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1 Introduction

In the last decades, the criteria for detecting the existence of various asymp-
totic behaviors of dynamical systems have had a notable impact on the
development of important methods in control theory (see [1–55]). In this
framework, a remarkable class of methods has been built around results
known as Datko-Pazy-type, Przy luski-Rolewicz-type and Zabczyk-type the-
orems, respectively. The roots of these methods are anchored in a collection
of famous studies started in the seventies by Datko [5–7], Pazy [30] and
Zabczyk [50], being followed and consolidated in the eighties by Przy luski
and Rolewicz [33], Przy luski [34] and Rolewicz [35, 36]. Although the first
results on this topic were developed for autonomous or nonautonomous
systems (see the foundations in [2, 3, 5–8, 15, 18, 28–30, 32–36, 50] as well
as the more recent contributions from [10, 20, 21, 38, 42–44, 49]), starting
in the end of the 90s, the studies were extended for variational dynamics
(see [1, 11, 12, 22–24, 26, 27, 37–41, 45–47] and the references therein). More-
over, even if the pioneering studies focused on stability properties, we em-
phasize that in the last twenty years, novel approaches have been developed
for instability (see [1,10,12,26,27]) as well as for more complex phenomena
such as dichotomous or trichotomous behaviors (see [1, 10, 41, 45–47]). For
a detailed description of the history of these methods and their evolution
over the years we refer to Sasu, Megan and Sasu [40] and to the recent work
Dragičević, Sasu, Sasu and Şirianţu [12].

We recall that in the setting of autonomous dynamics the Zabczyk-type
theorems (see [50]) can be stated as:

Theorem 1. Let T = {T (t)}t≥0 be a C0-semigroup on a Banach space X
and let Z be the class of all convex and increasing functions Z : R+ → R+

with Z(0) = 0. The following properties are equivalent:

(i) T is uniformly exponentially stable (i.e. there are K, ν > 0 such that
‖T (t)‖ ≤ Ke−νt, for all t ≥ 0);

(ii) there is Z ∈ Z such that for each x ∈ X there is λ(x) > 0 with
∞∑
k=0

Z(λ(x)||T (k)x||) <∞;

(iii) there is Z ∈ Z such that for each x ∈ X there is λ(x) > 0 with∫ ∞
0
Z(λ(x)||T (t)x||)dt <∞.
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We note that for Z(t) = t2 the equivalence (i)⇐⇒ (iii) from Theorem 1
was obtained for the first time by Datko [5] (for X a Hilbert space) and by
Pazy [30] for Z(t) = tp (p ≥ 1). An elegant approach for these Datko-Pazy
type results was provided by Pritchard and Zabczyk in [32], while a slight
different nice proof was given by Curtain and Pritchard in [3]. Furthermore,
we also refer to the recent book Curtain and Zwart [4] for Datko’s theorem
and interesting subsequent applications. By dropping the hypothesis that Z
is convex and taking λ(x) = 1, for all x ∈ X, Littman gave a different proof
for (i)⇐⇒ (iii) in [18]. A beautiful method that unified these theorems in a
more general framework, was introduced by Neerven [28], extending the be-
longing of the trajectories t 7→ ||T (t)x|| to a general Banach function space
(from a certain class) compared to their belonging to an Lp-space (as stated
in the Datko-Pazy theorems) or to an Orlicz space (as essentially arose in
the Zabczyk-type results). For more technical details on these methods we
refer to [20–22, 25, 29]. We stress that a general approach to the Zabczyk-
type techniques for stability of variational systems was presented in Sasu,
Megan and Sasu [40]. Zabczyk type theorems for exponential trichotomy
were obtained in Sasu and Sasu [41], for variational systems as well. Further-
more, a completely new and distinct method for the Zabczyk-type results,
for both stability and instability, in the framework of variational dynamics,
was recently developed by Dragičević, Sasu, Sasu and Şirianţu in [12].

