥ 0,

(54)
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where all the fields with index 0 represent those functions evaluated at x0 ,

such as R0 = R(x0), aα0 = aα(x0), W 0
EE =

(
WEE

)∣∣x=x0

etc. If we

divide the last relation by the constant factor
√
a(θ1

0, θ
2
0) , then we obtain

the following necessary condition∫
D

[(
RT

0

∂v

∂ζα
⊗ aα0

)
·W 0

EE

[
RT

0

∂v

∂ζβ
⊗ aβ0

]
+2
(
RT

0

∂v

∂ζα
⊗ aα0

)
·W 0

EK

[
RT

0

∂η

∂ζβ
⊗ aβ0

]
+
(
RT

0

∂η

∂ζα
⊗ aα0

)
·W 0

KK

[
RT

0

∂η

∂ζβ
⊗ aβ0

]]
dζ1dζ2 ≥ 0,

(55)

which holds in any point x0 , for any open bounded set D ⊂ R2 and for
every smooth vector fields v(ζ1, ζ2), η(ζ1, ζ2) compactly supported in D.

Notice that the dyadic products in the inequality (55) can be regarded
as surface gradients in the tangent plane Tp(x0) to the midsurface Ω in the
point x0 . Indeed, since the covariant basis vectors a1(x0) and a2(x0) span
the tangent plane, we can represent the position vector p of any point in
the tangent plane Tp(x0) in the form

p(ζ1, ζ2) = x0 + ζ1a1(x0) + ζ2a2(x0). (56)

We denote the image of any domain D ⊂ R2 under the map (56) by Dp =
p(D) ⊂ Tp(x0). For any smooth vector field f(ζ1, ζ2) compactly supported

in D we define the associated vector field f̂ on Dp such that

f̂
(
p(ζ1, ζ2)

)
= f(ζ1, ζ2), i.e. f̂ ◦ p = f . (57)

Then, since the contravariant basis vectors are aα(x0) = aα0 , the surface
gradient ∇t in the tangent plane Tp(x0) is given by

∂f(ζ1, ζ2)

∂ζα
⊗ aα0 =

∂f̂
(
p(ζ1, ζ2)

)
∂ζα

⊗ aα0 = ∇tf̂(p). (58)

Moreover, if f is a smooth field compactly supported in D, then f̂ is smooth
and compactly supported in Dp . With these notations, we can make the
change of variables p = p(ζ1, ζ2) in the integral (54) and using da(p) =√
a(θ1

0, θ
2
0) dζ1dζ2 we obtain the following alternative form of the necessary

condition (55)∫
Dp

[(
RT

0∇tv̂
)
·W 0

EE

[
RT

0∇tv̂
]

+ 2
(
RT

0∇tv̂
)
·W 0

EK

[
RT

0∇tη̂
]

+
(
RT

0∇tη̂
)
·W 0

KK

[
RT

0∇tη̂
]]

da(p) ≥ 0,

(59)
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which holds in any point x0 ∈ Ω, for any open bounded set Dp in the tangent
plane Tp(x0) and for every smooth vector fields v̂, η̂ compactly supported
in Dp .

Remark 2. Notice that the inequality (59) has a similar expression with
the corresponding necessary condition for three-dimensional Cosserat bodies
established in [20, Eq. (4.4)], whereas the Cosserat deformation tensor is
replaced by the shell strain tensor E, and the wryness tensor is replaced by
the shell bending-curvature tensor K. However, a significant difference to
the three-dimensional Cosserat theory is that the necessary condition (59)
must hold in the tangent plane Tp(x0).

5 Legendre-Hadamard condition for shells

In the tangent plane Tp(x0) we choose a Cartesian orthogonal coordinate
system (ξ1, ξ2) with origin in x0 and denote the unit vectors along the co-
ordinate axes with s and t. Thus, we have p − x0 = ξ1s + ξ2t , and the
inequality (59) can be written in the simpler form∫

D̂

[(
RT

0∇v(ξ1, ξ2)
)
·W 0

EE

[
RT

0∇v(ξ1, ξ2)
]

+2
(
RT

0∇v(ξ1, ξ2)
)
·W 0

EK

[
RT

0∇η(ξ1, ξ2)
]

+
(
RT

0∇η(ξ1, ξ2)
)
·W 0

KK

[
RT

0∇η(ξ1, ξ2)
]]

dξ1dξ2 ≥ 0,

(60)

where D̂ is an arbitrary open bounded set in R2, while v and η are arbitrary
smooth vector fields compactly supported in D̂. The gradients appearing in
(60) are given by

∇v(ξ1, ξ2) =
∂v

∂ξ1
⊗s+

∂v

∂ξ2
⊗ t , ∇η(ξ1, ξ2) =

∂η

∂ξ1
⊗s+

∂η

∂ξ2
⊗ t . (61)

To obtain the Legendre-Hadamard conditions for shells we follow the method
presented in [35] and extend the fields v and η to complex-valued vector
fields

v = v1 + iv2 and η = η1 + iη2 . (62)
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Then, we have ∇v = ∇v1 + i∇v2 and ∇η̄ = ∇η1 − i∇η2 , where the
overline in η̄ denotes the complex conjugate. We deduce(

RT
0∇v

)
·W 0

EE

[
RT

0∇v̄
]

=
(
RT

0∇v1

)
·W 0

EE

[
RT

0∇v1

]
+
(
RT

0∇v2

)
·W 0

EE

[
RT

0∇v2

]
,(

RT
0∇η

)
·W 0

KK

[
RT

0∇η̄
]

=
(
RT

0∇η1

)
·W 0

KK

[
RT

0∇η1

]
+
(
RT

0∇η2

)
·W 0

KK

[
RT

0∇η2

]
,

(63)

and also(
RT

0∇v
)
·W 0

EK

[
RT

0∇η̄
]

+
(
RT

0∇η
)
·W 0

KE

[
RT

0∇v̄
]

= 2
(
RT

0∇v1

)
·W 0

EK

[
RT

0∇η1

]
+ 2
(
RT

0∇v2

)
·W 0

EK

[
RT

0∇η2

]
.

