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Abstract

In this paper, in the framework of rational extended irreversible
thermodynamics with internal variables, a model for doped semicon-
ductor crystals with dislocations is worked out, where a dislocation
tensor and its gradient are introduced in the set of independent va-
riables to describe these defect lines influencing the mechanical, ther-
mal, electric transport properties of these media. The main equations
of the model are introduced and the entropy inequality is analyzed
by Liu’s theorem, deriving the equations of state for the constitutive
variables, the affinities, the dissipation inequality and other relations.
Applying Wang’s and Smith’s theorems the constitutive theory and
the expressions for the sources of the rate equations are carried out.
According to the extended thermodynamics, a generalized Maxwell-
Cattaneo-Vernotte equation for the heat flux and transport equations
for the defects and charges fluxes present a relaxation time and a fi-
nite velocity for the disturbance propagation. The obtained results
may have applications in several technological sectors, such as applied
computer science, integrated circuits VLSI and nanotechnology (where
high-frequency processes and the construction of sophisticated new ma-
terials with particular thermal properties are studied).
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1 Introduction

In some previous papers models for doped semiconductors, also called ex-
trinsic semiconductors, with defects of dislocations (see [23], [49], [50], [29],
[30], [31], [32]) were developed in the frame of the rational extended ther-
modynamics (see [48], [3], [19], [37], [38], [39], [40], [41], [22], [10], [11]) with
internal variables [20], [42], [25], [26], [1], [27]. Here, in the same ther-
modynamic frame a model is carried out for extrinsic semiconductors not
electrically polarized and where the dislocation flux tensor is not taken into
consideration in the set of independent variables. In particular, in Section 2
doped semiconductors are considered, the influence of the dislocation field,
described by a dislocation core tensor à la Maruszewski [24] and its gradient,
on their thermal and electric behaviour is discussed (see also the models
for doped semiconductors with dislocations elaborated in [30], [31], [32]).
Maxwell equations, the balance equations of mass, momentum, momentum
of momentum and internal energy, and the rate equations for the defects
and the heat and charge fluxes are introduced. In Section 3, to describe
real non-equilibrium processes, the entropy inequality is analyzed by Liu′s
theorem [56] and the laws of state for the constitutive variables, the gene-
ralized laws defining the affinities, conjugated to the heat and charges fluxes,
the entropy flux and other relations are worked out. Detailed calculations
are presented in the Appendix. In Section 4, to close the system of equa-
tions describing the behaviour of defective and doped semiconductors under
consideration, by virtue Wang’s and Smith’s theorems (see [60], [61], [62]
and [57]) that use isotropic polynomial representations of proper functions
obeying the principle of objectivity, the constitutive theory is obtained and
the rate equations for the defects field, the charges and heat fluxes, descri-
bing physical disturbances with finite velocity, are derived. In particular, a
generalized Maxwell-Cattaneo-Vernotte for the heat flux is carried out [2].

The results, obtained in this paper, may have applications in descri-
bing the thermal behavior in nanosystems, where the phenomena are fast
and the rate of variation of the properties of the system is faster than the
time scale characterizing the relaxation of fluxes towards their respective
local-equilibrium value. Furthermore, the volume element size d of these
nanosystems along some direction is so small that it becomes comparable to
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(or smaller than) the mean-free path l of the heat carriers (d ≤ l).
In defective semiconductors the dislocation lines influence the thermal

conductivity and transport coefficients, such as electrical conductivity and
Seebeck coefficient.

The models for semiconductor crystals with defects of dislocation (see
[49], [50], [52], [12], [13], [14], [15] and [16]) may have relevance in many fun-
damentals sectors of nanotechnology. One of the main purposes of defects
engineering, where the influence of dislocations on mechanical and transport
properties is investigated, is to obtain a precise control of fluxes in physical
systems. The control of the heat flux could be of much current interest in the
development of new thermal metamaterials, see [16]. In the review [16] non-
equilibrium theories are discussed for heat transport in semiconductors, su-
perlattices, graded systems and metamaterials with defects and some results
obtained in this paper were used. In [7], [51], [5], [6] and [52], [12], [53], [54]
piezoelectrics and materials with dislocation defects were studied using the
same internal variable, its gradient and its flux.

2 The model

In this Section, in the framework of rational extended irreversible thermo-
dynamics with internal variables, we present the equations governing the
behaviour of doped semiconductor crystals with dislocations, in a current
configuration Kt (see [30], [31], [32] and [54]). For some remarks about the
internal variables and some versions of non-equilibrium thermodynamics see
for instance Section 2 of Reference [55].

We use the Cartesian tensor notation in a rectangular coordinate system.
The electrical properties of intrinsic semiconductors, as Germanium and

Silicon, can be modified using various techniques of ”doping”. For instance,
doping the semiconductors by pentavalent impurities, as antimony, n-type
extrinsic semiconductors are obtained, having more flowing free electrons,
doping the semiconductors by trivalent impurities, as indium, p-type extrin-
sic semiconductors are obtained, having more free holes (see [30], [31], [32]
and [17], [18]).

In defective semiconductors dislocation channels modify the thermal con-
ductivity. The dislocations density has only a minor effect on the thermal
conductivity for defects densities smaller than a characteristic value, but for
higher values the thermal conductivity decreases. Therefore, dislocations
increase Seebeck thermoelectric coefficient in some range of dislocation den-
sities and for some ranges of dislocation density the efficiency of thermoelec-
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tric energy conversion may be raised by dislocations, especially in structures
as films, wires.