In the setting of the nonautonomous dynamics, we recall two major
results. Thus, we first recall the Przy luski-Rolewicz theorem (see [33]):

Theorem 2. Let Φ = {Φ(j, i)}j,i∈N, j≥i be a discrete evolution family on a
Banach space X. Φ is uniformly exponentially stable (i.e. there are K, ν >
0 such that ||Φ(j, i)|| ≤ Ke−ν(j−i), for all j ≥ i) if and only if there is
p ∈ [1,∞) such that for each x ∈ X

sup
i∈N

∞∑
j=i

||Φ(j, i)x||p <∞. (1)

Following the ideas from the autonomous case, we stress that in The-
orem 2, one can replace in (1) the trajectories j 7→ ||Φ(j, i)x||p by some
more general maps of the form j 7→ Z(||Φ(j, i)x||), where Z ∈ Z and
lim
t→∞

Z(t) = ∞. In this context, even more extensive approaches can be

given, by working with functions of two variables, as it was considered in
Sasu [42]. Moreover, for diverse methods which led to the generalizations of
the above result to variational dynamics we refer to [12,38,40,45].
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On the other hand, a very general approach is the one intiated in Rolewicz’s
paper [35], which can be unitarily given as:

Theorem 3. Let R denote the set of all mappings R : (0,∞) × R+ → R+

with R(ξ, ·) nondecreasing and continuous with R(ξ, 0) = 0 and R(ξ, τ) > 0,
for all τ > 0 and all ξ > 0 and respectively R(·, τ) is nondecreasing, for
all τ ≥ 0. Let U = {U(s, τ)}s≥τ≥0 be an evolution family (see Definition 2
below) on a Banach space X. The following properties are equivalent:

(i) U is uniformly exponentially stable (see Definition 3 below);

(ii) there is R ∈ R such that for each x ∈ X there is λ(x) > 0 with

sup
i∈N

∞∑
j=i

R(λ(x), ||U(j, i)x||) <∞;

(iii) there is R ∈ R such that for each x ∈ X there is λ(x) > 0 with

sup
τ≥0

∫ ∞
τ

R(λ(x), ||U(ξ, τ)x||) dξ <∞.

We note that the equivalence (i) ⇐⇒ (iii) from Theorem 3 was proved
for the first time by Rolewicz in [35] (see also [36]). Generalized versions of
the equivalence (i)⇐⇒ (ii) from Theorem 3 were obtained in Sasu [42–44].
A unified and general approach for the result in Theorem 3 was provided in
Sasu and Sasu [38], as a consequence of a study performed for variational
dynamics.

In the particular case R(ξ, τ) = τp, (p ≥ 1) the equivalence (i)⇐⇒ (iii)
from Theorem 3 yields the original theorem of Datko for evolution families
(see [6]). For a version of Datko’s theorem in the case of differential equations
we refer to Daleckĭı and Krĕın [8]. A Datko type method for nonlinear
operators was introduced by Ichikawa in [15]. Furthermore, we mention that
a nice presentation of the Datko type results for nonautononous dynamics
was given in Chicone and Latushkin [2]. Generalizations of the Datko-type
theorems for evolution families, based on the theory of Banach sequence
and function spaces and on trajectory approaches, were obtained in Megan,
Sasu and Sasu [20, 21]. Based on distinct arguments, a generalization of
Theorem 3 was presented in Sasu [44]. The first Datko type result for
stability in the case of skew-product semiflows was given in Megan, Sasu
and Sasu [24] with a direct proof. Other approaches for the Datko-type
and Rolewicz-type results for stability of variational dynamics were given in
Megan, Sasu and Sasu [22,23], relying on trajectory arguments and on their
belongings to suitable Banach sequence or function spaces.
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In recent years, the theorems of Datko-type, Zabczyk-type and Rolewicz-
type were treated from many perspectives for both uniform and nonuni-
form behaviors as well as for both nonautononous and variational dynamics
(see Backes and Dragičević [1], Dragičević [9–11], Megan, Sasu and Sasu [26,
27], Sasu [37, 39], Sasu, Megan and Sasu [40], Sasu and Sasu [38, 41, 47, 48],
Sasu [45,46]). We emphasize that the Datko-type theorems have remarkable
applications in control theory - in this sense we refer to some recent advances
in this area due to Jacob and Wegner [16], Jacob, Möller and Wyss [17],
Marinoschi [19], Zabczyk [51]. Furthermore, the Datko-type results have
proved their effectiveness in establishing various robustness properties for
nonuniform strong behaviors (see Dragičević [10]). Moreover, as already
mentioned, for variational dynamics, new techniques in this area were de-
veloped in Dragičević, Sasu, Sasu and Şirianţu [12] which also provided
novel applications in exploring the robustness of stability and instability
properties.

