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Abstract

This paper is devoted to a strange looking question: is it possible
to deduce the shape of a smooth convex set by measuring at each point
the distance of the horizon standing at a fixed height h? The question
is surprisingly difficult and we only have partial results.
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1 Introduction

It is well known that a smooth planar curve with constant non-zero curvature
is a circle. An analogous property can be stated for a surface in R3. The
property of constant curvature can be used to verify the spherical shape of
the Earth by measurements made on Earth itself. Such measurements are
in a sense more convincing than arguments relying on exterior objects such
as the direction of sunlight, used by Erathostenes to prove at least locally
the curved character of the planet. They can at least theoretically be made
global.
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A simple calculation, detailed in section 2 below, shows a direct relation-
ship between the radius of the Earth and the distance of the horizon. But
what if we do not know in advance that the planet is approximately spheri-
cal? Can we really estimate (locally or globally) the curvature by measuring
the distance of the horizon? The present paper is devoted to some partial
results and one basic question in this direction.

Recovering the shape from horizon measurements enters the category of
so called “inverse problems” and usually this kind of problems is not easy.
Ruling out absolute flatness of the Earth or more generally a planet by
local measurements is the easiest part: on a plane, the distance of horizon
is infinite from any point, and more generally for a subdomain of a plane,
the horizon in any direction coincides with a boundary point of the domain.
So, in theory, if the domain is perfectly flat, walking towards the horizon
should not allow new objects to appear. But the adepts of flatness theory
(which can also be considered as a challenge to well recognized certitudes),
do not usually claim absolute flatness. And to contradict that theory, we
need much stronger arguments.

The plan of this paper is as follows: section 2 is devoted to the case of
a sphere, in section 3 we state the main definitions useful for stating the
results, in section 4 we indicate how a bound on the curvature radius of
the boundary allows to localize a convex set. Section 5 is devoted to the
construction of examples showing that a global upper bound of the horizon
distance does not imply anything on the curvature radius. Sections 6 and
7 contain the main positive results of this short note. Finally, Section 8
contains some remarks and observations on related questions of interest.

2 Radius of the Earth and distance of the horizon

In this section, we consider a perfectly spherical planet (which may be the
Earth) with radius R and we want to compute the distance of horizon seen
from any point of the Earth located at a distance h from the ground. First
it is immediate, due to rotation invariance, that the distance of the horizon
in any direction is the same, let us denote it by H(h) := H. To compute H,
let us consider a point O on the ground and the point A on the vertical half-
line starting from O such that OA = h. We consider any plane Π containing
the vertical segment OA and the disk D, intersection of the planet with the
plane Π. Let T be the contact point of one of the two tangents at Γ = ∂D
passing through point A. Then AT = H. Denoting by C the center of the
planet, We have TC = R = OC, then AC = R+ h and by the Pythagorean
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Figure 1: Spherical planet

theorem applied in the triangle ATC, we infer

(R+ h)2 = H2 +R2.

By expanding the square on the left, we get

R2 + 2Rh+ h2 = H2 +R2,

yielding
H2 = 2Rh+ h2.

Therefore
H =

√
2Rh+ h2 (1)

and

R =
H2 − h2

2h
. (2)
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For instance on Earth where R ∼ 6400 km, for a man of height 1.75m
with eyes at approximately 1.65m from the ground, the calculation gives
H ∼ 4.6 km. This is quite consistent with what we observe when there is no
obstacle to limit our vision. And from an airplane, when If h = 10 km, we
end up with

H ∼
√

128000 ∼ 358 km

which is also consistent with the size of the landscape that we can see from
an airplane when the wheather allows that.

