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1 Introduction

The subject addressed in this article is a developing area of operations re-
search that plays an important role in the study of multi-dimensional opti-
mization problems. The aim of this paper is to provide some characterization
and existence results of solutions in non-convex controlled multi-objective
minimization models. Over time, many scientists have contributed to this
field. In 1995, Bhatia and Kumar [3] investigated a multiobjective varia-
tional control problem. The definition of invexity for continuous functions
has been extended to p-invexity, including, of course, its variants such as
p-pseudoinvexity and p-quasiinvexity. Duality results of Wolfe and Mond-
Weir [26] type were established. Also, Mond and Smart [14] investigated the
duality theory and sufficiency in control problems involving invexity. Later,
Bhatia and Mehra [4] studied optimality conditions and duality for multiob-
jective variational problems with generalized B-invexity. Chandra et al. [5]
obtained some optimality conditions and duality results for a class of control
problems having a nondifferentiable term in the integrand of the objective
functional. Many authors have discussed duality for multiobjective varia-
tional problems with different generalized convexities or generalized invexi-
ties, such as [12,16,17,27,28]. Mukherjee and Rao [15] formulated a mixed-
type dual for multiobjective variational problems. Several duality theorems
have been established relating properly efficient solutions of the primal and
dual variational problems under generalized (F, p)-convexity (see, for exam-
ple, Ahmad and Gulati [1]). The notion of (F, o, p, d)-type I functions was in-
troduced by Hachimi and Aghezzaf [7]. Thus, they introduced a new class of
functions that unified several concepts of generalized type I functions. Some
results regarding the efficiency conditions for multi-objective fractional vari-
ational problems belong to Mititelu [13], Reddy and Mukherjee [20]. New
classes of generalized V-type I invex functions for variational problems have
been introduced by Kim and Kim [10] and, later, the sufficiency and duality
for multiobjective control problems under generalized (B, p)-type I func-
tions were studied by Khazafi et al. [11]. Antczak [2] extended the notions
of (¢, p)-invexity and generalized (¢, p)-invexity to the continuous case and
used these concepts to establish sufficient optimality conditions for the con-
sidered class of nonconvex multiobjective variational control problems. In
2021, Treanta [22] presented the well-posedness of a new class of variational
problems with variational inequality constraints, a very useful mathemati-
cal tool in the study of optimization problems. Novel approaches to handle
the uncertainty in multi-objective optimization problems were presented by
Jayswal, Preeti and Treanta [9] in their book. Many results and approaches
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have been put into practice in various branches of operations research. We
have mentioned a few of them, but many other people have contributed to
the investigation of optimality and/or duality conditions for multiobjective
variational control programming problems (see [18,19,21]). Treanta and
Calianu [25] investigated a class of multi-objective variational control prob-
lems governed by nonconvex simple integral functionals. Recently, Treanta
et al. [24] established the necessary conditions of optimality for new classes
of constrained optimization problems involving multiple and curvilinear in-
tegral functionals.

Motivated by the previous mentioned papers, in this article, we study
and characterize the solution set of a non-convex multi-cost extremization
problem. Concretely, we establish some existence results of solutions as-
sociated with this optimization model governed by invex, pseudoinvex, or
quasiinvex multiple-integral-type functionals. Also, we state a dual con-
nection between the efficient point of the considered non-convex multi-cost
extremization problem and the efficient solution of the corresponding dual
model. The results of this paper are new in the specialized literature. The
main contribution is given by the multi-dimensional framework in which the
problem is built. More specifically, the presence of multiple integrals as cost
functionals in the studied optimization problem. This implies updated def-
initions for the concept of (y, o)-invexity (and its variants) associated with
functionals governed by multiple integrals and not simple integrals, as usual.

The article is organized as follows: In Section 2 we establish the frame-
work including the notations and basic definitions. Also, we formulate the
multi-cost optimization model we are going to study. In section 3, in order
to establish some characterization results of solutions associated with the
considered problem, first we state the KKT-type efficiency conditions (nec-
essary criterion) associated with a multi-objective optimization problem.
Thereafter, we formulate and prove, under various (x, p)-invexity hypothe-
ses, some theorems which provide the sufficiency of the KKT conditions.
In addition, at the end of this section, a dual model is constructed and a
relationship between the original extremization problem and the new dual
model is established. Last section states the conclusions and some further
research directions of the present paper.

2 Preliminaries and notations

For any h = (hl,hQ,...7h7’)T,g = (91,92,...,97)T, where ()7 represents
the transpose, we consider:
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(ih=g<=h"=9g", w=1,2,...,7;
(ih<g<==h"<g¥,w=1,2,...,r;

(i) hSg<—=h"<g" w=1,2,...,7;

(iv) h<g<= h<gand h#g.

Let €, v, C R? be a g-dimensional interval and let H = {1,2,...,2}, F =
{1,2,...,2} and A = {1,2,...,r} be some index sets. Consider p(v) is a
vector-valued (of dimension 7) piece-wise smooth function, and p¢(v) :=
%(v) represents the partial derivative of p(v), where v € Q) 4,. Also,
we consider n(v) is a vector-valued (of dimension w) piece-wise continuous
function. Let B x C be the family of all pairs (p(v),n(v)) equipped with
the uniform norm ||p|| = ||p|le + [|P¢|loc, and [|n|| = [|n||s, respectively. For
notational simplicity, we write p(v),n(v) and p¢(v) as p,n and p¢, respec-
tively.