The aim of this paper is to present a new method of exploring the sta-
bility of discrete-time nonautonomous dynamics via Zabczyk-Rolewicz type
conditions. First we obtain a new characterization for uniform exponential
stability of general discrete nonautonomous systems that relies on the con-
vergence of some associated series of trajectories and on Zabczyk-type tech-
niques (Theorem 4). As a consequence, we deduce a criterion of Przy luski-
Rolewicz type for uniform exponential stability of uniformly bounded sys-
tems (Corollary 1). Next, we develop a Zabczyk-Rolewicz type method of
exploring the uniform exponential stability. The approach is presented in
two stages: first we present a technical lemma which ensures the closure
of the set of all vectors with the property that certain associated series (of
nonlinear trajectories corresponding to a sequence of operators) are conver-
gent (Lemma 1). After that, we obtain a new characterization of Zabczyk-
Rolewicz type for uniform exponential stability of discrete nonautonomous
systems, without making any additional assumption on their coefficients
(Theorem 5). As a consequence, we deduce a Zabczyk-Rolewicz type cri-
terion for uniformly bounded systems (Corollary 2) and furthermore, as an
application, we present a proof for the Rolewicz’s theorem for stability of
evolution families (Section 3).
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2 Trajectory criteria and stability of discrete nonau-
tonomous dynamics

In this section we present new Zabczyk type and Przy luski-Rolewicz type
characterizations for uniform exponential stability of nonautonomous dy-
namics. Our study is performed for general discrete nonautonomous systems
and we deduce consequences for uniformly bounded systems.

Let X be a Banach space and let B(X) denote the space of all bounded
linear operators on X. Let ‖ · ‖ denote the norm on X and on B(X). For
each x0 ∈ X and r > 0 we set D(x0, r) := {y ∈ X : ‖y − x0‖ ≤ r}.

Let {A(n)}n∈N ⊂ B(X). Consider the discrete nonautonomous system

(A) x(n+ 1) = A(n)x(n), n ∈ N

and the associated evolution family, i.e.

ΦA(j, n) =

{
A(j − 1) · · ·A(n), j > n

I, j = n
(2)

where I is the identity operator on X. Let ∆ denote the set of all pairs
(j, n) ∈ N× N with j ≥ n. We recall the classical stability notions:

Definition 1. We say that (A) is

(i) uniformly bounded if there is M > 0 such that ‖A(n)‖ ≤ M , for all
n ∈ N;

(ii) uniformly stable if there is L ≥ 1 such that ‖ΦA(j, n)‖ ≤ L, for all
(j, n) ∈ ∆;

(iii) uniformly exponentially stable if there are K ≥ 1 şi ν > 0 such that
‖ΦA(j, n)‖ ≤ Ke−ν(j−n), for all (j, n) ∈ ∆.

Notation Let Q denote the class of all continuous nondecreasing functions
q : R+ → R+ with q(0) = 0 and q(t) > 0, for all t > 0.

Our first main result is a new Zabczyk type theorem for uniform expo-
nential stability:

Theorem 4. The system (A) is uniformly exponentially stable if and only
if there are q ∈ Q, x0 ∈ X, r > 0 and λ > 0 such that for every x ∈ D(x0, r)
the following two properties hold:

sup
n∈N

∞∑
j=n

q(‖ΦA(j, n)x‖) ≤ λ; (3)
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inf
n∈N

q

(
1

‖A(n)x‖+ 1

)
> 0. (4)

Proof. Necessity. Let K ≥ 1 şi ν > 0 be such that

‖ΦA(j, n)‖ ≤ Ke−ν(j−n), ∀(j, n) ∈ ∆. (5)

Taking q(t) = t, for all t ≥ 0, x0 = 0 and r = 1 and using (5) we observe
that

‖A(n)x‖+ 1 ≤ Ke−ν + 1, ∀n ∈ N, ∀x ∈ D(0, 1)

so

inf
n∈N

q

(
1

‖A(n)x‖+ 1

)
≥ 1

K + 1
, ∀x ∈ D(0, 1). (6)

Moreover, for every x ∈ D(0, 1), we have that

∞∑
j=n

q(‖ΦA(j, n)x‖) ≤ K
∞∑
j=n

e−ν(j−n) =
K

1− e−ν
, ∀n ∈ N. (7)

Taking λ := K/(1− e−ν), from (6) and (7) we have that the necessity part
is completed.

Sufficiency. Let q ∈ Q, x0 ∈ X, r > 0 and λ > 0 be such that for every
x ∈ D(x0, r) relations (3) and (4) hold. The demonstration will be made in
three steps.

Step 1. We show that (A) is uniformly bounded.