3 Some definitions

Before attacking the inverse problem mentioned in the introduction, we need
to define precisely what we mean by the horizon on a given hypersurface of
RN (N ≥ 2) at an exterior point. It is clear that if the hypersurface is
bounded, the distance to the horizon will be finite everywhere, and that the
converse is false. Also, the notion is only of interest if the hypersurface is
in fact the boundary of a solid domain, so that we cannot “see” the interior
points. And finally, even for a curve in R2, the definition of the horizon is
problematic if the curvature changes sign, since in a given direction the set
of points which can be seen from the exterior point may be disconnected.
(see Figure 2)

For this reason, we shall restrict ourselves to the case of the boundary of
a convex set. Let us consider a closed convex set K ⊂ RN and its boundary
Σ = ∂K. Given a point a 6∈ K we consider the smallest closed convex cone
C with vertex a containing K. It is given by the formula

C = a+
⋃
λ>0

λ(K − a).

Then we can define the horizon set H (a,K) at a relative to K by

H (a,K) = ∂C ∩ Σ.

If N = 2, the set ∂C is made of two straight lines and if K is strictly
convex, H (a,K) is a pair of points. On the other hand, if Σ contains
some flat parts, H (a,K) is more generally the union of two separate line
segments, some of which possibly reduced to one point, depending on the
position of a, see Figure 3.
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Figure 2: Disconnected visible set.

If N = 3, the set ∂C is a conic surface with vertex a and if K is strictly
convex, H (a,K) is a curve. On the other hand, if Σ contains some flat
parts, H (a,K) can become very different from a curve. We shall not try
here to describe the most general situation in R3, since convex sets in 3
dimensions can already be rather complicated, see Figure 4.
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Figure 3: N=2

Figure 4: N=3
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In the sequel, the most useful notion will be the horizon distance from
a point a 6∈ K in a given direction. When K is a strictly convex C1 do-
main of RN which contains interior points, so that it does not reduce to
dimension N−1, let us consider any half-plane P whose edge coincides with
the normal at K emanating from a. Then H (a,K) ∩ P reduces to a point
T = T (a,K, P ), which is the contact point of K with the unique tangent at
Σ contained in P and passing through a. We set

H(a,K, P ) := dist(a, T (a,K, P )) = aT.

In 2 dimensions, there are only two half-planes P with edge Oa that can be
written P+ and P−, with P+ corresponding to the right if we take the fol-
lowing system of axes : the origin O is the projection of a on K, the vertical

axis
−→
Oy is the half-line in the direction

−→
Oa given by outgoing normal through

a and we chose an horizontal orientation to fix
−→
Ox. In N dimensions, each

half-plane P is characterized by its unit vector of origin O orthogonal to
−→
Oa.

The main objective of this note is to establish a relationship between the
properties of the horizon distance from the points above a given point on
Σ and the curvature radius at that point. But the first thing to investigate
is which kind of information can be deduced from the properties of the
curvature on Σ.

4 Curvature radius and confinement

A first question, natural for both planar curves and surfaces in R3, is the
following: If the curvature radius at all points is bounded by a finite number
R, can we say that the curve (resp. surface) is bounded? For the problem
which we address here, we always work in a plane, so we just provide the
simplest property in the direction.

Proposition 1. Let K be a closed convex domain of R3, with C2 boundary
Γ. If the curvature radius of Γ is everywhere less than R, the curve is entirely
contained in a disk of radius R.

Proof. First, the curve has no inflexion points and as a consequence the
curvature has a constant sign. At any given point A , the curve is entirely
located in one of the two half-planes delimited by the tangent vector. Let
us study the local situation by choosing the coordinate axes in such a way
that the point A has coordinates (0, R) and the equation of Γ becomes

y = f(x)
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for |x| small, with f ′(0) = 0 and f ′′(0) < 0. For x > 0 small enough, the
curvature radius is

ρ(x) = −(1 + y′2)3/2

y′′
.

Therefore

y′′ = − 1

ρ(x)
(1 + y′2)3/2 ≤ − 1

R
(1 + y′)3/2.