A relatively high temperature gradient could produce, for instance, a
migration of defects inside the system. The dislocation lines disturb the
periodicity of the crystal lattice and their structure resembles a network of
infinitesimally thin channels (see [9], [47]). Thus, we introduce a dislocation
core tensor à la Maruszewski (see [24] for its definition, developed in analogy
with the structural permeability tensor by Kubik [21]) and its gradient in the
thermodynamic state space as internal variables for describing these defects.

Thus, let us consider an elementary sphere volume Ω of a material system
with dislocations, large enough to allow the statistical procedures to be
applied. Ω is given by Ω = Ωs + Ωc, where Ωs is the solid space and Ωc

is the channel space (see [24] and for instance [30], [31], [32]). We assume
that the coefficient fv = Ωc

Ω remains constant inside the medium. Also, we
introduce the central section Γ of this elementary sphere volume Ω, being
Γ = Γs + Γc, with Γs the solid area and Γc the dislocation channels area.
In such a medium Maruszewski defines the so called dislocation tensor as
a linear mapping between the average of a property of some scalar, vector,
tensorial physical field ᾱ(x)i calculated in the bulk volume Ω and the average
∗
αj (x) of the same quantity calculated on the dislocation channels area Γc

ᾱ(x)i = Aij(x)
∗
αj (x) (i, j = 1, 2, 3), (1)

where the quantities ᾱ(x)i and
∗
αj (x) (referred to a Cartesian coordinate

system xi) describe at macroscopic level the property of the physical field
under consideration. Furthermore, a new tensor aij , called dislocation core
tensor, having unit m−2 and referring to the sphere central section Γ is
defined as

aij(x) = Γ−1Aij(x) (i, j = 1, 2, 3). (2)

The dislocation core tensor is a symmetric tensor.
To describe the behaviour of a doped semiconductor crystal with dis-

locations, let us assume that the following fields interact with each other
inside this semiconductor, supposed isotropic and not electrically polarized:
the elastic field described by the stress tensor τij (in Section 3 we will see
that τij is symmetric) and the symmetric small-strain tensor εij , defined by
εij = 1

2(ui,j +uj,i) (where a comma in lower indices denotes the partial spa-

tial derivate, i.e. ui,j = ∂ui
∂xj

, in vector form ui,j = [∇u]ij , being the symbol

”∇” the gradient operator); the thermal field described by the temperature
T , its gradient T,i and the heat flux qi; the electromagnetic field described
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by the electric field Ei and the magnetic induction Bi; the charges fields de-
scribed by the concentrations (or mass fractions) of electrons n and holes p,
their gradients and their currents jni and jpi ; the dislocation field described
by the dislocation core tensor aij and its gradient aij,k. The independent
variables are represented by the set

C = {εij , Ei, Bi, n, p, T, aij , jni , j
p
i , qi, n,i, p,i, T,i, aij,k} . (3)

The physical processes occurring in the above defined situation are go-
verned by three groups of laws: i) the classical balances of mass, momentum,
moment of momentum and energy; ii) Maxwell equations; iii) the charges
conservation laws, the rate equations of the internal variable aij , the electric
charges fluxes jni , jpi and the heat flux qi. This specific choice shows that
the relaxation properties of the thermal field and charge carrier fields are
taken into account. However, the corresponding effect for the mechanical
properties is not taken into consideration so that τij is not in the set (3).

The continuity equation reads

ρ̇+ ρvi,i = 0, (4)

where the superimposed dot indicates the material derivative d/dt, defined
by d

dt = ∂
∂t + vi

∂
∂xi
, with ∂

∂t and ∂
∂xi

the partial temporal derivative and
the partial spatial derivative, vi and ρ are the barycentric velocity and the
mass density, respectively, of the whole body, the elastic semiconductor in
the considered case. The charge carriers mass has been neglected compared
to ρ and in the following we assume that ρ is a constant quantity.

The momentum balance has the form

ρv̇i − τji,j − ρZEi − ε̃ijk
(
jnj + jpj

)
Bk,−fi = 0, (5)

where ε̃ijk is the Levi-Civita pseudo-tensor, fi is the body force, that will
be disregarded in the following, Ei is the electric field Ei referred to the so
called comoving frame Kc, given by

Ei = Ei + ε̃ijkvjBk

and B is the magnetic induction. Furthermore, in (5) Z is the concentration
of the total charge defined as follows:

Z = n+ n̄+ p+ p̄, (6)

where n < 0, n̄ < 0, p > 0, p̄ > 0.
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In (6) n is the concentration of the total negative electric charge given
by the concentration of the free electrons coming from doping the semicon-
ductor by pentavalent impurities, denoted by N , and the concentration of
the free electrons of the semiconductor intrinsic base, denoted by ñ, namely
n = N + ñ; n̄ is the charge concentration of fixed negatively ionized atoms
of doping trivalent impurities. Furthermore, in (6) p is the concentration of
the total positive electric charge given by the concentration of the holes pro-
duced by doping the semiconductor by trivalent impurities, denoted by P ,
and the concentration of the holes coming from the semiconductor intrinsic
base, denoted by p̃, namely p = P + p̃; p̄ is the charge concentration of fixed
positively ionized atoms of doping pentavalent impurities.

The momentum of momentum balance is assumed in the form

ε̃ijkτjk + ci = 0, (7)

where ci is the couple for unit volume. It will demonstrate in Section 4 that
this couple is vanishing, so that the stress tensor τij is symmetric.

The internal energy balance takes the form

ρU̇ − τjivi,j −
(
jnj + jpj

)
Ej + qi,i − ρr = 0, (8)

where U is the internal energy density and r is the heat source, that will be
neglected in the following.