Let x ∈ D(x0, r). Supposing to the contrary that supn∈N ‖A(n)x‖ = ∞
we would have that there is (kn)n ⊂ N such that

‖A(kn)x‖ −→
n→∞

∞. (8)

Since q is continuous, from (8) we have that

q

(
1

‖A(kn)x‖+ 1

)
−→
n→∞

q(0) = 0

which contradicts the hypothesis (4). Thus, it follows that

K(x) := sup
n∈N
‖A(n)x‖ <∞, ∀x ∈ D(x0, r). (9)
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Let now x ∈ X \ {0}. Then, by using (9), we obtain

‖A(n)
rx

‖x‖
‖ ≤ ‖A(n)(x0 +

rx

‖x‖
)‖+ ‖A(n)x0‖

≤ K
(
x0 +

rx

‖x‖
)

+K(x0)

which implies

‖A(n)x‖ ≤
[
K
(
x0 +

rx

‖x‖
)

+K(x0)

]
‖x‖
r
, ∀n ∈ N. (10)

Setting

δ(x) :=

[
K
(
x0 +

rx

‖x‖
)

+K(x0)

]
‖x‖
r
, for x 6= 0

and δ(0) = 1, from relation (10) it yields

‖A(n)x‖ ≤ δ(x), ∀n ∈ N,∀x ∈ X. (11)

From (11) and by the uniform boundedness principle we deduce that there
is M > 0

‖A(n)‖ ≤M, ∀n ∈ N. (12)

Step 2. We show that (A) is uniformly stable.

Let h ∈ N∗ be such that

h >
λ

q(1)
. (13)

Let n ∈ N and m ≥ n + h. If x ∈ D(x0, r), then by using relation (12)
we have

‖ΦA(m,n)x‖ ≤ ‖ΦA(m, j)‖ ‖ΦA(j, n)x‖ ≤
≤Mh ‖ΦA(j, n)x‖, ∀j ∈ {m− h+ 1, . . . ,m}

which implies

1

Mh
‖ΦA(m,n)x‖ ≤ ‖ΦA(j, n)x‖, ∀j ∈ {m− h+ 1, . . . ,m}. (14)

Since q is nondecreasing, by (14) it follows that

q

(
1

Mh
‖ΦA(m,n)x‖

)
≤ q
(
‖ΦA(j, n)x‖

)
, ∀j ∈ {m− h+ 1, . . . ,m}



M. Megan, A.L. Sasu, B. Sasu 23

which based on (3) yields that

hq

(
1

Mh
‖ΦA(m,n)x‖

)
≤

m∑
j=m−h+1

q

(
‖ΦA(j, n)x‖

)
≤ λ. (15)

From relations (13) and (15), since q is nondecreasing, it follows that

‖ΦA(m,n)x‖ ≤Mh, ∀x ∈ D(x0, r). (16)

Let now x ∈ X \ {0}. Then, by relation (16) we obtain that

‖ΦA(m,n)
rx

‖x‖
‖ ≤ ‖ΦA(m,n)(x0 +

rx

‖x‖
)‖+ ‖ΦA(m,n)x0‖ ≤ 2Mh

which implies

‖ΦA(m,n)x‖ ≤ 2Mh

r
‖x‖, ∀x ∈ X

and hence

‖ΦA(m,n)‖ ≤ 2Mh

r
, ∀m ≥ n+ h,∀n ∈ N. (17)

Taking into account that

‖ΦA(m,n)‖ ≤Mh−1, ∀m ∈ {n, . . . , n+ h− 1} (18)

denoting by L := max

{
2Mh

r
,Mh−1

}
, from (17) and (18) we deduce that

‖ΦA(m,n)‖ ≤ L, ∀(m,n) ∈ ∆. (19)

Step 3. We show that (A) is uniformly exponentially stable.