Caristi et al. [6] introduced a generalization of invexity, previously pre-
sented by Hanson [8], called (x, p)-invexity. In the following, we generalize
(x, 0)-invexity, stated by Caristi et al. [6] and Antczak [2], for the case of
multi-objective control problems. To this aim, we formulate the notion of

convexity for x : Q4 X (R” X R¥)2 x R" x R¥ x R — R.

Definition 1. The functional y : Q,, 4, X (R" x R¥)2 x R" x R¥ x
R — R, x = x(v,p,n,7,6;(-,-,-)) is called convex on R™**1 if for any
p,v € R".n,§ € R¥, the following inequality

X (U7p7n7/77 67 (E (717 71, Ql) + (1 - 8) (727 T2, QQ)))
S €X (v7p7n7775; (7177—17 Ql)) + (1 - E)X (’Uapvn?’% 67 (’7277_27 92))

holds, for all v1,72 € R, 71,72 € RY, 01,02 € R, £ € [0,1], v € Qyyy -
Consider © : B x C' — R is defined as O(p,n) = f(v,p,pe,n)dv,

V1,V

where f: Qy; v, X R" X R" xRY — R is a continuously differentiable multiple
integral type functional (see dv := dv!---dv? as volume element in RY).
Next, we establish the (generalized) (x, o)-invexity associated with ©.

Definition 2. For a given (p,n) € B x C, if there are p € R and
X Dy, X (RT X RY)2 x R™ x RY x R — R, with x = x(v,p,n,p,7; (-, -, )
convex on R™+1 (v, p n,p,n;(0,0,a)) > 0 for every (p,n) € B x C and
o € Ry, such that

J

f(vapapga n)dv - / f(v7137ﬁ<7ﬁ)dv

V1,02 Q'UlsUZ
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> [>] / X(Uapa n, P, n; (fp(vaﬁvﬁéaﬁ)_
QU1,’U2
9
ovs
holds, for all (p,n) € B x C,[(p,n) # (p,n)], then O is called [strictly]
(x, 0)-inver at (p,n) on B x C. If the above inequality is valid for every
(p,n) € B x C, then © is called [strictly] (x, 0)-inver on B x C.

[fpg (U7]§7ﬁC7 ﬁ)] ) fn(vapvﬁ@ 7_7“)7 Q))dU

Definition 3. For a given (p,n) € B x C, if there are p € R and
X : Qvl,vz X (RT X Rw)Z XR"xXRY xR — Rv with X = X(vav n,p,n; ('a K ))
convex on R™+1 y (v, p. n,p,n;(0,0,a)) > 0 for every (p,n) € B x C and
a € Ry, such that

/ f(U,p,pg,N)dU - / f(UvﬁaﬁO ﬁ)d’U
Q

v,V Qvl ;U9

=< [<]/ x(v,p,n,ﬁ,ﬁ; (fp(v, 9, p¢, )=
v1,v2
A
o
holds, for all (p,n) € BxC, [(p,n) # (p,n)], then © is called [strictly/ (x, o)-
incave at (p,n) on B x C. If the inequality given above is satisfied for every
(p,n) € B x C, then © is called [strictly/ (x, 0)-incave on B x C.

[fpg (Uaﬁaﬁgaﬁ)] 7fn(vaﬁ7]§0n)v Q))d’l}

Definition 4. For a given (p,n) € B x C, if there are p € R and
X Qm,vz X (Rr X Rw)2 XR" X RY xR — Ra with X = X(Uapa n,p,n; ('a "y ))
convex on R™+1 (v, p n,p,n;(0,0,a)) > 0 for every (p,n) € B x C and
o € Ry, such that

| swememdo< [ fppcmnde
Qvl sU2 Qvl sV2
implies

/Q X(va’naﬁaﬁ; (fp(vaﬁaﬁgaﬁ)_

v1,v9

0 o o
W [fpg(vapapgan)] 7fn(v>p7pg>n)79)>dv <0

holds, for all (p,n) € B x C, then © is called (x, 0)-pseudoinvez at (p,n) on
B x C'. If the relation given above is satisfied for every (p,n) € B x C, then
© is called (x, 0)-pseudoinver on B x C.
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Definition 5. For a given (p,n) € B x C, if there are p € R and
X Qo X (RT X RY)2 x R” x RY x R — R, with x = x(v, p,n, p,7; (-, -, )
convex on R™+1 v (v, p,n,p,7;(0,0,a)) > 0 for every (p,n) € B x C and
o € Ry, such that

/ f(vapapCan)dU < / f(l),ﬁ,ﬁ(,’l_l)dv
Q

V1,v2 Q'Ulr'UQ
implies
/ X(U7p7napv ﬁ‘ﬂ (fp(vaﬁapoﬁ)_
QULUZ
0 _ _
% [fpg(v>p7pgan)] 7fn(v>p7pg>n)79)>dv <0
holds, for all (p,n) € B x C, (p,n) # (p,n), then © is called strictly (x, o)-

pseudoinvex at (p,n) on B x C. If the relation given above is satisfied for
every (p,n) € B x C, then O is called strictly (x, 0)-pseudoinvex on B x C.