(64)
Summation of relations (63) and (64), and application of the inequality (60)
for the pairs of fields {v1,η1} and {v2,η2} yield the condition∫

D̂

[(
RT

0∇v(ξ1, ξ2)
)
·W 0

EE

[
RT

0∇v̄(ξ1, ξ2)
]

+
(
RT

0∇v(ξ1, ξ2)
)
·W 0

EK

[
RT

0∇η̄(ξ1, ξ2)
]

+
(
RT

0∇η(ξ1, ξ2)
)
·W 0

KE

[
RT

0∇v̄(ξ1, ξ2)
]

+
(
RT

0∇η(ξ1, ξ2)
)
·W 0

KK

[
RT

0∇η̄(ξ1, ξ2)
]]

dξ1dξ2 ≥ 0,

(65)

which holds for any complex-valued fields v, η compactly supported in D̂.
Now, let us choose the fields v and η of the following form

v(ξ1, ξ2) = α exp(ikτ ·ξ) f(ξ1, ξ2), η(ξ1, ξ2) = β exp(ikτ ·ξ) f(ξ1, ξ2),
(66)

where α and β are arbitrary fixed vectors, τ = τ1s+τ2t is an arbitrary fixed
vector in the tangent plane, k 6= 0 is an arbitrary real constant, and f is an
arbitrary real-valued smooth function compactly supported in D̂. Here, we
denote by ξ the vector ξ = ξ1t+ ξ2s, so we have τ ·ξ = τ1ξ

1 + τ2ξ
2. In view

of (66) we can compute the gradients

∇v(ξ1, ξ2) = exp(ikτ · ξ)α⊗
[
∇f(ξ1, ξ2) + ikf(ξ1, ξ2)τ

]
and

∇η(ξ1, ξ2) = exp(ikτ · ξ)β ⊗
[
∇f(ξ1, ξ2) + ikf(ξ1, ξ2)τ

] (67)

with ∇f(ξ1, ξ2) = ∂f
∂ξ1
s+ ∂f

∂ξ2
t. If we insert this in the inequality (65) and
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denote by a = RT
0α and b = RT

0 β , then we obtain∫
D̂

[(
a⊗ kf(ξ1, ξ2)τ

)
·W 0

EE

[
a⊗ kf(ξ1, ξ2)τ

]
+
(
a⊗∇f(ξ1, ξ2)

)
·W 0

EE

[
a⊗∇f(ξ1, ξ2)

]
+2
(
a⊗ kf(ξ1, ξ2)τ

)
·W 0

EK

[
b⊗ kf(ξ1, ξ2)τ

]
+2
(
a⊗∇f(ξ1, ξ2)

)
·W 0

EK

[
b⊗∇f(ξ1, ξ2)

]
+
(
b⊗ kf(ξ1, ξ2)τ

)
·W 0

KK

[
b⊗ kf(ξ1, ξ2)τ

]
+
(
b⊗∇f(ξ1, ξ2)

)
·W 0

KK

[
b⊗∇f(ξ1, ξ2)

]]
dξ1dξ2 ≥ 0.

(68)

Dividing the last relation by k2, and then letting k tend to infinity (k →∞)
we get[

(a⊗ τ ) ·W 0
EE [a⊗ τ ] + 2(a⊗ τ ) ·W 0

EK [b⊗ τ ]

+(b⊗ τ ) ·W 0
KK [b⊗ τ ]

]
·
∫
D̂

(
f(ξ1, ξ2)

)2
dξ1dξ2 ≥ 0.

(69)

Since the function f is arbitrary, we deduce that the expression in brackets
from (69) is non-negative. Due to the fact that the point x0 is arbitrary, we
can omit the index 0 and write the Legendre-Hadamard condition for shells
in the final form

(a⊗τ )·WEE [a⊗τ ]+2(a⊗τ )·WEK [b⊗τ ]+(b⊗τ )·WKK [b⊗τ ] ≥ 0. (70)

In conclusion, we have proved that if the second variation of the potential
energy is non-negative (35), then it is necessary that the Legendre-Hadamard
inequality (70) holds in any point x of the midsurface Ω, for any vector τ
tangent to Ω in x (i.e., τ · n(x) = 0), and for arbitrary vectors a and b.

Remark 3. 1) In this inequality we can assume without loss of generality
that the tangent vector τ is unitary, i.e. ‖τ‖ = 1.

2) If we choose the vector b = 0, then the inequality (70) reduces to

(a⊗ τ ) ·WEE [a⊗ τ ] ≥ 0. (71)

Similarly, choosing a = 0 in (70) yields

(b⊗ τ ) ·WKK [b⊗ τ ] ≥ 0. (72)

These relations represent further necessary conditions for energy minimizers.
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3) In the case when the strain energy functionW (E,K) is decoupled inE
and K, i.e. W (E,K) = W1(E) +W2(K), then we have WEK = 0. Hence,
the coupling term in (70) vanishes, so the Legendre-Hadamard condition is
equivalent to the two decoupled inequalities (71) and (72).

4) Observe that the inequality (70) follows if the strain energy function
W is convex jointly in (E,K). This convexity assumption plays an impor-
tant role in the proof of existence results for general 6-parameter nonlinear
shells presented in [12], see also [17,39].

5) Notice that the Legendre-Hadamard condition (70) is essentially the
same as the condition for micropolar shells reported in [33, 40] (named
Hadamard inequality), which has been established using another method.