Since the circle of center (0, 0) and radius R satisfies y = z(x) with z′(0) = 0
and

z′′ = − 1

R
(1 + z′2)3/2,

the comparison principle implies that

∀x ∈ (0, τ(x)), y′(x) ≤ z′(x). (3)

Because y(0) = z(0) = R, we also infer y(x) ≤ z(x). From this we deduce
that the arc of Γ on the right is interior to the quarter of disk with cen-
ter (0, 0) and radius R, until the curve Γ crosses the x-axis for the first
time. From (3) it follows that |y′(x)| blows up for some value x1 ∈ (0, R].
By rotating the axes by +π

2 so that (y(x1), x1) plays the role of the initial
point and proceeding backwards instead of forward, we can see that actually
y(x1) ≥ 0. Now two remarks are in order: first the curve Γ is entirely con-
tained in the half-plane x ≤ x1. Secondly, by doing the same argument on
the left, we find a point x2 ∈ [−R, 0) such that y(x2) ≥ 0 and |y′(x)| blows
up at x2. In particular the curve Γ is entirely contained in the vertical strip
x2 ≤ x ≤ x1. Now we can reproduce the previous argument starting from
the point (y(x1), x1) and rotating the axes by +π/2, because x1 ≤ R and the
slope of the disk with center (0, 0) and radius R at the point of abscissa y1

is nonnegative in the new coordinate system. Then the arc of Γ on the right
starting from (y(x1), x1) will remain in the second quarter of the disc until
the curve Γ becomes horizontal, which provides a point A′ = (x3, y3)) ∈ Γ
with x3 < x1 < R such that the tangent at Γ at point A′ is horizontal. And
then the curve Γ is contained in the strip y3 ≤ y ≤ R. In particular, Γ is
bounded as a subset of the rectangle R = [x2, x1]× [y3, R], see Figure 5.

To complete the proof we need to be a little bit more precise. Since we
now know that Γ is compact, we can find two points (A,B) in Γ such that

AB = d(A,B) = max
(X,Y )∈Γ×Γ

d(X,Y ).
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Figure 5: Confinement.
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Figure 6: Diameter.

An immediate geometrical argument shows that the tangents to Γ at both
points A and B are orthogonal to the segment AB. For instance if the
tangent at B is not orthogonal to AB, taking a point C very close to B
on the side of Γ where the tangent makes an angle > π/2, we see that
AC > AB, contradicting the maximality, see Figure 6. The same argument
applies to A.

By choosing A as the starting point in the above construction, we can
see easily that B = A′ and so A′ belongs to the vertical axis. We observe
that A′ is the “bottom” of Γ while A is the top. Note that there is only
one top and one bottom since the curvature never vanishes. Now, we can
see that the “right” part of Γ, meaning by that its intersection with the
half-plane x ≥ 0 is contained in the right half-disk of radius R with center
(0,0). The same argument applies, mutatis mutandis, to the left part of Γ,
so that Γ is entirely contained in the disk of radius R with center (0,0).

Remark 1. The result is probably still valid if Γ is any C2 curve, not
necessarily the boundary of a convex set. But the proof would presumably be
more involved.

Remark 2. An analogous result is probably still valid in RN for the bound-
ary Σ of a C2 convex set assuming all directional curvatures to be larger
than 1

R , since in that case each section by a plane would be contained in a
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disc of radius R. Taking A,B in Σ such that AB realizes the diameter of Σ,
it is likely that some sphere of radius R tangent to Σ at A will enclose Σ.

5 Horizon and curvature radius

Encouraged by the previous result, we might try to deduce a bound on the
curvature radius from an upper bound of the horizon distance. Unfortu-
nately, we have the following very strong negative results.

Proposition 2. For any H0 > 0, we can find a C∞ convex domain D with
completely flat parts (hence an infinite curvature radius at some points) and
a positive h such that

∀M ∈ ∂D, max{H+(h,M), H−(h,M)} ≤ 2H0.