Definition 6. For a given (p,n) € B x C, if there are p € R and
X Qo X (RT X RY)2 x R” x RY x R — R, with x = x(v, p,n, 9,75 (-, -, +))
convex on R™+1 y (v, p,n,p,n;(0,0,a)) > 0 for every (p,n) € B x C and
o € Ry, such that

J

f(vapapCan)dU < / f(vaﬁvﬁﬁaﬁ)dv

V1,V Q'Ul yVQ

implies

/Q X(U7p7naﬁvﬁ; (fp(vaﬁaﬁgaﬁ)_

v1,v2

0
% [fpg(vaﬁaﬁgaﬁ)] 7fn(v>]§7]§@ﬁ)7g)>dv <0

holds, for all (p,n) € B x C, then O is called (x, 0)-quasiinvex at (p,n) on
B x C. If the relation given above is satisfied for every (p,n) € B x C, then
© is called (x, 0)-quasiinvex on B x C.

The notion of (x, p)-invexity generalizes many types of convexities. In
this regard, a functional © can be (Y, ¢)-invex but not invex.

This paper focuses on efficiency criteria and the associated duals for the
following nonconvex multi-cost extremization problem:

(NMEP) min /Q Y (v,p(v),n(v))dv

(p,m) .



S. Treanta, M. Ciontescu, V. Laha, F. Shi 73

= (/ Tl(v,p(v), n(v))dv, ... ,/ (v, p(v), n(v))dv)
Qoy 09 Quq v

subject to  U(v,p(v),n(v)) £0, v € Qy; vy,
Z(va(v)v n(v)) = pC(v)v v E Qvl,vw
p(v1) = p1 = given, p(v2) = pa = given,

where T = (T1,...,T%) : Q,, v, X R" x R¥ — R is a z-dimensional C'-class
functional, and the constraint functionals U : €, 4, X R” x R¥ — R* and
Z  Qy vy x R" X R¥ — R" are assumed to be continuously differentiable
x-dimensional and r-dimensional functionals, respectively.

Let V be the feasible solution set for (NMEP), that is

V ={(p,n) € B x C satisfying the mentioned constraints in (NMEP)}.

Definition 7. A pair (p,n) € V associated to (NMEP) is an efficient
point of (NMEP) if there exists no other (p,n) € V such that

J

that is, there exists no other (p,n) € V such that

J
J

3 Main results

Y (v,p,n)dv < / Y (v,p,n)dv

v],v9 Qvl sV

T (v,p,n)dv < / Y (v,p,n)dv, Vi€ H,
Q

v1,v2 v1,v2

T4 (v,p,n)dv < / Y*(v,p,n)dv, for some s € H.

v],v9 Qvl,vz

In the following, to establish some characterization results of solutions as-
sociated with (NMEP), we state the KKT conditions (necessary criteria
of efficiency) associated with a multi-objective optimization problem (see
Treanta [23]).

Theorem 1. Let (p,n) be a normal efficient point for (NMEP) and
the KKT constraint qualification be satisfied. Then there are i € R*, \(+) :
Qoo = R and 7(+) : Quyy v, = R” satisfying

ﬁTTP(vvﬁv ﬁ) + E‘(U)TGP(I%p’ ﬁ’) + ﬁ'(U)THp(’U,ﬁ, pCa ﬁ)
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_3
= 7t |

7 Cov, b, 1) + M) G (v, p, 7)) + 7 (0)T Hy(v, b, b, 1) = 0, v € Quy g, (2)

7" e (v, 5,7) + Mv) Gy, (v, p,7) + 7(v) Hy (v,5,5c,7)] (1)

/ A)TU v, p,n)dv =0, 7>0, fTe=1, A(v) 20, v € Quy 1y, (3)
Q’U1,’U2
except at discontinuities, with S :== Z — pe.

For simplicity, we consider A for A(v) and 7 for 7 (v).

Theorem 2. If (p,n) € V, the KKT criteria in (1)-(3) are fulfilled at

this pair, with 7 € R* and A(-) : Quy 0y — RT and 7(+) : Quy 0y — R”, and
the hypotheses are valid:

(a) / Y (v,p,n)dv,. € H, is strictly (x, oy.)-invex at (p,n) on V;

v],v9

(n) / Ul(v,p,n)dv,l € E, is (x, orn)-invez at (p,n) on V;

v1,v2
(C) a Sj(v,p,pc,n)dv,j € A+(’U) = {] €A: 77-J(U) > 0}7 is (X7 QSj)'
nvex at (]51,1_22) onV;
(d) - Sj(’l),p,pc,Tl)dU,j € Ai(v) = {j €A: 771-]'(1}) < 0}7 18 (X7 QSJ)_
v1,v2

invex at (p,n) on V;
z x

(e) ZﬁbQTL + ZS\ZQUI + Z Tj0si — Z Tjosi 2 0,
=1 =1 jEA*(v) JEA—(v)
then (p,n) is an efficient point of (NMEP).

Proof. Suppose, contrary to the result, that (p,7n) is not an efficient
point of (NMEP). Then, there exists (p,n) € V such that

J

Y (v, p,n)dv < / Y (v,p,n)dv, Vi€ H (4)

Q

v1,v2 v1,v2

and

J

Due to (a)-(d), the inequalities are valid

J

Y (v,p,n)dv < / Y*(v,p,n)dv, for some s € H. (5)