6 Application to specific constitutive models

In this section we illustrate the results established above for several isotropic
constitutive models of 6-parameter shells available in the literature [3,6,14].

Thus, we present the specific form of the strain energy density W (E,K),
we compute the second derivatives appearing in the Legendre-Hadamard
inequality, and derive the conditions on the constitutive coefficients in each
case.

6.1 Simplified isotropic 6-parameter shell model

In [3,7] a 6-parameter model for isotropic shells made of a Cauchy continuum
has been presented. Denoting by E the Young modulus, ν the Poisson ratio
of the material, and h the shell thickness, then the stretching stiffness C and
the bending stiffness D are given by

C =
E h

1− ν2
and D =

E h3

12(1− ν2)
. (73)

The strain measures E and K are decomposed into the planar and out-of-
plane parts through the relations

E = (1+n⊗n)E = 1E+n⊗nE and K = 1K+n⊗nK. (74)

With these notations, the strain energy density W (E,K) in the simplified
constitutive model for shells is given by [3, 7]

2W (E,K) = C(1− ν) ‖1E‖2 + Cν
(
trE

)2
+ αsC(1− ν) ‖nE‖2

+D(1− ν) ‖1K‖2 +Dν
(
trK

)2
+ αtD(1− ν) ‖nK‖2,

(75)
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where αs > 0 and αt > 0 are two shear correction factors. The values
of these shear correction factors have been identified as αs = 5

6 , αt = 7
10

in [7, 36].
Notice that the strain energy density (75) is decoupled with respect to

E and K, so the mixed second derivatives vanish

WEK = WKE = 0. (76)

Hence, the Legendre-Hadamard condition reduces to the two decoupled in-
equalities (71) and (72). To compute WEE and WKK we use the variational
formulas (

‖T ‖2
)·

= 2T · Ṫ ,
[
(trT )2

]·
= 2(trT )I · Ṫ ,(

‖nT ‖2
)·

= 2(nT ) · (nṪ ) = 2(n⊗ nT ) · Ṫ ,
(77)

and derive

Ẇ =
[
C(1− ν)1E + Cν

(
trE

)
1+ αsC(1− ν)n⊗ nE

]
· Ė

+
[
D(1− ν)1K +Dν

(
trK

)
1+ αtD(1− ν)n⊗ nK

]
· K̇ .

(78)

If we compare this with the chain rule (12)2 , we get the first derivatives

WE = C(1− ν)1E + Cν
(
trE

)
1+ αsC(1− ν)n⊗ nE ,

WK = D(1− ν)1K +Dν
(
trK

)
1+ αtD(1− ν)n⊗ nK ,

(79)

which are linear in E and K, respectively. Then, the variation of relations
(79) leads to

WEE [Ė] = C(1− ν)1Ė + Cν
(
trĖ

)
1+ αsC(1− ν)n⊗ nĖ and

WKK [K̇] = D(1− ν)1K̇ +Dν
(
trK̇

)
1+ αtD(1− ν)n⊗ nK̇ .

(80)

Since the variation Ė is arbitrary, we deduce from (80)1 that

WEE [T ] = C(1− ν)1T + Cν
(
trT
)
1+ αsC(1− ν)n⊗ nT , (81)

for any tensor T of the form T = Tiαa
i ⊗ aα. Hence, we have

WEE [a⊗τ ] = C(1−ν)1a⊗τ +Cν(a ·τ )1+αsC(1−ν)(a ·n)n⊗τ , (82)

and

(a⊗ τ ) ·WEE [a⊗ τ ] = C(1− ν)‖1a‖2 · ‖τ‖2 + Cν(a · τ )2

+αsC(1− ν)(a · n)2 · ‖τ‖2.
(83)
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Here we can assume without loss of generality that ‖τ‖ = 1 and decompose
‖1a‖2 = (a ·τ )2 + (a ·ν)2, where the vector ν is given by ν = n×τ . Thus,
we obtain

(a⊗τ ) ·WEE [a⊗τ ] = C(a ·τ )2 +C(1−ν)(a ·ν)2 +αsC(1−ν)(a ·n)2. (84)

Because the components (a · τ ), (a · ν) and (a · n) are arbitrary and inde-
pendent, we see that the inequality (71) is satisfied if and only if

C ≥ 0 and C(1− ν) ≥ 0. (85)

Similarly, the inequality (72) reduces to the conditions on the coefficients

D ≥ 0 and D(1− ν) ≥ 0. (86)

In view of (73), the inequalities (85) and (86) are equivalent to

E

1 + ν
≥ 0 and

E

1− ν2
≥ 0,

i.e.
E

1 + ν
≥ 0 and ν < 1. (87)

Using the relations between E, ν and the Lamé constants λ, µ we can rewrite
these conditions in the equivalent form

µ ≥ 0 and
λ+ 2µ

λ+ µ
> 0. (88)

As expected, these conditions are less restrictive than the conditions E > 0
and−1 < ν < 1

2 (or, equivalently, µ > 0 and 3λ+2µ > 0), which characterize
the coercivity of the strain energy density (75), see e.g. [12].