Proof. Let us consider an even piecewise affine concave function F defined
on [−NH0,+NH0] (N ∈ N, N > 0) with F (−NH0) = F (NH0) = 0 ,
F (0) = ε > 0 such that the slope jumps at all points kH0, where k is an
integer between −(N − 1) and (N − 1). For a point on the graph of F other
than the corners, both left and right horizon distances relative to the convex
set

S := {(x, y)|x ∈ [−NH0,+NH0], 0 ≤ y ≤ F (x)}

are less than the length of the corresponding face. By smoothing the corners,
the distance of horizon for any point lying on the smoothed curve remains
less than the maximum of lengths of the faces. But since the slope of the
faces is less than ε

NH0
> 0 , for ε small enough, that maximum is less than

2H0. And then for sufficiently small h we obtain the result since the horizon
distance is continuous with respect to h. See Figure 7.

Proposition 3. For any H0 > 0, we can find a C∞ strictly convex domain
D” with arbitrarily large curvature radius at some boundary points and a
positive h such that

∀M ∈ ∂D”, max{H+(h,M), H−(h,M)} ≤ 2H0.

Proof. Starting from the previous domain D, we can replace the flat parts by
curved ones with an arbitrarily small curvature, getting a domain D′. Then
we consider a large number of copies of D′ in and dispose them around a
circle. More precisely, we start with a regular P-gone with P very large,
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Figure 7: Construction of the domains D, D’ and D”.
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the size of the sides being equal to the length of D and place a copy of D′

above each side of the P-gone. When D′ is sufficiently flat, the resulting do-
main will still be convex. Finally we smooth the remaining corners without
destroying convexity. We shall obtain this way a C∞ strictly convex curve
arbitrarily close to a circle for which the distance of the horizon for points
very close to the curve will be as small as we wish, while the curvature radius
at some points is arbitrarily large. We skip the details. See Figure 7.

Remark 3. The main point here is that the maximum of the curvature
radius can be made as large as we wish for a small fixed height h, so that
there a bound on H(h) does not imply anything on the curvature radius. In
addition, the domain that we construct can be almost indistinguishable from
a disk. A similar construction for a ball of R3 should be possible, but it may
be more delicate since regular polyhedrons with a large number of faces do
not exist! We should sacrifice at least partially the symmetry.

6 A very partial result

Theorem 1. Let Γ be C2 curve delimiting a strictly convex compact domain
with positive curvature everywhere. Then it happens that

lim
h→0

H±(h,M) = 0 (4)

and we have more precisely

lim
h→0

H2
±(h,M)

h
= 2ρ(M) (5)

where ρ(M) is the curvature radius at point M .

Proof. In the sequel we shall write for simplicity H±(h,M) = H(h,M)
since the proofs are identical in both positive and negative directions. The
first result is immediate since assuming the contrary, by compactness and
continuity we find a point P ∈ Γ such that H(0, P ) > 0, a contradiction with
strict convexity. By a suitable choice of coordinates, we set M = (0, 0) and
we represent locally the curve Γ in an orthonormal frame by the equation
y = f(x) where f(0) = f ′(0) = 0 and f ′′(0) < 0. With this convention we
have

f ′′(0) = − 1

ρ(M)
.
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Figure 8: Graph.

We consider the right horizon point T (x, f(x)) (the calculation on the left
will give the same result) and we set H2(h,M) = H. We note first that

H2 = x2 + (h− f(x))2 (6)

and since the tangent at point (x, f(x)) contains the point (0, h) we have
the basic formula

h = f(x)− xf ′(x), (7)

see Figure 8.

In addition, by definition of f ′′(0), we have since f ′(0) = 0,

f ′(x) = xf ′′(0) + o(x).

In particular,
h− f(x) = −x2f ′′(0)− xo(x) (8)

yielding
(h− f(x))2 = o(x2). (9)
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Therefore since x2 = x2(h) ≤ H2(h) tends to 0 with h, we have as a conse-
quence of (6) and (9)

lim
h→0

H2(h)

x2(h)
= 1.