Q

v1,v2 v1,v2

(v, p,n)dv — / (v, p,n)dv

v,V Q’Ul,’UQ
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z/g x (v, s (H) (0,5, )

v1,v2
8 ] n %Y m j — —_ — .
_ w [ch(vapapCan)] ,H%(U,p,pc,n),gsj)>dv, J c A+(’U)7 (8)
_/ S](Uaﬁaﬁaﬁ)dv“‘/ Sj(U,ﬁ,ﬁC,ﬁ)dU
Q1’11“2 QUl,UQ
- . L o . o
> /Q X(Uupan7p7n; (_ sz,(v,p,pc,n) — ﬁ [—Hg;g(fu’p’pc’n)] ,
v1,v2
- H%(”vﬁvﬁ(7ﬁ)7 Qsj))dv, je A (v). (9)
By using (4)-(6) and 77 > 0, we obtain
nLX(,Uaﬁavap7ﬁ; (T;('U,ﬁ, 77L)
Quq v
9 L _ . _
7@ [TPC (v,p,n)} 7Tn(v7p7n)a QTL))dU <0, (10)

for « € H, and
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for at least s € H. By adding (10) and (11), it follows

/ me v, B, i, P, 0 ,(T‘( p,7)

v1v2L 1

Since \;(v) > 0,1 € E, the relation (7) provides

/ ZXlUl(v,ﬁ, fz)dv—/ ZXZUZ(v,ﬁ,ﬁ)dv
Q

v =1 oy 127
X
Z/ ZAlX(vvﬁ,fz,ﬁ,ﬁ, (G;(v,p, 7)
Qvl,z)Ql 1
8 = o —_ —
B % |:G§7C(U’p’ n):| ,G%(U,p, n)7 QUZ))dU. (13)

Considering the feasibility of the pair (p,n) in (NMEP) together with the
condition given in (3), we get

x

/Q ZXZX(U7ﬁ)ﬁaﬁa n; (C;é(’l),ﬁ7 ’fz)

v1,v2 [=1

aac [Gl (v, P, ﬁ)} G, 5, ﬁ),guz>>dv <0. (14)

The relations given in (8) and (9) produce, respectively,

/ Z 7@5’3 ﬁ,ﬁﬁdv—/ Z ;S vppC, n)dv

Qoy,0p JEAT(v) Qv v JEAT(v)

/Q Z wjx(v P, P, 0 (HJ( P, D¢, M) — % [Hgg(v,ﬁ,ﬁg,ﬁ)] ,

V12 je At (v)

H (v, p, p¢, 1), QSJ’))dU (15)
/ Z 78 (v, b, p, 70 dv—/ Z ﬂ'ij v, P, P¢, 1) dv
v1v2jeA (’U v1v2]6A
/ (=7) x (v, 57, B, 7 (—HZ(U,ﬁﬁc,ﬁ)
Qvl v2 jEA— (’U

~ 5t [ Hgg(v,ﬁyﬁg,ﬁ)} ,—Hﬂ(v,ﬁ,ﬁg,ﬁ), Qy))du (16)
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By adding (15) and (16), it results

/ ZWJS] v, P, P71 dv—/ ZWJSJ v, P, p¢, n)dv

Quy vy jEA Quy vg JEA

/ Z TrjX(” p7n D, <H£(U,ﬁ,ﬁc,ﬁ) - % [Hé(’l),ﬁ,pg,ﬁ)] )

Quy,vg JEAT(v)

H; (0, ,pc, 1), QSj))dv

+ (=75 x (v, 3705 3 = HJ (0,5, )
Qvl v2 ]GA

oS [ H] (U b, pC’ﬁ)} ’_H%(Uaﬁaﬁoﬁ),gsj)>dv.

By considering the feasibility of the pair (p,n) in (NMEP), together with
(2) and (3), we have

L P 0 S
/Q Z W]X( v,p, N, P, N; <H;§(Uapapg“an)*% [Hg)g(vvpapﬁvn) >

w12 jeAT (v
Hj(v D, D¢, 1), gy))d?}
/ Z 3)x(v. 7,1 (= H)(0, .6, 7)
Quy vz jea-
o [ .00~ B0 5.5 05)) ) < 0 (17)
By relations (12), (14) and (17), we get

/ me M,ﬁ,ﬁ;(T;(v,ﬁ,ﬁ)

'Ul""2L 1

. o 0 . L
/ Z 7T]X(” panpa 7<ng(vapapﬁan)_w H;g((vvpvpCvn) )

Quy,vp JEAT(v)

H%(Uaﬁ,ﬁg,ﬁ), QSj))dU
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/ >« ( Dy Ty B, 715 (—Hg(v,ﬁ,ﬁg,ﬁ)

Qoy,0p jEA— (v)
[ w55 M) 0,5 ) 05 Jdo <0, (18)

Let us denote

~ un

" o1 2 Ai(v) + ng;ﬁ(y) 7j(v) — ZjeA*(v) 7j(v) ’

L€ H, (19)

(o) = _ i} Ai(v) ] I
Dot e 22 M)+ et ) Ti(0) = Xjea-(v) T (W)

leE, (20)

O — ) —
D1t 2o M) + ZjeA+(U) 7j(v) — ZjeA*(v) 7j(v)

j € A" (v), (21)

() = i) ,
Do M+ 20 M) + e at ) T (V) = Xjea—w) T3 (V)

je A (v). (22)

y (19)-(22), we get that 0 <7, < 1,0 € H, but 7, > 0 for at least € H,0 <
1(v) <1,1e E,0<7j(v) <1,j € A, and, in addition,

Yo+ N+ Y )+ Y Fr) =1 (23)
=1 =1

JEAT (v) JEA™ (v)

Combining (18)-(22), we get
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/Q > %X(v .15 (0. .5, m) — oo [H (0,7,5,7)]

v1v2 je At (v

H (v, p,pe, 1), QSj))dU

. o 8 . o
/ Z W]X(U P,TL D, n ( Hi,(v,p,pg,n) — % [*ch(v,p,pc,n)} ,
Qo vy jeA—(
_H%(U,ﬁaﬁ(,ﬁ),ggv))dv <0 (24)