6.2 Isotropic 6-parameter shells with general constitutive co-
efficients

The local symmetry group for general 6-parameter shells has been presented
in [6]. In case of isotropic shells, the following reduced form of the strain
energy density W (E,K) has been proposed

2W (E,K) = α1

[
tr(1E)

]2
+ α2 tr

[
(1E)2

]
+ α3 ‖1E‖2 + α4 ‖nE‖2

+β1

[
tr(1K)

]2
+ β2 tr

[
(1K)2

]
+ β3 ‖1K‖2 + β4 ‖nK‖2,

(89)
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where αk and βk (k = 1, 2, 3, 4) are constant constitutive coefficients. Since
tr
[
(1E)2

]
= ‖sym(1E)‖2−‖skw(1E)‖2, we can put the energy (89) in the

equivalent form

2W (E,K) = (α2 + α3)‖sym(1E)‖2 + (α3 − α2)‖skw(1E)‖2

+α1(trE)2 + α4 ‖nE‖2 + (β2 + β3)‖sym(1K)‖2

+(β3 − β2)‖skw(1K)‖2 + β1(trK)2 + β4 ‖nK‖2.
(90)

Using the same procedure as in Section 6.1, we compute the variation of the
energy function (90) and determine the first derivatives

WE = (α2+α3)sym(1E) + (α3−α2)skw(1E) + α1(trE)1+ α4n⊗ nE,
WK = (β2+β3)sym(1K) + (β3−β2)skw(1K) + β1(trK)1+ β4n⊗ nK.

(91)
Remark that the energy function is decoupled; hence, WEK = WKE = 0.
Taking a further variation in relations (91) we find the second derivatives in
the form

WEE [T ] = (α2+α3)sym(1T )+(α3−α2)skw(1T )+α1(trT )1+α4n⊗nT ,
WKK [T ] = (β2+β3)sym(1T )+(β3−β2)skw(1T )+β1(trT )1+β4n⊗nT .

(92)
Consequently, we have

WEE [a⊗ τ ] = α1(a · τ )1+ α2 τ ⊗1a+ α3 1a⊗ τ + α4(a ·n)n⊗ τ , (93)

and

(a⊗ τ ) ·WEE [a⊗ τ ] = (α1 + α2)(a · τ )2 + α3‖1a‖2 + α4(a · n)2. (94)

Introducing the vector ν = n×τ , we can decompose ‖1a‖2 = (a·τ )2+(a·ν)2

and the last relation reduces to (since ‖τ‖ = 1)

(a⊗τ ) ·WEE [a⊗τ ] = (α1 +α2 +α3)(a ·τ )2 +α3(a ·ν)2 +α4(a ·n)2. (95)

Similarly, we get

(b⊗ τ ) ·WKK [b⊗ τ ] = (β1 + β2 + β3)(b · τ )2 + β3(b ·ν)2 + β4(b ·n)2. (96)

The Legendre-Hadamard conditions (71) and (72) state that the ex-
pressions (95) and (96) are non-negative for any arbitrary vectors a and
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b. Therefore, the coefficients of all square terms in (95) and (96) are non-
negative. Thus, we obtain the following conditions on the constitutive coef-
ficients

α1 + α2 + α3 ≥ 0, α3 ≥ 0, α4 ≥ 0, and

β1 + β2 + β3 ≥ 0, β3 ≥ 0, β4 ≥ 0.
(97)

Remark 4. 1) According to the results presented in [32, 33], the strict
form of the inequalities (97) coincide with the conditions for propagation
of acceleration waves in micropolar shells. Thus, the strict inequalities (97)
represent the strong ellipticity conditions for this constitutive model, see
also [10,40].

2) Notice that the conditions (97) express some constitutive inequalities
and do not involve the deformation vector m or the microrotation tensor R.
This is due to the fact that the strain energy density W (E,K) is quadratic,
so the second derivatives with respect to its arguments have constant co-
efficients. However, in general the Legendre-Hadamard conditions do not
impose restrictions on the constitutive function W , but rather on the con-
figuration fields {m,R}.

6.3 Cosserat elastic shells with coupling terms

In [14] we have derived a refined Cosserat shell model in which the expression
of the strain energy density depends on the initial curvature, as well as on
the material constants of three-dimensional Cosserat elasticity. This is a
6-parameter model for shells made of isotropic Cosserat materials. Let us
denote by λ, µ the Lamé constants and by µc the Cosserat couple modulus
[39,41,42]. We designate by B the initial curvature tensor given by

B = −∇sn = −n,α ⊗ aα = Bαβa
α ⊗ aβ = Bα

βaα ⊗ aβ

with Bαβ = −n,β · aα
(98)

and let B∗ be the cofactor of B in the tangent plane, which is defined by

B∗ = −B + 2H1. (99)

Notice that both tensors B and B∗ are symmetric, and they satisfy BB∗ =
K1. Here we denote by H = 1

2trB = 1
2B

α
α the mean curvature and by

K = det
(
Bα
β

)
2×2

the Gauß curvature of the reference midsurface Ω. We
also introduce the skew tensor C having the axial vector −n, i.e.

C = −n× I = −n× 1, (100)
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which can also be represented as

C =
1√
a
εαβ aα ⊗ aβ =

√
a εαβ a

α ⊗ aβ, (101)

where εαβ is the two-dimensional alternator (ε12 = −ε21 = 1 , ε11 = ε22 = 0).
With these notations, the areal strain energy density of the Cosserat shell
is given by [14]

W (E,K) =
(
h−K h3

12

)[
WCoss(E) +W curv(K)

]
+
h3

12

[
WCoss(EB +CK)− 2WCoss(E , CKB∗) +W curv(KB)

]
,

(102)

where the quadratic form WCoss(·) and the bilinear form WCoss(· , ·) are
defined for any tensors of the form X = Xiαa

i ⊗ aα, Y = Yiαa
i ⊗ aα by

WCoss(X) = µ‖sym(1X)‖2+µc‖skw(1X)‖2+
λµ

λ+2µ

(
trX

)2
+

2µµc
µ+ µc

‖nX‖2,

WCoss(X,Y ) = µ sym(1X) · sym(1Y ) + µc skw(1X) · skw(1Y )

+
λµ

λ+ 2µ

(
trX

)(
trY

)
+

2µµc
µ+ µc

(
nX

)
·
(
nY

)
,

(103)
with WCoss(X) = WCoss(X,X). Also, the quadratic form W curv(·) appear-
ing in (102) is defined by

W curv(X) = a1‖sym(1X)‖2 + a2‖skw(1X)‖2 +
(
a3 −

a1

3

)
(trX)2

+
a1 + a2

2
‖nX‖2,

(104)
where the coefficients a1, a2, a3 are constitutive constants. Thus, we see that
the strain energy function (102) is quadratic, but the model is geometrically
nonlinear.