Now we have by Taylor’s formula

f(x) = f(0) + xf ′(0) +
1

2
f ′′(0)x2 + o(x2) =

1

2
f ′′(0)x2 + o(x2). (10)

Adding (10) and (8) yields

h = −1

2
f ′′(0)x2 + o(x2) (11)

giving

H2(h) ∼ x2(h) ∼ 2
h

|f ′′(0)|
= 2ρ(M)h. (12)

For the next result, we consider a C2 surface S delimiting a strictly
convex domain with positive curvature everywhere. For any M ∈ S and P
any half-plane containing the normal to S at M with edge consisting of that
normal, we define H(h,M,P ) as the horizon in the direction P from the
point M + h−→n , where −→n is the outgoing normal unitary vector to S at M .

Corollary 1. If for a C2 surface S delimiting a strictly convex domain of
R3 with positive curvature everywhere, it happens that H(h,M,P ) is inde-
pendent of the point and the direction P for all h small enough, the surface
is a sphere.

Proof. Let M be any point of the surface S and Π any plane containing the
normal to S at M . By applying Theorem 1 to Γ(Π) := S ∩ Π, we obtain
that Γ(Π) has constant curvature. Therefore by a well known result, Γ(Π)
is a circle (an entire circle and not just an arc since the horizon distance
is positive in both directions above each point of the curve), and its radius
does not depend on Π. It is easy to conclude by rotation with respect to
the axis containing the normal to S at M .

Remark 4. Each half-plane P with edge consisting of the normal to S at M
can be characterized by the unit vector u of its intersection with the tangent
plane TM(S).The results can also be written in terms of u which represents
roughly the aiming direction.

Remark 5. In the statement of Corollary 1, the hypothesis “for all h small
enough” can be replaced by for a sequence hn of height tending to 0.
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7 A reinforced condition involving the angle

If the convex set K is a ball with radius R, not only the distance H(h) of
the horizon at height h is given by

H(h) =
√

2Rh+ h2

as shown in Section 2, but the angle θ of the tangent AT with the vertical
is constant. On figure 1 it appears that

cos θ =
H

R+ h
=

2Hh

H2 + h2
(13)

and this defines perfectly the angle

θ = (
−→
AO,
−→
AT ) ∈ (0,

π

2
).

Conversely, we have the following proposition

Proposition 4. If for a C1 surface S delimiting a strictly convex domain
of R3 with positive curvature everywhere, it happens that for some h > 0 we
have
1) H(h,M,P ) := H is independent of the point M ∈ S and the direction P .

2) At all points M , the angle θ of the incoming normal unit vector
−−−→
ν(M) at

M with the vector
−−−−−→
v(M,P ) joining A(M) = M − h

−−−→
ν(M) with the horizon

point in direction P satisfies

cos θ =
2Hh

H2 + h2
.

3)
θ

π
6∈ Q.

Then S is a sphere with radius R =
H2 − h2

2h
.

Proof. Let M be any point of the surface S and Π any plane containing the

normal to S at M . We consider the point ω := M + R
−−−→
ν(M) which does

not depend on Π. We claim that in the plane Π, the circle Γ with center ω
and radius R contains the right horizon point T+(h,M,P ) := T . Indeed if
we consider the intersection ω′ of the normal to AT at A with the vertical,
then in the rectangular triangle ATω′ we have

Aω′ =
H

cos θ
. (14)
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Since the value chosen for R implies H2 = 2Rh+ h2 and then

cos θ =
2Hh

H2 + h2
=

2Hh

2Rh+ 2h2
=

H

R+ h
,

now (14) gives Aω′ = R+ h. In particular ω′ = ω and

Aω = R+ h.

Then we observe that

sin2 θ =
(R+ h)2 −H2

(R+ h)2
=

[
R

R+ h

]2

and Tω = Aω sin θ = R. Now if we consider the successive right horizon
points at height h corresponding to A0 = M,T = A1, etc...we obtain an
infinite sequence of points An belonging to S ∩Π and to Γ, with

θn = (
−→
ωA,
−−→
ωAn) = nθ.