Maxwell’s equations have the form [3], [28]

ε̃ijkEk,j +
∂Bi
∂t

= 0, Di,i − ρZ = 0, (9)

ε̃ijkHk,j − jZi −
∂Di

∂t
= 0, Bi,i = 0, (10)

where D, H and B are the electric displacement, the magnetic displacement
and magnetic field per unit volume, respectively, and jZ is the total electric
current. Moreover, it has been assumed that the magnetic and dielectric
properties of the semiconductor are disregarded, so that the magnetization
and the polarization of the material are null, and then Hi = 1

µ0
Bi, Ei =

1
ε0
Di, with ε0 and µ0 the permittivity and permeability of vacuum, respec-

tively.
To specify the meaning of jZ we present an analysis of charge conserva-

tion laws (see for instance the models in [23], [30], [31], [32]). In particular,
we have

ρṄ + jNi,i = gN , ρ ˙̃n+ jñi,i = gñ, ρ ˙̄n = gn̄, (11)
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where gN , gñ, and gn̄ are source terms and it has been taken into consi-
deration that n̄ is the charge concentration of fixed negatively ionized atoms
with jn̄i = 0.
The concentration n̄ is constant, then one has ˙̄n = 0, gn̄ = 0 and from
(11) we obtain

ρṅ+ jni,i = gn, (12)

where n = N + ñ,

jni,i = jNi,i + jñi,i and gn = gN + gñ.

Also, we have

ρṖ + jPi,i = gP , ρ ˙̃p+ jp̃i,i = gp̃, ρ ˙̄p = gp̄, (13)

where gP , gp̃, gp̄ are source terms and it has been into consideration that
p̄ is the charge concentration of fixed positively ionized atoms with jp̄i = 0.
The concentration p̄ is constant. Hence, ˙̄p = 0, gp̄ = 0 and from (13) we
derive

ρṗ+ jpi,i = gp, (14)

where p = P + p̃,

jpi,i = jPi,i + jp̃i,i and gp = gP + gp̃.

Moreover, gn and gp describe the recombination of electrons and holes and
satisfy the equation

gn + gp = 0.

Thus, the total electric current jZ is given by

jZi = ρnvni + ρpvpi =

ρZvi + jni + jpi , (15)

with

ρZvi = ρ(n+ p)vi, jni = ρn(vni − vi), jpi = ρp(vpi − vi), (16)

(being vn̄i = 0 and vp̄i = 0) where jni , j
p
i are the currents due to the rel-

ative motion of ρn and ρp respect to the barycentric motion of the body
and Zi is given by (6). The sum of jni and jpi gives the conduction electric
current, ρZvi is the convection electric current. The last group of laws con-
cerns the evolution equations of dislocation field, charge fluxes and heat
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flux. These rate equations are constructed obeying the objectivity and
frame-indifference principles [58], [59], [46], [8], [43] and thus the objective
Zaremba-Jaumann derivative is used.

The rate equation for the dislocation field is chosen having the form

∗
aij + Vijk,k −Aij(C) = 0, (17)

where Aij(C) is the dislocation source (depending on the independent vari-
ables) and Vijk is the dislocation flux tensor, that in the following is supposed
having the form Vijk = −D′aij,k, with D′ a dislocation transport coefficient;
the rate equations for the charges are chosen in the form

∗
jni = Jni (C),

∗
jpi = Jpi (C), (18)

where Jni (C) and Jpi (C) are the corresponding charge sources, constitutive
functions of the independent variables.

The rate equation for the heat flux is assumed having the form

∗
qi = Qi(C), (19)

where Qi(C) is the heat source, constitutive function of the independent
variables. In equations (17)-(19), the symbol (*) denotes the Zaremba-
Jaumann derivative, respectively, given by

∗
aij = ȧij − wikakj − wjkaki,

∗
jni = ˙jni − wikjk,

∗
jpi = j̇pi − wikjk,

∗
qi = q̇i − wikqk,

where wik = 1/2(vi,k−vk,i) is the antisymmeric part of the velocity gradient
[43]. In equations (17)-(19) the fluxes of electrons, holes and heat fluxes are
not taken into consideration, because we have to obtain a balanced system of
equations, where the number of equations is equal to the number of variables.

3 Entropy inequality analysis

To describe real non-equilibrium processes all the admissible solutions of the
proposed balance equations and evolution equations should be restricted by
the entropy inequality, that in the field formulaton has the form

σ := ρṠ + φk,k −
ρr

T
≥ 0, (20)
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and runs as follows:”the entropy production σ is not negative at each position
for all times”. In (20) S is the entropy per unit mass, φk is the entropy flux
and ρr

T is the external source of the entropy production, that will be neglected
in the following. A medium is in a state of thermodynamic equilibrium if
the entropy production vanishes. Also, equation (20) is a different way to
write the second law of thermodynamics, that with its emendment: ”Except
in equilibrium, there are no reversible process in the state space” states that
all local solutions of the balance equations and evolution equations have to
satisfy the dissipation inequality (20)(see [38], [39], [44], [45], [35]). If we
consider the following set of constitutive functions (dependent variables on
the fields of the set C (see (3))

W = {τij , ci, U, gn, gp, Aij , Jni , J
p
i , Qi, S, F, φi, µ

n, µp, πij} , (21)

with µn and µp the electrochemical potentials for electrons and holes, re-
spectively, and πij the potential related to the dislocation field, then we will
look for general constitutive equations in the form

W = W̃ (C), (22)

with both C and W evaluated at the same point and time. The principle of
equipresence sates that all constitutive equations depend on the same set of
variables of the state space. The axioms of material frame indifference and
objectivity also restrict the form of the constitutive functions.