By Definition 2, we get x(v,p, 7, p,7; (-, -,-)) is convex on R™**1  Since
(23) is true, then by (24) and Definition 1, we get

T
Z ﬁLT;(Uapa ﬁ) + Z AlGﬁg(U7pv ﬁ)

4
/ X (v,ﬁ,ﬁ,ﬁ,ﬁ; (
Qvl,vg =1 =1

+ Y ®mHI(v,ppe )+ Y wHI(v,p,pc, )
JEA+(v) jEA—(v)

f% [Zl 0T (v,0,70) + ZAIG,,C v.p, 7

+Z7T] vppC’ Zﬂ-] pgvpapO)a

jeAT (v jEA—(v)
ZmTL v, p, 7t +ZX1GZ(U,J5, n)
=1
+ > ®Hi(v,p.pon)+ Y, FHL, PP, ),
JEAT(v) jeEA—(v)

z x
ZﬁLQTL + ZXIQUl + Z %jgsj dv < 0.
=1 =1

jEAT (V) UA™ (v)
Hence, the KKT conditions yield

/ X(Uaﬁ7ﬁ7ﬁaﬁ; (0707 ZﬁLQTL"i_Z}'\\lQUl‘i‘ Z %‘7@53>>d’l) < 0.
Q

V1,02 =1 =1 JEAT (V)UA~ (v)
(25)
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From the hypothesis (e), we have

z x
> Hore+ Y Nopt + > Tj0si = 0. (26)
=1 =1 JEAT (V)UA~ (v)

By Definition 2, it follows that x(v,p, 7, p,7; (0,0,«)) > 0 for any a € Ry.
Thus, realtion (26) implies that

z T
/ X(Uaﬁa ﬁvﬁaﬁ; (OaOaZﬁLQTL+ZAlQUl+ Z %j@SJ))d/U >0
Q =1 =1

JEA+ (v)UA— (v)
is valid, contradicting (25). In consequence, the proof is complete. [
Theorem 3. If (p,n) € V, the KKT criteria in (1)-(3) are satisfied at
this pair, with 7 € R* and A(-) : Qy, vy = RT and 7(-) : Qy, v, = R, and
the statements are fulfilled:

v1,v9

(a) / Y (v,p,n)dv,. € H, is strictly (x, oy.)-pseudoinver at (p,n)

v1,v2
on'V;
(n) / Ul(v,p,n)dv,l € FE, is (x, o) -quasiinvex at (p,n) on V;
v1,v2
(c) / S7(v,p,pc,n)dv, j € AT (v), is (x, 0g;)-quasiinver at (p,n) on
V1,02
V;
(d) — Sj(v,p,pc,n)dv,j € A (v), is (x, 055 )-quasiinvez at (p,n)
onV; o
z xr B
(€)Y More+ > Mo+ Y. Tosi— >, Tosi >0,
=1 =1 JEAT(v) JjeA~(v)

then (p,n) is an efficient point of (NMEP).

Proof. Suppose, contrary to the result, that (p,7n) is not an efficient
point of (NMEP). Then, there exists (p,7) € V such that

/ T (v, p,n)dv < / Y (v,p,n)dv, 1€ H (27)
Q

v1,v9 SZUI,UQ

and

/ Y (v,p,n)dv < / Y¥(v,p,n)dv, for some s € H. (28)
Q

Q

V1,9 V1,02
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By using Definition 5, relations given in (27) and (28) yield

/Q x (v, 5.7 5,7 (T (0, 5,7)

v1,v9

_% [T;c(v’ﬁ’ ﬁ)} ,T;(v,ﬁ,ﬁ),gp)>dv <0, € H,

and, since 77 > 0, then the above inequality gives

z
/Q > x5, p, 7 (Th(v, 5. 7)

V1,02 =1

_% [TIL% (v, P, ﬁ)} , Yy (v, p,n), QTL))dv <0. (29)

By using the feasibility of (p,n) and (p,n) in (NMEP), together with the
KKT necessary efficiency criteria, it follows
/ MUY (v, p, 1) dv < / NUY (v, p,7)dv, 1€ E.
QUI!”Q Qvl sV2
By using Definition 6, the assumption in (n) implies

/ Aox (v 7, 5,7 (G (v, 5, 7)
Q

v1,v9

_% (Gl (0,5,7)| Gl (v,5,7), 001 ) )dv 0, L € E.

Adding the inequalities above, we obtain

v1,v9 =1
_9 [Gl (v, ﬁ)} G (v, 5, 7) ))dv<0 (30)
8U< D¢ » D, ) n » D, 7QUl = Y.
Further, by using the feasibility of (p,n) and (p,n) in (NMEP), we have
[ Swpbnd= [ S, jeate). 6D
Q

~S9 (v, p, p, A)dv = / —S7(v,p, P, M)dv, j € A”(v).  (32)
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Thus, by (c) and (d), the relations given in (31) and (32) imply

L P 0 A
/Q X(’U,p,n,p,n; (Hg,(v,p,pg,n) - ﬁ {Hgg(vvpvpgvn)} 9

V1,02
Hj (0,5, 5¢,7), 055 ) )dv < 0, j € AT(v), (33)
o P 0 T
/Q X(vavnapﬂ"b; ( - HIJ)(/U7p7pC7n) - w [_Hgé(/l)?pvpC?n)} 9
v1,v2
- H%(”?ﬁ?ﬁ(ﬂj"% QSJ))dU < 07 ] € Ai(v)' (34)