Let ` ∈ N∗ be such that

` >
λ

q

(
r

2eL

) . (20)

Let n ∈ N and x ∈ D
(
x0
L
,
r

L

)
. Then, using (19) we have that

‖ΦA(n+ `, n)x‖ ≤ ‖ΦA(j, n)Lx‖, ∀j ∈ {n+ 1, . . . , n+ `}. (21)
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Since q is nondecreasing, by using (21), the fact that Lx ∈ D(x0, r) and the
hypothesis (3), we deduce that

`q(‖ΦA(n+ `, n)x‖) ≤
n+∑̀

j=n+1

q(‖ΦA(j, n)Lx‖) ≤ λ. (22)

From relations (20) and (22), considering that q is nondecreasing, we get

‖ΦA(n+ `, n)x‖ ≤ r

2eL
, ∀x ∈ D

(
x0
L
,
r

L

)
. (23)

Let now x ∈ X \ {0} and n ∈ N. Then, using relation (23) we have

‖ΦA(n+`, n)
rx

L‖x‖
‖ ≤ ‖ΦA(n+`, n)(

x0
L

+
rx

L‖x‖
)‖+‖ΦA(n+`, n)

x0
L
‖ ≤ r

eL
.

This implies

‖ΦA(n+ `, n)x‖ ≤ 1

e
‖x‖, ∀x ∈ X,∀n ∈ N

or equivalently

‖ΦA(n+ `, n)‖ ≤ 1

e
, ∀n ∈ N. (24)

Finally, we set ν =
1

`
and N = Le. Now, for (m,n) ∈ ∆, we note that

m = n + k` + j, for some k ∈ N and j ∈ {0, . . . , ` − 1}. It follows by (19)
and (24) that

‖ΦA(m,n)‖ ≤ L ‖ΦA(n+ k`, n)‖ ≤ L 1

ek
≤ Ne−ν(m−n)

and this completes the proof.

Corollary 1. If the system (A) is uniformly bounded, then (A) is uniformly
exponentially stable if and only if there are q ∈ Q, x0 ∈ X, r > 0 and λ > 0
such that for every x ∈ D(x0, r)

sup
n∈N

∞∑
j=n

q(‖ΦA(j, n)x‖) ≤ λ. (25)

Proof. Let M > 0 be such that ‖A(n)‖ ≤M , for all n ∈ N.

Let x0 ∈ X and r > 0. Then

‖A(n)x‖ ≤M ‖x‖ ≤M(‖x0‖+ r), ∀x ∈ D(x0, r), ∀n ∈ N. (26)
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In particular, from (26) it yields that

inf
n∈N

q

(
1

‖A(n)x‖+ 1

)
≥ q
(

1

M(‖x0‖+ r)

)
, ∀x ∈ D(x0, r). (27)

Hence, from (25) and (27), by Theorem 4, we get the conclusion.

Before proving the next main theorem, we need a technical result:

Lemma 1. Let q ∈ Q and {D(n)}n∈N ⊂ B(X). Then, for every n ∈ N and
h ∈ N∗ the set

Un,h = {x ∈ X :

∞∑
j=n

q(‖D(j)x‖) ≤ h}

is closed.

Proof. Let n ∈ N and h ∈ N∗. For m ∈ N,m ≥ n, let

V m
n,h = {x ∈ X :

m∑
j=n

q(‖D(j)x‖) ≤ h}.

It is straightforward that

Un,h =
⋂
m≥n

V m
n,h. (28)

Let m ∈ N,m ≥ n. We show that V m
n,h is closed.

Let (xk)k∈N ⊂ V m
n,h with lim

k→∞
xk = x ∈ X. Denote γ := max{‖D(j)‖ :

j ∈ {n, . . . ,m}} and T := γ(‖x‖+ 1).

Let ε > 0. By the uniform continuity of q on [0, T ], it yields that there
is δ ∈ (0, 1) such that for all t, τ ∈ [0, T ] with |t− τ | < δ we have

|q(t)− q(τ)| < ε

m− n+ 1
. (29)

Let ` ∈ N be such that

‖x` − x‖ <
δ

γ + 1
.

Then, we observe that

‖D(j)x`‖ ≤ γ‖x`‖ ≤ γ
(

δ

γ + 1
+ ‖x‖

)
< T, ∀j ∈ {n, . . . ,m}. (30)
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Furthermore, we also have that

‖D(j)x‖ ≤ γ‖x‖ < T (31)

and

| ‖D(j)x`‖ − ‖D(j)x‖ | ≤ ‖D(j)(x` − x)‖

≤ γ δ

γ + 1
, ∀j ∈ {n, . . . ,m}.

(32)

From relations (29)-(32) it follows

q(‖D(j)x‖) ≤ |q(‖D(j)x‖)− q(‖D(j)xl‖)|+ q(‖D(j)x`‖)

<
ε

m− n+ 1
+ q(‖D(j)x`‖), ∀j ∈ {n, . . . ,m}.