We analyze the entropy inequality (20) by Liu′s procedure [56], where
all balance and evolution equations of the problem are considered as mathe-
matical constraints for the general validity of (20). Then, the system of
evolution equations (5), (7), (8), (9), (10), (12), (14), (17)-(19) and the
entropy inequality (20) can be presented in the form

A∆γXγ +B∆ = 0, (23)

αγXγ + β ≥ 0. (24)

Thus, from (23) and (24) applying Liu′s theorem, we have

αγXγ + β − Λ∆(A∆γXγ +B∆) ≥ 0, ∀ Xγ , (25)

(αγ − Λ∆A∆γ)Xγ + (β − Λ∆B∆) ≥ 0, ∀ Xγ (26)
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and then

αγ − Λ∆A∆γ = 0, β − Λ∆B∆ ≥ 0, ∀ Xγ , (27)

where the so called Lagrange-Liu multipliers Λ∆, accounting for the ba-
lance equations of momentum and internal energy, Maxwell’s equations, the
charges conservation equations and the evolution equations of the disloca-
tions field, the charges fluxes and the heat flux (5), (7), (8), (9),(10), (12),
(14) and (17)-(19), are objective functions defined by

{Λ∆} = {Λvi ,ΛU ,ΛEi ,ΛE4 ,ΛBi ,ΛB4 ,Λn,Λp,Λaij ,Λ
jn

i ,Λ
jp

i ,Λ
q
i }. (28)

The mass conservation law is not considered, because the density of the
semiconductors under consideration is supposed constant. Therefore, if the
left-hand side of the laws (5), (7), (8), (9),(10), (12),(14) and (17)-(19) are
denoted, respectively, by

Fvi ,FU ,FEi ,FE4 ,FBi ,FB4 ,Fn,Fp,Faij ,F
jn

i ,F j
p

i ,F
q
i ,

the application of Liu′s theorem (25) gives

ρ
∂S

∂t
+ρvkS,k+Φk,k−

{
ΛviFvi + ΛUFU + ΛEi FEi + ΛE4 FE4 + ΛBi FBi + ΛB4 FB4 +

+ΛnFn + ΛpFp + ΛaijFaij + Λj
n

i F
jn

i + Λj
p

i F
jp

i + ΛqiF
q
i

}
≥ 0, (29)

i.e.

ρ
∂S

∂t
+ ρvkS,k + (φk),k −Λvl

(
ρ
∂vl
∂t

+ ρvjvl,j − τjl,j − ε̃ljk(jnj + jpj )Bk − ρZEl
)

−ΛU
(
ρ
∂U

∂t
+ ρviU,i − τjivi,j + qi,i − (jni + jpi )Ei

)
−ΛEl

(
1

µ0
ε̃ljiBi,j − jnl − j

p
l − ρZvl − ε0

∂El
∂t

+ ε0ε̃lij
∂vi
∂t
Bj + ε0ε̃ljivj

∂Bi
∂t

)
−ΛE4

(
ε0(Ei,i − ε̃jikvi,jBk − ε̃jkivkBi,j)− ρZ

)
−ΛBl

(
ε̃ljiEi,j − ε̃ljsε̃sikvi,jBk − ε̃ljsε̃skivkBi,j +

∂Bl
∂t

)
−ΛB4 Bi,i
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−Λn
(
ρ
∂n

∂t
+ ρvin,i + jni,jδij − gn

)
−Λp

(
ρ
∂p

∂t
+ ρvip,i + jpi,jδij − g

p

)
−Λapl

(
∂apl
∂t

+ vkapl,k +
∂εps
∂t

asl− vp,sasl +
∂εsl
∂t

aps− vs,laps−D′apl,kk −Apl
)

−Λj
n

i

(
∂jni
∂t

+ vjj
n
i,j +

∂εij
∂t

jnj − vi,jjnj − Jni
)

−Λj
p

i

(
∂jpi
∂t

+ vjj
p
i,j +

∂εij
∂t

jpj − vi,jj
p
j − J

p
i

)

−ΛQi

(
∂qi
∂t

+ vjqi,j +
∂εij
∂t

qj − vi,jqj −Qi
)
≥ 0, (30)

where the mass force and the heat source have been neglected.
Taking into account that the entropy function S, the stress tensor τij , the

entropy flux φi, the internal energy U are constitutive functions of the inde-
pendent variables εij , Ei, Bi, n, p, T, aij , jni , j

p
i , qi, n,i, p,i, T,i, aij,k, performing

the calculations from (25) and (30) we derive the following quantities

{αγ} =

{
0; ρ

∂S

∂εij
; ρ

∂S

∂Ei
; ρ

∂S

∂Bi
; ρ

∂S

∂n
; ρ

∂S

∂p
; ρ

∂S

∂T
; ρ

∂S

∂aij
; ρ

∂S

∂jni
; ρ

∂S

∂jpi
;

ρ
∂S

∂qi
; ρ

∂S

∂n,i
; ρ

∂S

∂p,i
; ρ

∂S

∂T,i
; ρ

∂S

∂aij,k
; 0; ρvk

∂S

∂εij
+
∂φk
∂εij

;

ρvk
∂S

∂Ei
+
∂φk
∂Ei

; ρvk
∂S

∂Bi
+
∂φk
∂Bi

; ρvk
∂S

∂jni
+
∂φk
∂jni

;

ρvk
∂S

∂jpi
+
∂φk
∂jpi

; ρvk
∂S

∂qi
+
∂φk
∂qi

; ρvk
∂S

∂n,i
+
∂φk
∂n,i

;