/ > WJX< 5,71, P, 7] (Hg(v,ﬁ,ﬁcﬁ) - aavg {Hgg(vvﬁ,ﬁcﬁ)} ,

Quy 09 JEAT (v)
H} (v, p, ¢, 1) 933)) <0, (35)
L2 (e

Qorv jea-(v)

— H} (v, 5, pc, 1), 05 ) ) dv < 0. (36)

“31
i
3
—~
|
T
<
<
=
el
o
3l
3
]
~
rm
|
NS
S
<
3
el
o
3l

By using relations in (29), (30), (35) and (36), it follows

. L o . L
+/Q Z 7T_]X(” panapa (Hg)(vapapon)_ﬁ Hi)g(vvpvpCvn) )

v1,v2 ]€A+

H} (v, p, P¢, n), QSj>>dU

/ Z 3)x (v 7,1 (= HJ (0,5, 7)

Qug,vg JEA~
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0 ; o
_w _Hgg(vapapgvn)}7

- H%(U,ﬁ,pg,ﬁ% QSj))dU < 0.

The rest of the proof is similar as in Theorem 2. [J

Let M, L be some subsets of E such that M UL = E, M NL = (), and
let

A (0) UM (0, 5(0),6(0)) =Y Mi(0)U! (0,7(0), 6(v))
leM

and

AL) U (0,7(v),6(v) = > M) (v,7(v), 6(v)).

leL

In this part of the study, we prove a duality connection between (NMEP)
and its mixed multi-cost dual model (Dual) formulated as below:

(Dual) %%3</S2 (T(v,7(v),5(v)) + A ()T UM (0, 7(v), 6(v))e) dv

v1,v9

subject to

0 Lp(0,7(0),8(0)) + A(©) Gp(v,7(0),8(0)) + 7 (V)T Hp(v,7(0),5(v), 8(v))
0

= 9uC [nTTpg (v,7(v),0(v)) + )\(v)TGpg(v, v(v),8(v))

+7(v) " Hy, (v,7(0),4(v), ()
1" L (0,7(0), 6(0))FA(0) T G (0,7(0), 8(0))+7(0) T Hu(v,7(0), 4(v), 8(v)) = 0,

/Q AL () TUE (0,4(v), 6(0))dv > 0,

v1,v2
[ A S, s =0,
QUI’”Q
Y(01) = p1, Y(v2) =pa, 1> 0, nle =1, A(v) 20, v € Ly 1y,
where e = (1,1,...,1) € R* is a z-dimensional vector.

Remark 1. For L = (), we obtain the Wolfe dual model. If M = (), we
get the Mond-Weir dual model.

Further, we consider Qy is the feasible solution set (v, §, 1, A\, 7) of (Dual).
We denote by Y the set

Y ={(,0) € BxC:(v,0,n,\,7) €Qy}.
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Theorem 4. Let (p,n) and (v,0,n, A\, ) be any feasible solutions of
(NMEP) and (Dual), respectively. In addition, we consider the statements
are fulfilled:

(a) Y (v,p,n)dv,. € H, is strictly (x, ox:)-invez at (y,0) on V U

(n) / (v,p,n)dv,l € E, is (x, ornt)-invez at (,0) on VUY;

() [ S(w.p.pen)du,j € AT(v), is (x. 05)-inves at (7,6) on V U
Y; Q'Ul v

@~ [ Sieppcndog € A7), i (x.os)-ines at (.6) on
voy;

(e) ngw +Z>\L@Uz + Y kjogi— > kjosi = 0.

jEAT (v) JEA= (v)

Then the relatzons cannot hold

T (v, p,n)dv < / (TL(U,")/, 8) + A (0)TUM (v, 4, 5)) dv, . € H,
Q
(37)

J

and

v1,v2 V1,02

/Q T4 (v,p,n)dv < / (Y*(v,7,6) + A (0)TUM (v, 7, §)) dv, (38)

v1,v9 S2U1,U2

for some s € H.

Proof. By contradiction, we assume that the relations given in (37) and
(38) are valid. By considering the assumptions in (a)-(d), we get

/ T (v, p,n)dv — / T (v,7,d)dv
Q

v1,v9 Qvl ;U9

>/Q x(v,p,n,% 5; (T;(U,’Yﬁ)

v],v9

aac [TL (0,7, 5)} Y5 (v, 5)7QTL>)CZU, L€ H, (39)

/ Ul(v,p,n)dv — / Ul(v,v,8)dv
Q

v1,v9 Qvl ;U9
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0 1 1
- % |:G (U v 5):| 7Gn(’07776)aQUl))d’Ua l € Ea (40)
| Seppemi- [ Siag s

Q”h“? Q"L’17”2
, ) 0 )
Z/Q x(v,p,n,%& (Hf,(v,%vﬁ) EWS [Hj (%%%5)]7
v1,V2

H%(U/V,;Ya 5),@51))6&), ] S A+(U)7 (41)
- [ Seppenios [ S50

Q'ULUQ Q'”LUQ
> (v n 5'<—Hj(v 1.0) — 2 [ (0,7,4,0)]
- Qvl vy X 7p’ ?’77 b) p 77’ 77 6’UC 77’ 77 )
- H%(U777’.}/7 6)7QSJ>>dU7 j S Ai(v)ﬂ (42)

are valid. Since A(v) = 0, then (40) gives

/911117)2

Z/Q Azx(unm% 5; (Gi,(vm 5) — aac [Gl (v,%5)],

v1,v9

NU (v, p,n)dv —/ MU (v, 7, 6)dv

Qvl,vg

G (v,7,6), QUz))dv, l€E. (43)