(33)

Since x` ∈ V m
n,h, from (33) we deduce that

m∑
j=n

q(‖D(j)x‖) < ε+ h, ∀ε > 0. (34)

Letting ε→ 0 in (34) it yields

m∑
j=n

q(‖D(j)x‖) ≤ h,

so x ∈ V m
n,h. This shows that V m

n,h is closed, for all m ∈ N,m ≥ n.

Then, by (28), we obtain that Un,h is closed.

Notation We denote by F the class of all mappings ϕ : N∗×R+ → R+ with
the property that for every n ∈ N∗, ϕ(n, ·) ∈ Q.

The next main result is a new characterization of Zabczyk-Rolewicz type
for uniform exponential stability:

Theorem 5. The system (A) is uniformly exponentially stable if and only
if there is ϕ ∈ F such that for every x ∈ X there exists α(x) ∈ N∗ with

sup
n∈N

∞∑
j=n

ϕ(α(x), ‖ΦA(j, n)x‖) <∞ (35)

and

inf
n∈N

ϕ

(
α(x),

1

‖A(n)x‖+ 1

)
> 0. (36)
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Proof. Necessity. Let K ≥ 1 and ν > 0 be such that

‖ΦA(j, n)‖ ≤ Ke−ν(j−n), ∀(j, n) ∈ ∆. (37)

We take ϕ : N∗ × R+ → R+, ϕ(n, s) = s. Then ϕ ∈ F.

Let x ∈ X and α(x) ∈ N∗. Then, using (37) it yields

∞∑
j=n

ϕ(α(x), ‖ΦA(j, n)x‖) ≤ K

1− e−ν
‖x‖, ∀n ∈ N (38)

and respectively

ϕ

(
α(x),

1

‖A(n)x‖+ 1

)
=

1

‖A(n)x‖+ 1
≥ 1

Ke−ν‖x‖+ 1
, ∀n ∈ N. (39)

Thus, by relations (38) and (39), the necessity part is completed.

Sufficiency. Let ϕ ∈ F be a function such that for every x ∈ X there
exists α(x) ∈ N∗ such that relations (35) and (36) hold.

Let i, h ∈ N∗. We consider the set

Zih = {x ∈ X : sup
n∈N

∞∑
j=n

ϕ(i, ‖ΦA(j, n)x‖) ≤ h}.

Furthermore, for every n ∈ N let

U in,h = {x ∈ X :
∞∑
j=n

ϕ(i, ‖ΦA(j, n)x‖) ≤ h}.

We note that
Zih =

⋂
n∈N

U in,h. (40)

Let n ∈ N. By Lemma 1 applied for q = ϕ(i, ·) and for

Dn(j) =

{
ΦA(j, n), j ≥ n

0, j < n

we deduce that U in,h is closed. Hence, by (40) it follows that every Zih is
closed, for all i, h ∈ N∗.

The demonstration in what follows will be organized in three steps.
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Step 1. We show that

X =
⋃

i,h∈N∗
Zih. (41)

Let x ∈ X and let α(x) ∈ N∗ be such that (35) holds. It yields that
there is h ∈ N∗ such that

sup
n∈N

∞∑
j=n

ϕ(α(x), ‖ΦA(j, n)x‖) ≤ h.

This shows that x ∈ Zα(x)h . In this way, we have shown that (41) holds.

Step 2. We show that (A) is uniformly bounded.

Let x ∈ X and let α(x) ∈ N∗ be such that (36) holds. Supposing to the
contrary that

sup
n∈N
‖A(n)x‖ =∞

it would follow that there exists (kn)n∈N ⊂ N such that ‖A(kn)x‖ −→
n→∞

∞.

Then, since ϕ(α(x), ·) ∈ Q, using its continuity, we obtain that

ϕ

(
α(x),

1

‖A(kn)x‖+ 1

)
−→
n→∞

ϕ(α(x), 0) = 0

which contradicts the hypothesis (36).

We deduce in this way that

sup
n∈N
‖A(n)x‖ <∞, ∀x ∈ X. (42)

By the uniform boundedness principle, we get from (42) that (A) is uniformly
bounded.

Step 3. We show that (A) is uniformly exponentially stable.

From (41) and the Baire category theorem, it yields that there are i, h ∈
N∗ and x0 ∈ Zih, r > 0 such that

D(x0, r) ⊂ Zih. (43)

Consider
q : R+ → R+, q(t) = ϕ(i, t).
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Then, from (43) we get that

sup
n∈N

∞∑
j=n

q(‖ΦA(j, n)x‖) ≤ h, ∀x ∈ D(x0, r). (44)

Since (A) is uniformly bounded, from (44) and Corollary 1 we deduce
that (A) is uniformly exponentially stable.