ρvk
∂S

∂p,i
+
∂φk
∂p,i

; ρvk
∂S

∂T,i
+
∂φk
∂T,i

; ρvr
∂S

∂aij,k
+

∂φr
∂aij,k

}
; (31)

{Xγ} =

{
∂vi
∂t

;
∂εij
∂t

;
∂Ei
∂t

;
∂Bi
∂t

;
∂n

∂t
;
∂p

∂t
;
∂T

∂t
;
∂aij
∂t

;
∂jni
∂t

;
∂Jpi
∂t

;
∂qi
∂t

;
∂ni
∂t

;

∂pi
∂t

;
∂T,i
∂t

;
∂aij,k
∂t

; vi,j ; εij,k; Ei,j ; Bi,j ; j
n
i,j ; j

p
i,j ; qi,j ; n,ij ; p,ij ; T,ij ; aij,kl

}T

;

(32)
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β =

(
ρvk

∂S

∂n
+
∂φk
∂n

)
n,k +

(
ρvk

∂S

∂p
+
∂φk
∂p

)
p,k+

(
ρvk

∂S

∂T
+
∂φk
∂T

)
T,k +

(
ρvk

∂S

∂aij
+
∂φk
∂aij

)
aij,k; (33)

{B∆} =

{
−∂τkl
∂n

n,k−
∂τkl
∂p

p,k−
∂τkl
∂T

T,k−
∂τkl
∂aij

aij,k−ρZEl− ε̃ljk(jnj + jpj )Bk;

ρvk
∂U

∂n
n,k + ρvk

∂U

∂p
p,k + ρvk

∂U

∂T
T,k + ρvk

∂U

∂aij
aij,k − (jni + jpi )Ei;

−jnl −j
p
l −ρZvl; −ρZ; 0; 0; vsapl,s−Apl; ρvin,i−gn; ρvip,i−gp;−Jni ;−Jpi ;−Qi

}
,

(34)
and a suitable matrix {A∆γ} = {Am|n} (m = 1, ..., 12; n = 1, ..., 26), whose
elements are reported in Appendix.

Thus, according to the first requirement of Liu′s theorem (27), the fol-
lowing results are deduced:

Λvrρδir − ΛEr ε̃rijBj = 0,

ρ
∂S

∂εij
− ΛUρ

∂U

∂εij
= −ΛUτji − ΛBp ε̃pjsε̃silBl − ΛE4 ε0ε̃jikBk

ρ
∂S

∂Ei
− ΛUρ

∂U

∂Ei
= 0,

ρ
∂S

∂Bi
− ΛUρ

∂U

∂Bi
= ΛBp δip + ΛEl ε0ε̃ljivj ,

ρ
∂S

∂n
− ΛUρ

∂U

∂n
= ρΛn,

ρ
∂S

∂p
− ΛUρ

∂U

∂p
= ρΛp,

ρ
∂S

∂T
− ΛUρ

∂U

∂T
= 0,

ρ
∂S

∂aij
− ΛUρ

∂U

∂aij
= Λaij ,

ρ
∂S

∂jni
− ΛUρ

∂U

∂jni
= Λj

n

i ,
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ρ
∂S

∂jpi
− ΛUρ

∂U

∂jpi
= Λj

p

i ,

ρ
∂S

∂qi
− ΛUρ

∂U

∂qi
= Λqi ,

ρ
∂S

∂n,i
− ΛUρ

∂U

∂n,i
= 0,

ρ
∂S

∂p,i
− ΛUρ

∂U

∂p,i
= 0,

ρ
∂S

∂T,i
− ΛUρ

∂U

∂T,i
= 0,

ρ
∂S

∂aij,k
− ΛUρ

∂U

∂aij,k
= 0, (35)

and still we get

ρvk
∂S

∂εij
+
∂φk
∂εij

− ΛUρvk
∂U

∂εij
= −Λvl

∂τkl
∂εij

ρvk
∂S

∂Ei
+
∂φk
∂Ei
− ΛUρvk

∂U

∂Ei
= −Λvl

∂τkl
∂Ei

+ ε0δikΛ
E
4 + ε̃pkiΛ

B
p ,

ρvk
∂S

∂Bi
+
∂φk
∂Bi
−ΛUρvk

∂U

∂Bi
= −Λv

l

∂τkl
∂Bi

+ΛE
p

1

µ0
ε̃pji−ΛE

4 ε0ε̃klivl−ΛB
p ε̃pksε̃slivl+δikΛB

4 ,

(36)

and the other results

ρvk
∂S

∂jni
+
∂φk
∂jni
− ΛUρvk

∂U

∂jni
= −Λvl

∂τkl
∂jni

+ Λnδik + vkΛ
jn

i ,

ρvk
∂S

∂jpi
+
∂φk
∂jpi
− ΛUρvk

∂U

∂jpi
= −Λvl

∂τkl
∂jpi

+ Λpδik + vkΛ
jp

i ,

ρvk
∂S

∂qi
+
∂φk
∂qi
− ΛUρvk

∂U

∂qi
= −Λvl

∂τkl
∂qi

+ ΛUδik + vkΛ
q
i ,

ρvk
∂S

∂n,i
+
∂φk
∂n,i

− ΛUρvk
∂U

∂n,i
= −Λvl

∂τkl
∂n,i

,

ρvk
∂S

∂p,i
+
∂φk
∂p,i
− ΛUρvk

∂U

∂p,i
= −Λvl

∂τkl
∂p,i

,

ρvk
∂S

∂T,i
+
∂φk
∂T,i

− ΛUρvk
∂U

∂T,i
= −Λvl

∂τkl
∂T,i

,

ρvr
∂S

∂aij,k
+

∂φr
∂aij,k

− ΛUρvr
∂U

∂aij,k
= −Λvl

∂τrl
∂aij,k

− ΛaplD
′δpiδljδkr.