Let us derive the specific form of the Legendre-Hadamard condition (70)
for this shell model. To this aim, we compute the derivatives WE and WK ,
as well as the second derivatives WEE , WEK , WKE and WKK . For the
quadratic forms WCoss(X) and W curv(X) defined above we determine the
first derivatives as in the previous sections and obtain

WCoss
X (T ) = 2µsym(1T ) + 2µcskw(1T ) +

2λµ

λ+2µ

(
trT
)
1+

4µµc
µ+µc

(n⊗n)T ,

(105)
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for any T = Tiαa
i ⊗ aα, and

W curv
X (T )=2a1sym(1T )+2a2skw(1T )+2

(
a3−

a1

3

)
(trT )1+(a1+a2)(n⊗n)T.

(106)
For the bilinear form WCoss(X ,Y ) we write the first variation as[

WCoss(T ,S)
]·

= WCoss
X (T ,S) · Ṫ +WCoss

Y (T ,S) · Ṡ, (107)

where T = Tiαa
i ⊗ aα and S = Siαa

i ⊗ aα are second order tensors. At
the same time, using the expression (103)2 we can compute this variation
directly in the form[

WCoss(T ,S)
]·

= µ sym(1Ṫ ) · sym(1S) + µ sym(1T ) · sym(1Ṡ)

+µc skw(1Ṫ ) · skw(1S) + µc skw(1T ) · skw(1Ṡ)

+
λµ

λ+2µ

[(
trṪ
)(

trS
)
+
(
trT
)(

trṠ
)]

+
2µµc
µ+µc

[(
nṪ
)
·
(
nS
)

+
(
nT
)
·
(
nṠ
)]
,

or equivalently,[
WCoss(T ,S)

]·
=
[
µ sym(1S) + µcskw(1S) +

λµ

λ+ 2µ

(
trS

)
1

+
2µµc
µ+ µc

(n⊗ n)S
]
· Ṫ +

[
µ sym(1T ) + µcskw(1T )

+
λµ

λ+ 2µ

(
trT
)
1+

2µµc
µ+ µc

(n⊗ n)T
]
· Ṡ.

(108)

Comparing (107) and (108) we obtain the derivatives

WCoss
X (T ,S) = µ sym(1S) + µcskw(1S) + λµ

λ+2µ

(
trS

)
1+ 2µµc

µ+µc
(n⊗ n)S,

WCoss
Y (T ,S) = µ sym(1T ) + µcskw(1T ) + λµ

λ+2µ

(
trT

)
1+ 2µµc

µ+µc
(n⊗ n)T .

(109)
We are now in a position to determine the variation of the shell strain energy
density [

W (E,K)
]·

= WE(E,K) · Ė +WK(E,K) · K̇. (110)

Indeed, using the formulas (105), (106) and (109) we differentiate the rela-
tion (102) and get[

W (E,K)
]·

=
(
h−K h3

12

)[
WCoss

X (E) · Ė +W curv
X (K) · K̇

]
+
h3

12

[
WCoss

X (EB +CK) · (ĖB +CK̇)− 2WCoss
X (E , CKB∗) · Ė

−2WCoss
Y (E , CKB∗) · (CK̇B∗) +W curv

X (KB) · (K̇B)
]
,
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and rearranging the terms we deduce

[
W (E,K)

]·
=
[(
h−K h3

12

)
WCoss

X (E) +
h3

12
WCoss

X (EB +CK)B

−2h3

12
WCoss

X (E,CKB∗)
]
·Ė +

[(
h−Kh3

12

)
W curv

X (K)+
h3

12
W curv

X (KB)B

−h
3

12
CWCoss

X (EB +CK) +
2h3

12
CWCoss

Y (E , CKB∗)B∗
]
· K̇.

(111)
Hence, from (110) and (111) we find

WE(E,K) =
(
h−K h3

12

)
WCoss

X (E) +
h3

12
WCoss

X (EB +CK)B

−2h3

12
WCoss

X (E , CKB∗)

(112)

and

WK(E,K) =
(
h−K h3

12

)
W curv

X (K) +
h3

12
W curv

X (KB)B

−h
3

12
CWCoss

X (EB +CK) +
2h3

12
CWCoss

Y (E , CKB∗)B∗.

(113)
A further variation in the relations (112) and (113) leads to[

WE(E,K)
]·

= WEE

[
Ė
]

+WEK

[
K̇
]

and[
WK(E,K)

]·
= WKE

[
Ė
]

+WKK

[
K̇
]
.

(114)

In view of the fact that WCoss
X (·) and W curv

X (·) are linear forms of their
arguments, we can compute the variational derivative of relation (112) in
the form[

WE(E,K)
]·

=
(
h−K h3

12

)
WCoss

X (Ė) +
h3

12
WCoss

X (ĖB +CK̇)B

−2h3

12
WCoss

X (E , CK̇B∗),

which means[
WE(E,K)

]·
=

[(
h−K h3

12

)
WCoss

X (Ė) + h3

12 W
Coss
X (ĖB)B

]
+
h3

12

[
WCoss

X (CK̇)B −WCoss
X (CK̇B∗)

]
.