By using condition 3), we infer that the sequence An is dense in Γ. Because
S ∩ Π is closed, we find Γ ⊂ S ∩ Π. Since this is true for any plane Π, S
contains the sphere Σ of center ω and radius R. Since S is the boundary of
a closed convex set, the only possibility is that S is exactly equal to Σ.

Remark 6. If, unfortunately,
θ

π
∈ Q , we are unable to conclude. And of

course this happens for infinitely many values of h for a given R, even when
S is a sphere. This restriction is a bit strange.

Remark 7. For this result we do not need the domain to be C2, since the
curvature radius is not needed in the proof.

MAIN QUESTION. Is the result of Proposition 4 still true assuming
only property 1)?

8 Additional remarks and topics of interest

Our results seem to be very partial, so it is interesting to try to understand
where difficulties may come from.
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8.1 Related questions

The main question raised in this paper is reminiscent of another similar
looking global problem concerning convex subsets of R2 with constant width.
In that case, there are many other solutions than disks, even with boundaries
consisting of closed smooth algebraic curves, cf. e.g. [1]-[6].

8.2 To be investigated

We have shown that an upper bound on the curvature radius implies a bound
on the diameter, hence in particular on the horizon distance. It might be of
interest to refine the estimate on the maximum of the horizon distances as a
function of the upper bound of the curvature radius and the height h. What
would be the optimal inequality? One would expect something tending to 0
with h as in the case of a disk.

8.3 Which extensions can we expect?

The big question is whether it is sufficient to assume the constancy of
H±(h,M,P ) for some fixed h > 0. This does not follow from the tech-
nique of theorem 1, and it looks quite intricate, since the main surprise in
this study is the counterexample of Subsection 5, showing that an upper
bound of H(h) gives essentially nothing. We might expect that if for all h
small enough, H±(h,M,P ) varies between C(h) and kC(h) for some k > 1,
then the curvature radius also varies between two constants.

8.4 A possible source of difficulty

For the statement of Theorem 1 and Corollary 1, we need to assume that Γ
(resp Σ ) is C2, while the hypothesis on the horizon makes sense for a C1

manifold. This is because we use in the proof the curvature radius which
is a C2 notion. This might mean that either the result is false assuming
only the constancy of H±(h,M,P ) for some fixed h > 0, or that the method
has be be modified, although the involvement of curvature seems to be the
right tool to prove circularity or sphericity ... except in the framework of
Proposition 4!

8.5 The measurement problem

As was pointed out to me by L. Simonot and L. Dettwiller, evaluating the
distance of the horizon on the earth is not at all straightforward, even if
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we use a laser beam. The main point is that the atmosphere can distort
light rays, the effect being due to refraction phenomena of thermal origin.
For instance in an airplane flying at an altitude of 10000 meters, when
the surrounding temperature is about −40oC, while the ground is heated
at +30oC, the distorsion would correspond, according to the figures given
to me by L. Dettwiller, to a virtual altitude differing from the real one
by 70 × 8.6 ∼ 600 meters, a relative variation of 6 % providing a relative
error of 3% on the measure of H. This is not negligible, and when we
deal with boats or walking people, the relative mistake will probably reach
larger values, up to 10%, as a consequence of local variations of temperature
and the complex heat transmission phenomena between the ground, the
atmosphere and oceans. So if we really are to check the constancy of the
horizon distance with great accuracy, corrector methods will have to be used.
For more details, cf. e.g. [7]-[10]. It is clear that distortion of light becomes
an even more important point in the framework of Proposition 4

8.6 Stability

All the partial results of this note are pure mathematical results based on
exact hypotheses. In practice any measure is subject to incertitudes, even
without the phenomenon described just above. So, whichever will be the
final result, the stability question shall become prominent after the main
question is solved.

Acknowledgement. The author would like to thank all the reviewers
of a preliminary preprint version of this paper: L. Simonot, P. Beltracci,
D. Rochera, R. Elvik, L. Dettwiller, V. Nardozza, Y. Liu, Y. Zhou and F.
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