(37)
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Following [36], from (35)7 one derives for the Lagrange multiplier ΛU the
same result as the one obtained in [36]

ΛU =
1

T (θ)
, (38)

where θ denotes the empirical temperature. From (36)3, the Lagrange multi-
pliers ΛE4 , ΛBp , being independent on the velocity vk, must be null and also

from (36)2 and (35)1 the Lagrange multipliers Λvr , ΛEp and ΛB4 , indipendent
on the velocity, are null

Λvr , ΛE4 = 0, ΛBp , ΛEp , ΛB4 = 0. (39)

From the second requirement of Liu′s theorem (27)2, the following resi-
dual inequality is obtained

∂φk
∂aij

aij,k+ΛUEk(jnk +jpk)+ΛaikAik+Λngn+Λpgp+Λj
n

i J
n
i +Λj

p

i J
p
i +ΛqiQi ≥ 0,

(40)
where we have taken into consideration that terms containing the velocity
vk must be null and the fluxes do not depend on scalar variables.

Introducing the free energy F and the flux vector K, defined by

F = U − TS and Ki = ρFvi − Tφi, (41)

into (35)-(37) and using (38)-(39) we obtain the following results
the laws of state

ρ
∂F

∂εij
= τij , ρ

∂F

∂Ei
= 0,

∂F

∂n,i
= 0,

∂F

∂p,i
= 0,

ρ
∂F

∂Bi
= 0,

∂F

∂n
= −TΛn = µn,

∂F

∂p
= −TΛp = µp, ρ

∂F

∂aij
= −TΛaij = πij ,

(42)
∂F

∂T
= −S, ∂F

∂T,i
= 0,

∂F

∂aij,k
= 0;

the affinities (the variables conjugated to the corresponding fluxes)

ρ
∂F

∂jni
= −TΛj

n

i = Πn
i , ρ

∂F

∂jpi
= −TΛj

p

i = Πp
i , ρ

∂F

∂qi
= −TΛqi = ΠQ

i . (43)
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Relations (42) and (43) give the physical meaning of the remaining La-
grange multipliers, i.e.

Λn = − 1

T
µn, Λp = − 1

T
µp, Λaij = − 1

T
πij , (44)

Λj
n

i = − 1

T
Πn
i , Λj

p

i = − 1

T
Πp
i , Λqi = − 1

T
Πq
i . (45)

The group of relations pertaining to the flux-like properties of the con-
sidered processes are:

∂Kk

∂εij
= 0,

∂Kk

∂Ei
= 0,

∂Kk

∂Bi
= 0,

∂Kk

∂jni
= µnδik + Πn

i vk,
∂Kk

∂jpi
= µpδik + Πp

i vk,

∂Kk

∂qi
= −δik + Πq

i vk,
∂Kk

∂n,i
= 0,

∂Kk

∂p,i
= 0,

∂Kk

∂T,i
= 0

∂Kr

∂aij,k
= D′πijδkr (46)

From these results the residual inequality (40) simplifies to

T
∂φk
∂aij

aij,k + (jnk + jpk)Ek−πijAij −µngn−µpgp−Πn
i J

n
i −Πp

i J
p
i −Πq

iQi ≥ 0.

(47)
Integrating expression (46) in a proper way, taking into account (41), (42)
and (43), we obtain

Kk = −qk + µnjnk + µpjpk +D′πijaij,k + ρvkF (48)

and the form of the entropy flux given by

φk =
1

T
(qk − µnjnk − µpj

p
k −D

′πijaij,k). (49)

From (49) it is seen that in the entropy flux there are the contributions due
to the heat flux, the charges fluxes and the dislocation gradient tensor. Also,
from (42) and (43) it results that the free energy is given by the following
function

F = F (εij , n, p, T, aij , j
n
i , j

p
i , qi). (50)
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For the invariance of F under time reversal, the expressions of F contains
no first order or odd order terms for the fluxes.

From the state law (42)1 the stress tensor τij is symmetric, being εij sym-
metric, and therefore in the momentum of momentum balance (7) the couple
ci vanishes. The results obtained in this Section are applied in the following
to get the unknown constitutive functions, present in the considered model
to describe isotropic doped semiconductors with defects of dislocation.

4 Constitutive theory

In this Section, in order to have a closed system of equations having the same
number of equations and physical quantities present in them (independent
and dependent variables) [40], by the help of Wang’s and Smith’s theorems
(see [60], [61], [62], [57]), that use isotropic polynomial representations of
propre functions satisfying the objectivity principle and the material indif-
ference principles, the constitutive theory and the expressions for the exter-
nal source terms Aij = Aij(C) and Jnk = Jnk (C), Jpk = Jpk (C), Qk = Qk(C)
(present in the rate equations for the dislocation field, electrons, holes and
heat fluxes, respectively) are derived, in a first approximation. We suppose
that the quantities aij , Aij and πij responsible for the dislocation field, in-
fluencing mechanical and transport processes within the medium, have the
form

aij = aδij , Aij = Aδij , πij = πδij . (51)

This assumption can be justified by the fact that by splitting a tensor of
second order, for example Gij , in its deviatoric part G̃ij and its scalar part
G (spherical part of Gij)

Gij = G̃ij +Gδij , (52)

with G = 1
3Gkk and G̃ij = Gij − 1

3Gkkδij , the deviatoric part of Gij is
supposed neglegible.