Using the feasibility of (p,n) and (v,d,n, A\, 7) in problems (NMEP) and
(Dual), respectively, we get

—/Q Z)\ZUZU%

v1:v2 e M

/ Z)\lX v,p, N, ’7767 <Gl (’U 776)

”1 v2 leM

aac (Gl (0,7,0)] , Gh(0,7,6), 000 ) ) dv (44)

and
/ Z)‘ZX<U b, n, 776’ (Gé(07755)
Qv vy leL

aaC {Gl (fu,'y,é)} ,G%(fu,’y,é),gw)>dv <0. (45)
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We use the relations in (39), (44) and (45), involving

/ T‘(U,p,n)dv—/ (v,7,0 dv—/ ZA;U v,7,0
Q Q

V1,3 V1,3 Qv 09 leM

> /Q x(v,p, n,7,0; (T;(v,%c?)

V],V

a@( {’I‘L (U,%é)} ,T;(v,'y,é),gp>)dv

+ /Q Z AlX(”vpv n7776; <G§7(U’7’6)

v1,v2 €M

_ aac (Gl (0,7,0)] , Gh(0,7,6), 010 ) ) v

LS (e (G0 - o [Gh(wn.0)].

Qoyvg leL

Gln(v,’y,é), QUz))dU, L€ H.

Taking into account the relation M U L = E, the above inequality produces

/ T (v,p,n)dv — / T (v,7,d)dv — / Z NU (v, 5, 0)dv
Q

v1,v9 Q’Ul,’UQ Q’Ul,’UQ leM

> /Q x(v,p, n,7,d; (T;(Um J)

1,02
88( [TL (U,%(S)} 7T%(Ua775),QTt>>dv

LS (e (G0 - o [Gh(w.0)].

v1v2l 1

G (v,7,9), gUz))dv, L€ H. (46)

By relations in (37), (38) and (46), it results

0
X Uapana775; T;(Uavvd) |:TL (1)777 6):| 7T%(U77> 5)7QTL dv
QUI’”Q a C

L (s (Ghl ) — o [ (en.0],

'Ul’UQZ 1

sz(v,'y,é),.QUz)>dv<0, 1€ H. (47)
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Since n > 0 and e = 1, then (47) gives

/ me v,p,m,7, ,(T;(v,% 5)

U1U2L 1

8a< [TL ('l) 7 5)] 7TL (1),’)/7 5)) QTL>)dU

/Q Z)\ZX v,p, 1,7, 5; (Gé(va% 8) — aac [Gl (v,%5)],

V1,09 l 1
Gl(0,7,0), 01) ) dv < 0. (48)

Thus, relations given in (41) and (42) produce, respectively,

/Q Z H,] I (v, p,peym dv—/ Z 14 S7 (v, 7,7, 8)dv

v102 je At (v o0y JEAT(v)

; : 0 ; :
> /Q Z /in<rU7p7nafY75; (Hg(fl)v’}’af% 6) - % [H57<U77777 5)] )

v1,v2 j€A+ (’U)

H;’;(u% Y5 0), QSJ‘))dU (49)

/Q ’{] (U b, p¢, M dU _/ Z K’j U 7)736)d

V1,02 EA v1 vo ]GA
/ Z (Uapu n7775; < - Hé(va%%&) - @ [_Hé(vv/—%’}/)&)] ’
’Ul ) ]EA
- Hﬂb(”,’%%(s),QSj))dU- (50)

Adding both sides of (49) and (50), we get

/Q Z/@J (v, p,pe,m )dv—/ ZI{J (v,7,7,0)dv

v1v2 jEA v1v2 jEA

. . 0
/ > Rgx(v P15 05 (Hg(v,%vﬁ) W [H](v,7,%,0)] ,

Quy 09 JEAT(v)

Hj(v,7,%,6), Qsj))dv

/ Z (U b,n, 7757 ( - Hé(0777775) - w [_Hé(va%%é)] )

Quy 0y jEA—

- H%(%%Wﬁ%@gj))dv.
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Hence, by the feasibility of the pair (p,n) and of (v,d,n, A, 7) in (NMEP)
and (Dual), respectively, it results

/Q Z H]X(U b,n, ’7757 (H]])(U,’}/,’y,é) - @ [H]%(vaﬂr% 5)] )

V1,2 jeAt (v

H}(v,7,%,6), QSJ‘))dU

/ Z (vaa n7’776; ( - H;(U77a776) - % [_HIJ)(07777>5)] )
Ul v ]GA
- H%(Uvr)/vl% 5)7 QSJ))dU <0. (51)

Hence, the relations given in (48) and (51) yield

/Q me v, P 1,7, 5 (T;(v,% )

U1U2L 1

e [T w7 9)] T (0.7,0), 0. )

/ S (v, (Gl (0.7.0)
Qvl v2 =1
a C |:Gl (U 776):| 7G%n(v¢’775)7QUl>>de
: 9
+/Q > Hjx(v,p,n,%& (Hg(v,%ﬁﬁ) P0C [HI(v,7,%,5)] ,

V12 e At (v)

H}(v,7,%,9), QSJ‘))dU

/ Rj)X(Uapanafya(S;(_Hg(va’y”y’(;)
Qvl vo _]EA
O Hw, %5)} (—H}(0,7,4,6), 051 ) ) dv < 0. (52)
We denote
- un

N = z T
ZLZI N+ Zl:l Al(v) + Zj€A+(v) Kj (U) - ZjeA* (v) Kj (U)
L€ H, (53)
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5\1(”) = M)
o1+ 20 M)+ 2 i at o) K (V) = D ea— () Ki (V)
le E, (54)
77"(1}) _ Kj (U)
! S+ 2 Mi(v) + ZjeA+(v) Kj(v) — ZjeA—(v) Kj(v)’
j €A (v), (55)
; —ry () je A (v).