(115)
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Similarly, from the relation (113) we get

[
WK(E,K)

]·
=
h3

12

[
CWCoss

X (Ė)B∗ −CWCoss
X (ĖB)

]
+
[(
h−Kh3

12

)
W curv

X (K̇) +
h3

12
W curv

X (K̇B)B − h3

12
CWCoss

X (CK̇)
]
.

(116)
Since the variation Ė and K̇ are arbitrary, we deduce from (114)–(116) that
the second derivatives are given by

WEE [T ] =
(
h−K h3

12

)
WCoss

X (T ) +
h3

12
WCoss

X (TB)B,

WEK [T ] =
h3

12

[
WCoss

X (CT )B −WCoss
X (CTB∗)

]
,

WKE [T ] =
h3

12

[
CWCoss

X (T )B∗ −CWCoss
X (TB)

]
,

WKK [T ] =
(
h−Kh3

12

)
W curv

X (T ) +
h3

12
W curv

X (TB)B − h3

12
CWCoss

X (CT ),

(117)
for any tensor T = Tiαa

i⊗aα. Using the expression (105) in the derivative
(117)1 we find

WEE [T ] =
[
(µ+ µc)1+

4µµc
µ+ µc

n⊗ n
][(

h−K h3

12

)
T +

h3

12
TB2

]
+(µ− µc)

[(
h−K h3

12

)
T t1+

h3

12
BT tB

]
+

2λµ

λ+ 2µ

[(
h−K h3

12

)
(trT )1+

h3

12
tr(TB)B

]
.

(118)
Substituting T = a⊗ τ in the last equation, we arrive at

WEE [a⊗ τ ] =
[
(µ+µc)1+ 4µµc

µ+µc
n⊗ n

][(
h−K h3

12

)
a⊗ τ + h3

12a⊗ τB
2
]

+(µ− µc)
[(
h−K h3

12

)
τ ⊗ 1a+ h3

12Bτ ⊗Ba
]

+ 2λµ
λ+2µ

[(
h−K h3

12

)
(a · τ )1+ h3

12 (a ·Bτ )B
]
,

(119)
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since the vector τ is orthogonal to n. Analogously, we derive the relations

WKE [a⊗ τ ] =
h3

12

{
(µ+µc)C(a⊗ τ )(B∗−B) + (µ−µc)

[
CB∗(τ ⊗ a)1

−C(τ ⊗ a)B
]

+
2λµ

λ+ 2µ

[
(a · τ )CB∗ − (a ·Bτ )C

]}
,

(120)
and

WKK [b⊗ τ ] = (a1 + a2)
[(
h−K h3

12

)
b⊗ τ + h3

12 b⊗ τB
2
]

+(a1 − a2)
[(
h−K h3

12

)
τ ⊗ 1b+

h3

12
Bτ ⊗Bb

]
+2
(
a3 −

a1

3

)[(
h−Kh3

12

)
(b · τ )1+

h3

12
(b ·Bτ )B

]
+
h3

12

[
(µ+ µc)1b⊗ τ + (µ− µc)Cτ ⊗ bC −

2λµ

λ+ 2µ
(Cb · τ )C

]
.

(121)

Further, we can compute the inner products appearing in the Legendre-
Hadamard condition (70) and obtain

(a⊗ τ )·WEE [a⊗ τ ] =
[
(µ+µc)‖1a‖2 +

4µµc
µ+µc

(a·n)2
][(

h−Kh3

12

)
‖τ‖2

+
h3

12
‖Bτ‖2

]
+
(µ(3λ+2µ)

λ+ 2µ
− µc

)[(
h−K h3

12

)
(a · τ )2 +

h3

12
(a ·Bτ )2

]
,

(122)
and

(a⊗ τ ) ·WEK [b⊗ τ ] = (b⊗ τ ) ·WKE [a⊗ τ ]

=
h3

12

{
(µ+ µc)(a ·Cb)

[
τ · (B −B∗)τ

]
+
(µ(3λ+ 2µ)

λ+ 2µ
− µc

)[
(a · τ )

(
τ · bCB∗

)
− (a ·Bτ )(τ · bC)

]}
,

(123)

and

(b⊗τ )·WKK [b⊗τ ] = h3

12

[
(µ+µc)‖1b‖2 ·‖τ‖2 +

(
µ(3λ+2µ)
λ+2µ −µc

)
(τ ·bC)2

]
+(a1 + a2)‖b‖2

[(
h−K h3

12

)
‖τ‖2 +

h3

12
‖Bτ‖2

]
+
(a1

3
− a2 + 2a3

)[(
h−Kh3

12

)
(b · τ )2 +

h3

12
(b ·Bτ )2

]
.

(124)
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To simplify these expressions, we introduce the auxiliary notations α, β, γ,
δ, p and q for the coefficients appearing in (122)-(124), more precisely let

α = µ+ µc , β =
µ(3λ+ 2µ)

λ+ 2µ
− µc , γ =

4µµc
µ+ µc

,

δ =
12

h2
−K, p = a1 + a2 , q =

a1

3
− a2 + 2a3 .

(125)

Notice that δ is a positive geometric parameter satisfying the relation

δ =
12

h2

[
1− h2

12
(κ1κ2)

]
=

12

h2

[
1− 1

12
(κ1h)(κ2h)

]
> 0, (126)

where κ1 , κ2 are the principal curvatures of the shell, with κ1κ2 = K and
|καh| � 1.