Therefore, taking into account the laws of state (42), the affinities defini-
tions (43), the form of the free energy (50) (time reversal invariant), that τij
is a symmetric tensor, Πn

i ,Π
p
i ,Π

Q
i , J

n
i , J

p
i , Qi are polar vectors, S, µn, µp, π, A

are scalars, and the affinities are quantities conjugate to fluxes (polar vec-
tors), the following objective representations are obtained for the constitutive
functions in a first approximation

τij = τij(εij , n, p, T, a), S = S(εij , n, p, T, a), µn = µn(εij , n, p, T, a),
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µp = µp(εij , n, p, T, a), π = π(εij , n, p, T, a), i.e. (53)

τij = β1
τ δij + β2

τ εij , (54)

S = β1
sn+ β2

sp+ β3
sT + β4

sa+ β5
sεii, (55)

µn = β1
nn+ β2

np+ β3
nT + β4

na+ β5
nεii, (56)

µp = β1
pn+ β2

pp+ β3
pT + β4

pa+ β5
pεii, (57)

π = β1
πn+ β2

πp+ β3
πT + β4

πa+ β5
πεii, (58)

where the coefficients βατ , (α = 1, 2) ββn , β
β
p , β

β
s , β

β
π , (β = 1, 2, ..., 5) can be

functions of the following invariants

n, p, T, a, εkk, εijεij , εijεjkεki; (59)

the affinities

Πn
i = Πn

i (jni , j
p
i , qi), Πp

i = Πp
i (j

n
i , j

p
i , qi), Πq

i = Πq
i (j

n
i , j

p
i , qi), (60)

Πn
i = β1

N j
n
i + β2

Nj
p
i + β3

Nqi, (61)

Πp
i = β1

P j
n
i + β2

P j
p
i + β3

P qi, (62)

Πq
i = β1

Qj
n
i + β2

Qj
p
i + β3

Qqi, (63)

where βδN , β
δ
P , β

δ
Q(δ = 1, 2, 3) can depend on the invariants:

jpi j
p
i , j

n
i j

n
i , j

n
i j

p
i , j

p
i qi, qiqi, j

n
i qi. (64)

Furthermore, representing the external source terms Aij = Aij(C) and
Jnk = Jnk (C), Jpk = Jpk (C), Qk = Qk(C), we obtain in a first approxima-
tion the rate equations (17), (18) and (19) in the following form

∗
a −D′a,kk = γ1

an+ γ2
ap+ γ3

aT + γ4
aa+ γ5

aεkk, (65)
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∗
J
n

k= γ1
nEi + γ2

na,k + γ3
nn,k + γ4

np,k + γ5
nT,k + γ6

nj
n
k + γ7

nj
p
k + γ8

nqk, (66)

∗
J
p

k= γ1
pEi + γ2

pa,k + γ3
pn,k + γ4

pp,k + γ5
pT,k + γ6

pj
n
k + γ7

pj
p
k + γ8

pqk, (67)

∗
qk= γ1

qEi + γ2
qa,k + γ3

qn,k + γ4
qp,k + γ5

qT,k + γ6
q j
n
k + γ7

q j
p
k + γ8

q qk, (68)

where the coefficients γεa(ε = 1, 2, ..., 5) and γωn , γ
ω
p , γ

ω
q (ω = 1, 2, ..., 8) can

depend on invariants built on the set C (3).
The reader is advised to read the Appendices of Reference [4], where a

representation of objective functions was derived in full details for porous
media, starting from considerations on Wang’s and Smith’s theorems [60],
[61], [62], [57].

In the physical situations, where we can replace Zaremba-Jaumannn
derivative by the material derivative equations, (65)-(68) take the form

τaȧ−D′a,kk = −a+ χ1
an+ χ2

ap+ χ3
aT + χ4

aεkk, (69)

τJ
n
J̇nk = −jnk − λnT,k + χnEi + χ1

na,k + χ2
nn,k + χ3

np,k + χ4
nj
p
k + χ5

nqk, (70)

τJ
p
J̇pk = −jpk − λ

pT,k + χpEi + χ1
pa,k + χ2

pn,k + χ3
pp,k + χ4

pj
n
k + χ5

pqk, (71)

τ q q̇k = −qk − λT,k − χqEi + χ1
qa,k + χ2

qn,k + χ3
qp,k + χ4

qj
n
k + χ5

qj
p
k , (72)

where γ4
a = −τa(−1), γ6

q = −τJn(−1), γ7
q = −τJp(−1) and γ8

q = −τ q(−1) are
the inverse of the relaxation times of the defects and the electrons, holes,
heat fluxes, respectively, see (65) − (68). The new coefficients D′, λn, λp, λ,
χδa( δ = 1, 2, 3, 4), χεn, χ

ε
p and χεq( ε = 1, 2, .., 5) in (70)− (72) are expressed

in terms of the coefficients present in equations (65) − (68) and the minus
signs come from physical reasons. D′ represents a diffusion coefficient of
defects, λn, λp are Seebeck coefficients, λ is the thermal conductivity, χn,
χp are conductivities, χq is Peltier coefficient. The rate equation for the
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heat flux (72) generalizes Vernotte-Cattaneo law τ q q̇k = −qk − λT,k, where
the finite velocity of the thermal disturbances is taken into consideration,
eliminating the paradox of Fourier heat equation qk = −λT,k, that leads
to thermal propagation with infinite velocity. Equations (69) and (71) are
new, but the equation (70) is the generalized Fick-Ohm’s law concerning
relaxation features of the electron field.