Corollary 2. If (A) is uniformly bounded, then (A) is uniformly exponen-
tially stable if and only if there is ϕ ∈ F such that for every x ∈ X there
exists α(x) ∈ N∗ with

sup
n∈N

∞∑
j=n

ϕ(α(x), ‖ΦA(j, n)x‖) <∞.

Proof. The conclusion yields by the argumentation from the proof of Theo-
rem 5.

3 Applications to stability of continuous-time dy-
namics

In this section we will apply the central results from the previous section in
order to provide a new approach to the Rolewicz type criteria for continuous-
time nonautonomous dynamics. More precisely, we will deduce the theorem
of Rolewicz for uniform exponential stability.

Let X be a Banach space. We denote by ∆̃ the set of all pairs (t, τ) ∈
R+ × R+ with t ≥ τ . In what follows our study is devoted to evolution
families which are strongly continuous in the first variable, as introduced in:

Definition 2. U = {U(s, τ)}s≥τ≥0 ⊂ B(X) is called an evolution family if
it satisfies:

(i) U(τ, τ) = I, for all τ ≥ 0 and U(s, ξ)U(ξ, τ) = U(s, τ), for all (s, ξ),
(ξ, τ) ∈ ∆̃;

(ii) there are C,ω > 0 with ‖U(t, τ)‖ ≤ Ceω(t−τ), for all (t, τ) ∈ ∆̃;

(iii) for each x ∈ X and τ ≥ 0, the function s 7→ U(s, τ)x is continuous on
[τ,∞).
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Definition 3. An evolution family U = {U(t, τ)}t≥τ≥0 is uniformly expo-
nentially stable if there are K ≥ 1 and ν > 0 such that

‖U(t, τ)‖ ≤ Ke−ν(t−τ), ∀(t, τ) ∈ ∆̃.

Consider now an evolution family U = {U(t, τ)}t≥τ≥0 and associate to
it the discrete system:

(AU) x(n+ 1) = U(n+ 1, n)x(n), n ∈ N.

Then, we observe that

ΦAU
(j, n) = U(j, n), ∀(j, n) ∈ ∆. (45)

Remark 1. From Definition 2 (ii) we deduce that (AU) is uniformly bounded.
Furthermore, we note that U is uniformly exponentially stable if and only
if (AU) is uniformly exponentially stable.

Notation We denote by N the set of all functions N : R∗+×R+ → R+ which
satisfy the properties:

(a) for every s > 0, N(s, ·) ∈ Q;

(b) for every τ ≥ 0, N(·, τ) is nondecreasing.

As a consequence of the stability results from Section 2, we deduce the
theorem of Rolewicz:

Theorem 6. U is uniformly exponentially stable if and only if there exists
N ∈ N such that for every x ∈ X there is λ(x) > 0 such that

sup
τ≥0

∫ ∞
τ

N(λ(x), ‖U(s, τ)x‖) ds <∞. (46)

Proof. Necessity. This is immediate. We present it for the sake of clarity.

Let K, ν > 0 be given by Definition 3. Let N(s, τ) = τ , for all s > 0 and
τ ≥ 0. It yields that

sup
τ≥0

∫ ∞
τ

N(λ(x), ‖U(s, τ)x‖) ds = sup
τ≥0

∫ ∞
τ
‖U(s, τ)x‖ ds ≤ K‖x‖

ν
, ∀x ∈ X.

Thus the necessity is proved.
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Sufficiency. This relies on Corollary 2. Indeed, assume that N ∈ N is such
that for every x ∈ X there is λ(x) > 0 such that (46) holds. Let C,ω > 0
be some constants given by Definition 2 (ii), i.e.

‖U(s, τ)‖ ≤ Ceω(s−τ), ∀(s, τ) ∈ ∆̃. (47)

Take

ϕ : N∗ × R+ → R+, ϕ(n, τ) = N

(
1

n
,
τ

Ceω

)
.

From N ∈ N we get that ϕ ∈ F.

Let x ∈ X and let λ(x) be a strictly positive constant that satisfies (46).
We set

κ(x) := sup
τ≥0

∫ ∞
τ

N(λ(x), ‖U(s, τ)x‖) ds.

Let h ∈ N∗ be such that
1

h
< λ(x).