Substituting the equations (122)-(125) in the inequality (70), we arrive
at the following form of the Legendre-Hadamard condition for the considered
Cosserat shell model[

α‖1a‖2 + γ(a · n)2
](
δ‖τ‖2 + ‖Bτ‖2

)
+ β

[
δ(a · τ )2 + (a ·Bτ )2

]
+2α(a·Cb)

[
τ ·(B−B∗)τ

]
+ 2β

[
(a·τ )

(
τ · bCB∗

)
−(a·Bτ )(τ · bC)

]
+α‖1b‖2 · ‖τ‖2 + β(τ · bC)2 + p‖b‖2

(
δ‖τ‖2 + ‖Bτ‖2

)
+q
[
δ(b · τ )2 + (b ·Bτ )2

]
≥ 0,

(127)
which holds for any vectors a, b and τ (with τ ⊥ n). We consider without
loss of generality that τ is a unitary vector, i.e. ‖τ‖ = 1.

Let us determine the conditions imposed on the constitutive coefficients
by the Legendre-Hadamard inequality (127). Firstly, if we assume that the
vectors a and b are parallel to n, then the inequality (127) reduces to

γ(a · n)2
(
δ + ‖Bτ‖2

)
+ p(b · n)2

(
δ + ‖Bτ‖2

)
≥ 0. (128)

Because (a · n) and (b · n) are arbitrary, we deduce the conditions on the
coefficients

γ ≥ 0 and p ≥ 0. (129)

Secondly, let us consider the inequality for the tangential parts 1a and 1b,
following from the Legendre-Hadamard condition (127). In other words,
assuming that a and b are vectors in the tangent plane Tp(x), the Legendre-
Hadamard inequality (127) becomes

α‖a‖2
(
δ + ‖Bτ‖2

)
+ β

[
δ(a · τ )2 + (a ·Bτ )2

]
+2α(a ·Cb)

[
τ · (B −B∗)τ

]
+ 2β

[
(a · τ )

(
τ ·bCB∗

)
− (a ·Bτ )(τ ·bC)

]
+α‖b‖2 + β(τ · bC)2 + p‖b‖2

(
δ + ‖Bτ‖2

)
+ q
[
δ(b · τ )2 + (b ·Bτ )2

]
≥ 0,
(130)
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which holds for any tangent vectors a, b and τ (with ‖τ‖ = 1).
If we introduce the vector ν = n × τ , then the triad {τ ,ν,n} is or-

thonormal and right-handed. We decompose the vectors a and b in the
basis {τ ,ν} and denote their components by

a = aττ + aνν and b = bττ + bνν. (131)

Then, we have

Cb = −bC = bντ−bτν, a·Cb = aτ bν−aνbτ , τ ·bC = −bν . (132)

Also, if we designate the components of the curvature tensor B as

Bττ = τ ·Bτ , Bντ = ν ·Bτ , (133)

then we can write

Bτ = Bτττ+Bντν, B∗τ = (2H1−B)τ = (2H−Bττ )τ−Bντν,
(B −B∗)τ = 2(Bττ −H)τ + 2Bντν,

τ · bCB∗ = B∗τ · bC = (Bττ − 2H)bν −Bντ bτ .
(134)

Using the relations (131)-(134), we can put the inequality (130) in the equiv-
alent form

α(a2
τ + a2

ν)
(
δ +B2

ττ +B2
ντ

)
+ β

[
δ a2

τ + (Bττaτ +Bντaν)2
]

+2α(aτ bν − aνbτ )(2Bττ − 2H) + 2β
[
aτ
(
(Bττ − 2H)bν −Bντ bτ

)
+bν(Bττaτ +Bντaν)

]
+ α(b2τ + b2ν) + β(b2ν)

+p(b2τ + b2ν)
(
δ +B2

ττ +B2
ντ

)
+ q
[
δ b2τ + (Bττ bτ +Bντ bν)2

]
≥ 0,

(135)

which holds for any scalars aτ , aν , bτ , bν , and for any unit vector τ in the
tangent plane.

Consider now the spectral representation of the initial curvature tensor

B = κ1u1 ⊗ u1 + κ2u2 ⊗ u2 , (136)

where {u1 ,u2} are the orthonormal principal vectors and κ1 , κ2 the prin-
cipal curvatures of the reference midsurface at x. Recall the well-known
relations κ1 + κ2 = 2H and κ1κ2 = K.

Let us choose now the tangent vector τ to coincide with the principal
vector u1 , i.e. τ = u1 . Then, we have

Bττ = u1 ·Bu1 = κ1 and Bντ = u2 ·Bu1 = 0. (137)
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Inserting these relations into the inequality (135) we obtain the simplified
form

α(a2
τ+a2

ν)(δ+κ2
1)+βa2

τ (δ+κ2
1)+2α(aτ bν−aνbτ )(κ1−κ2)+2βaτ bν(κ1−κ2)

+α(b2τ + b2ν) + β(b2ν) + p(b2τ + b2ν)
(
δ + κ2

1

)
+ qb2τ

(
δ + κ2

1

)
≥ 0,

(138)
which holds for any real numbers aτ , aν , bτ and bν . Notice that (138) is a
quadratic form in the variables {aτ , aν , bτ , bν}, which can be rearranged in
the equivalent form

a2
τ (α+β)(δ+κ2

1) + a2
να
(
δ+κ2

1

)
+ 2aτ bν(α+β)(κ1−κ2)− 2aνbτα(κ1−κ2)

+b2τ
[
α+ (p+ q)

(
δ + κ2

1

)]
+ b2ν

[
α+ β + p

(
δ + κ2

1

)]
≥ 0.