) S SN0 S jear o )~ Syea o)
(56)

By (53) — (56), it follows that 0 <7, <1, « € H, but 7, > 0 for at least one
LeH, 0< \(v)<1,le E, 0<7,(v) <1, j €A, and, moreover,

DoAY M)+ Y m)+ Y w) =1 (57)
=1 =1 JEA*(v) jEA—(v)
Combining (52)-(56), we get

/ me v, P, 1,7, ,(T;(v,% 0)—

U1U2L 1
0
9vC

/Q Z)\lX v,p,n,7,6; (GL(U,% 5)

Ul’UQl 1

884 [Gl 7, 5)} G (v,7,0), guz))du

/ Z ﬂ—jX(U p,n, 7757 (Hg(’l),")/,’)/, 5) 87 [H (U ’7?’776)] )

Quy,0p jeAt(v)

{TL (0,7,5)} , 1o (v,’y,é),grb))dv

H](U 7”775) QSj>)dU
/ Z 7T]X<U p,n, 7757 < - H]J;(v777’y75) - 88“ [_H]J)'(Ua'yv;ya 6)] )

Qorvz jea- (v)

- Hn(va’%;}/?é)a QSj))dU <0. (58)

By Definition 2, it follows that x(v,p,n,,d,-) is convex on R™**1 Thus,
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since (57) is valid, then Definition 1 involves

/Q Zrhx v,p, N, 7, 0; (T;(v,*y,6)

v1,v2 =1

D Bt Taenen) i

5; (G! )
+/Q ZMX(U Py, Y, ,(Gp(v,% )

v1,v2 =1

8@C [Gl (u,v,a)} ,Gfl(v,%a),w))dv

+/Q Z 7r]X<U p,n, ’775 <H]Z(U»%%5) 67 [H (U ’7/’775)] )

V1,02 J€A+(v)

H(0.7,7.0). 059 ) ) dv

+/Q > frjx(v,p,n,% 5; (— H}(v,7,%,6) — 8?)4 [—Hig(v7’y,"y, 5)} ,

U102 jEAT (v)

- H%(“»%%&,ng))dv

Z/Q x (09,70 ([Zm (v,7,6 +i;\zGé(v,%5)
=1

+ Z i H} (v,7,%, )

JEAT(v)

+ 2 §(0.7:40)] - 34[27% pel0:7:0 +ZAI 7,0
JEA~(v)

Y mHL A0+ Y (<) H(0,7,%,0)]

jEAt(v) jeA~(v)

Zm (v, 7,0 +ZMGZ (0,7%:8)+ D #HA(0,7,%,0)

=1 JEAF(v)

+ Z U 77’77 ZnLQTL

JEA™(v)

+ZS\1QUL+ Z 7~Tj,(_)5j>>d’l).
=1

jEAT(vV)UA— (v)
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Combining (58) and the above relation, we have

/Q x(vp,n%,({Zm (v,7,0 +ZA1GZU%5)

v1,v2
+ > #H(v,7,%,0) (59)
JEAT(v)
+ Y (7)) Hy(v,7,%,0 ] [Zn (v,7.6 +ZAsz<v%5)
JEA~ (v)
Y BHL @A)+ D (—R) Hy (0,7,9,0)],
JEAT (v) jeA—(v)
Zm (v,7,6 +Z>\1G v, 0+ Y FiH(0,7,4,0)
=1 JEAT (v)
+ Z 7 (0,7,%,6 ZnL@TL+Z/\z@Uz

JEA™(v)
+ Z ﬁjQSj>>dU<0.
JEA+(v)UA- (v)

Hence, the constraints of (Dual) yield

/ X(Uap7n7775; (0,0, ZZ:ﬁLQTL-sz: Nopi+ Z ﬁstJ'))dv < 0.

Quy,vg =1 =1 JEAT (v)UA™ (v)
(60)
From the assumption given in (e), we get that

> dore + Y Mot + > Tj05i > 0. (61)
=1 =1 JEAT (vV)UA— (v)

By Definition 2, we have that x(v,p,n,v,d;(0,0,«)) > 0, with o € Ry.
Now, relation given in (61) implies

z T
/ X(Uapan7775; <0a07 ZﬁLQTb+Z )\ZQUZ+ Z ﬁ]QSJ>>d’U >0
Q

V1,02 =1 =1 JEAT (V)UA™ (v)

is valid, contradicting (60). O
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4 Conclusions and further developments

The investigation of optimization problems has been one of the most re-
searched and attractive topics. In this paper, we have studied and charac-
terized the solution set of a non-convex multi-cost extremization problem.
Concretely, we have established some existence results of solutions associated
with this optimization model governed by invex, pseudoinvex, or quasiinvex
multiple-integral-type functionals. Also, we have established a dual con-
nection between the efficient point of the considered non-convex multi-cost
extremization problem and the efficient solution of the corresponding dual
model.
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