Let n ∈ N and j ≥ n+ 1. From (47) we get that

‖U(j, n)x‖ ≤ Ceω‖U(s, n)x‖, ∀s ∈ [j − 1, j]. (48)

Since N ∈ N, from (48) it yields that

ϕ(h, ‖U(j, n)x‖) = N

(
1

h
,
‖U(j, n)x‖

Ceω

)
≤ N

(
λ(x),

‖U(j, n)x‖
Ceω

)
≤ N(λ(x), ‖U(s, n)x‖), ∀s ∈ [j − 1, j].

By integrating on [j − 1, j] we obtain

ϕ(h, ‖U(j, n)x‖) ≤
∫ j

j−1
N(λ(x), ‖U(s, n)x‖)ds. (49)

It follows from (49) that

∞∑
j=n+1

ϕ(h, ‖U(j, n)x‖) ≤
∞∑

j=n+1

∫ j

j−1
N(λ(x), ‖U(s, n)x‖)ds

=

∫ ∞
n

N(λ(x), ‖U(s, n)x‖)ds

≤ κ(x).

(50)
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Hence, from (50) we get that

∞∑
j=n

ϕ(h, ‖U(j, n)x‖) ≤ ϕ(h, ‖x‖) + κ(x). (51)

Thus, since n has been arbitrary, we conclude from (51) that

sup
n∈N

∞∑
j=n

ϕ(h, ‖U(j, n)x‖) ≤ ϕ(h, ‖x‖) + κ(x). (52)

From (52) and (45) it yields via Corollary 2 that (AU) is uniformly exponen-
tially stable. It follows then from Remark 1 that U is uniformly exponentially
stable.

Remark 2. Besides the original proof (see [35, 36]), other approaches to
demonstrate Rolewicz-type stability theorems were presented in [25, 38, 44,
48, 49] for nonautonomous dynamics and respectively in [1, 12, 23, 37, 38, 40]
for variational dynamics.
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[17] B. Jacob, S. Möller and C. Wyss, Stability radius for infinite-
dimensional interconnected systems, Systems Control Lett. 138 (2020)
104662, 1-8.

[18] W. Littman, A generalization of a theorem of Datko and Pazy, Advances
in Computing and Control, Lecture Notes in Control and Inform. Sci.
130 (1989), Springer-Verlag, Berlin, 318-323.



Nonlinear criteria for stability of nonautonomous dynamics 34

[19] G. Marinoschi, The H∞-control problem for parabolic systems. Ap-
plications to systems with singular Hardy potentials, ESAIM: Control
Optim. Calc. Var. 29 (73) (2023), 1-40.

[20] M. Megan, A.L. Sasu and B. Sasu, On uniform exponential stability
of periodic evolution operators in Banach spaces, Acta Math. Univ.
Comenian. 69 (2000), 97-106.

[21] M. Megan, B. Sasu and A.L. Sasu, On uniform exponential stability of
evolution families, Riv. Mat. Univ. Parma 4 (2001), 27-43.

[22] M. Megan, A.L. Sasu and B. Sasu, On uniform exponential stability of
linear skew-product semiflows in Banach spaces, Bull. Belg. Math. Soc.
Simon Stevin 9 (2002), 143-154.

[23] M. Megan, A.L. Sasu and B. Sasu, On a theorem of Rolewicz type for
linear skew-product semiflows, Fixed Point Theory 3 (2002), 63-72.

[24] M. Megan, A.L. Sasu and B. Sasu, Stabilizability and controllability of
systems associated to linear skew-product semiflows, Rev. Mat. Com-
plut. 15 (2002), 599-618.

[25] M. Megan, A.L. Sasu and B. Sasu, The Asymptotic Behaviour of Evo-
lution Families, Mirton Publishing House, 2023.

[26] M. Megan, A.L. Sasu and B. Sasu, Exponential stability and exponen-
tial instability for linear skew-product flows, Math. Bohem. 129 (2004),
225-243.

[27] M. Megan, A.L. Sasu and B. Sasu, Exponential instability of linear
skew-product semiflows in terms of Banach function spaces, Results
Math. 45 (2004), 309-318.

[28] J. Van Neerven, Exponential stability of operators and operator semi-
groups, J. Funct. Anal. 130 (1995), 293-309.

[29] J. Van Neerven, The Asymptotic Behaviour of Semigroups of Lin-
ear Operators, Operator Theory, Advances and Applications 88,
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