(139)
The symmetric matrix of the coefficients of this quadratic form is

M =


(α+β)

(
δ+κ2

1

)
0 0 (α+β)(κ1−κ2)

0 α
(
δ+κ2

1

)
−α(κ1−κ2) 0

0 −α(κ1−κ2) α+ (p+q)
(
δ+κ2

1

)
0

(α+β)(κ1−κ2) 0 0 α+β+p
(
δ+κ2

1

)

.
(140)

Notice that the quadratic form (139) is positive semi-definite if and only if
all the principal minors of M are non-negative (Sylvester’s criterion). Thus,
the elements on the diagonal must satisfy

(α+ β)
(
δ + κ2

1

)
≥ 0, α

(
δ + κ2

1

)
≥ 0,

α+ (p+ q)
(
δ + κ2

1

)
≥ 0, α+ β + p

(
δ + κ2

1

)
≥ 0.

(141)

Remark that the factor (δ + κ2
1) is always positive, since it holds |κα|h� 1

and

δ + κ2
1 =

1

h2

[
12− (κ1h)(κ2h) + (κ1h)2

]
> 0. (142)

Then, in view of p ≥ 0, the conditions on the coefficients (141) reduce to

α ≥ 0, α+ β ≥ 0 and α+ (p+ q)
(
δ + κ2

1

)
≥ 0. (143)

Moreover, the second order principal minors of the matrix M yield the
conditions ∣∣∣∣∣ α

(
δ + κ2

1

)
−α(κ1 − κ2)

−α(κ1 − κ2) α+ (p+ q)
(
δ + κ2

1

) ∣∣∣∣∣ ≥ 0, and∣∣∣∣∣ (α+ β)
(
δ + κ2

1

)
(α+ β)(κ1 − κ2)

(α+ β)(κ1 − κ2) α+ β + p
(
δ + κ2

1

) ∣∣∣∣∣ ≥ 0,

(144)
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which can be put in the forms

α
[
α
(
δ + 2K − κ2

2

)
+ (p+ q)(δ + κ2

1)2
]
≥ 0, (145)

and, respectively,

(α+ β)
[
(α+ β)

(
δ + 2K − κ2

2

)
+ p(δ + κ2

1)2
]
≥ 0. (146)

Since |καh| � 1, the following factor is positive

δ + 2K − κ2
2 =

1

h2

[
12 + (κ1h)(κ2h)− (κ2h)2

]
> 0. (147)

Then, in view of p ≥ 0 , α ≥ 0 and α + β ≥ 0, we see that the inequality
(146) is always satisfied, while the relation (145) reduces to

α
(
δ + 2K − κ2

2

)
+ (p+ q)(δ + κ2

1)2 ≥ 0. (148)

The principal minors of order 3 and 4 of the matrix M do not yield any
additional restrictions on the coefficients. Thus, the constitutive coefficients
α, β, p and q must satisfy the conditions (143) and (148). Analogously, if
we choose the tangent vector τ = u2 in the inequality (135), then we obtain
similar restrictions as in (137)-(148), in which the roles of κ1 and κ2 are
interchanged. More precisely, we derive in this case the following additional
conditions

α+(p+q)
(
δ+κ2

2

)
≥ 0 and α

(
δ+2K−κ2

1

)
+(p+q)(δ+κ2

2)2 ≥ 0. (149)

To resume, the Legendre-Hadamard condition (127) imposes that the
constitutive coefficients α, β, γ, p and q necessarily satify the inequalities
(129), (143), (148) and (149). Let us express these necessary conditions
with help of the material constants λ, µ, µc and a1 , a2 , a3 . In view of the
relations (125), the inequalities (129) and (143)1,2 read

µ+ µc ≥ 0,
µ(λ+ µ)

λ+ 2µ
≥ 0,

µ µc
µ+ µc

≥ 0, a1 + a2 ≥ 0, (150)

which provide the conditions

µ ≥ 0, µc ≥ 0,
λ+ µ

λ+ 2µ
≥ 0 and a1 + a2 ≥ 0. (151)
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Moreover, from the inequalities (143)3 , (148) and (149) we get the additional
conditions

(µ+ µc)
h2

8 + (2a1 + 3a3)
[
1− h2

12 (K − κ2
1)
]
≥ 0,

(µ+ µc)
h2

8 + (2a1 + 3a3)
[
1− h2

12 (K − κ2
2)
]
≥ 0,

(µ+ µc)
h2

8

[
1 + h2

12 (K − κ2
1)
]

+ (2a1 + 3a3)
[
1− h2

12 (K − κ2
2)
]2 ≥ 0,

(µ+ µc)
h2

8

[
1 + h2

12 (K − κ2
2)
]

+ (2a1 + 3a3)
[
1− h2

12 (K − κ2
1)
]2 ≥ 0.

(152)

Notice that these conditions involve also the geometrical characteristics of
the reference configuration, such as the Gauß curvature K and the principal
curvatures in the point x. If one of these conditions is violated in any point
of Ω, then the equilibrium state can be unstable. In order to avoid such
instabilities of equilibrium states for shells, the inequalities (151) and (152)
connecting the material constants, the thickness h and the initial curvature
must hold in any point of the reference midsurface.

Remark 5. 1) Notice that the condition

2a1 + 3a3 ≥ 0 (153)

is sufficient to ensure that the inequalities (152) hold in any point. Indeed,
in view of the usual shell assumption |καh| � 1, we see that all square
brackets in (152) are positive. Thus, for the sake of simpler expressions,
one can replace the inequalities (152) with the more restrictive condition
2a1 + 3a3 ≥ 0, which does not depend on the geometry of the shell.

2) In the case of very thin shells, the quantities h2

12 K and h2

12 κ
2
α are

negligible in comparison to the unity 1, i.e. we can approximate

1± h2

12
(K − κ2

α) ' 1. (154)

Under this approximation, the inequalities (152) reduce to the single condi-
tion

(µ+ µc)
h2

8
+ (2a1 + 3a3) ≥ 0, (155)

which couples the material constants µ, µc of the extensional part of the
strain energy density with the constitutive coefficients a1 , a3 of the bending-
curvature part of the energy.
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