5 Conclusions

In this paper a model for isotropic doped defective semiconductor crystals
was developed in the framework of the rational extended irreversible thermo-
dynamics with internal variables. Here, the considered semiconductors are
not electrically polarized and the dislocations flux tensor is not an indepen-
dent variable, as in other papers of the author. Also, it was assumed that the
mass density is constant, the body force, the heat and the external entropy
sources are negligible. The entropy inequality was analyzed by Liu’s theo-
rem, where all balance and evolution equations of the problem are considered
as mathematical constraints for its validity. The state laws, the affinities, the
residual dissipation, the entropy flux and other relations were derived and
the results obtained here were used in [13], [14], [15], [16]. In these papers
the behaviour of superlattices of doped defective semiconductors was investi-
gated, taking into account the role of the interfaces between their alternative
layers, and this behaviour can be used as a basis for the construction of ther-
mal transistors, thermal computers an other devices. Furthermore, in this
paper, using Wang’s and Smith’s theorems objective, constitutive relations
and transport equations were constructed in a first approximation. Rate
equations, presenting a relaxation time, that describe disturbances having
a finite velocity of propagation were derived. It was shown that a field of
dislocation lines in an extrinsic semiconductor crystal has influence on its
mechanical and heat and electric transport properties. In [33] and [34] weak
discontinuity waves and asymptotic electronic-dislocation waves in n-type
semiconductors with defects of dislocation were studied by the author using
a model similar to the one developed here. The theory elaborated in this
paper has several applications in nanotechnology and other technological
sectors.
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Appendix

In this Appendix we present the elements of the matrix {A∆γ} = {Am|n}
(m = 1, ..., 12; n = 1, ..., 26):

A1|1 = ρδil, A
1|2 = ... = A1|15 = 0, A1|16 = ρvjδil, A

1|17 = −∂τkl
∂εij

,

A1|18 = −
∂τjl
∂Ei

, A1|19 = −
∂τjl
∂Bi

, A1|20 = −
∂τjl
∂jni

, A1|21 = −
∂τjl
∂jpi

,

A1|22 = −
∂τjl
∂qi

, A1|23 = −
∂τjl
∂n,i

, A1|24 = −
∂τjl
∂p,i

,

A1|25 = −
∂τjl
∂T,i

, A1|26 = − ∂τrl
∂aij,k

,

A2|1 = 0, A2|2 = ρ
∂U

∂εij
, A2|3 = ρ

∂U

∂Ei
, A2|4 = ρ

∂U

∂Bi
,

A2|5 = ρ
∂U

∂n
, A2|6 = ρ

∂U

∂p
, A2|7 = ρ

∂U

∂T
, A2|8 = ρ

∂U

∂aij
,

A2|9 = ρ
∂U

∂jni
, A2|10 = ρ

∂U

∂jpi
, A2|11 = ρ

∂U

∂qi
, A2|12 = ρ

∂U

∂n,i
,

A2|13 = ρ
∂U

∂p,i
, A2|14 = ρ

∂U

∂T,i
, A2|15 = ρ

∂U

∂aij,k
,

A2|16 = −τji, A2|17 = ρvk
∂U

∂εij
,

A2|18 = ρvj
∂U

∂Ei
, A2|19 = ρvj

∂U

∂Bi
, A2|20 = ρvj

∂U

∂jni
, A2|21 = ρvj

∂U

∂jpi
,

A2|22 = ρvj
∂U

∂qi
+ δij , A

2|23 = ρvj
∂U

∂n,i
, A2|24 = ρvj

∂U

∂p,i
,

A2|25 = ρvj
∂U

∂T,i
, A2|26 = ρvr

∂U

∂aij,k
,

A3|1 = ε0ε̃lijBj , A
3|2 = 0, A3|3 = −ε0δli, A

3|4 = ε0ε̃ljivj ,

A3|5 = ... = A3|18 = 0, A3|19 =
1

µ0
ε̃lji, A

3|20 = ... = A3|26 = 0,

A4|1 = ... = A4|15 = 0, A4|16 = −ε0ε̃jikBk,

A4|17 = 0, A4|18 = ε0δij , A
4|19 = −ε0ε̃jkivk, A

4|20 = 0,
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A4|21 = ... = A4|26 = 0,

A5|1 = ... = A5|3 = 0, A5|4 = δil, A
5|5 = ... = A5|15 = 0, A5|16 = −ε̃ljsε̃sikBk,

A5|17 = 0, A5|18 = −ε̃lji, A5|19 = −ε̃ljsε̃skivk, A5|20 = ... = A5|26 = 0,

A6|1 = ... = A6|18 = 0, A6|19 = δij , A
6|20 = ... = A6|26 = 0,

A7|1 = ... = A7|4 = 0, A7|5 = ρ, A7|6 = ... = A7|19 = 0,

A7|20 = δij , A
7|21 = ... = A7|26 = 0,

A8|1 = ... = A8|5 = 0, A8|6 = ρ, A8|7 = ... = A8|20 = 0,

A8|21 = δij , A
8|22 = ... = A8|26 = 0,

A9|1 = 0, A9|2 = aslδpiδsj + apsδsiδlj , A
9|3... = A9|7 = 0, A9|8 = δipδlj ,

A9|9 = ... = A9|15 = 0, A9|16 = −aslδpiδsj−apsδsiδlj , A9|17 = .... = A9|25 = 0,

A9|26 = −D′δpiδljδkr,

A10|1 = 0, A10|2 = jnj , A
10|3 = ... = A10|8 = 0,

A10|9 = 1, A10|10 = ... = A10|15 = 0,

A10|16 = −jnj , A10|17 = ... = A11|19 = 0, A10|20 = vj ,

A10|21 = ... = A10|26 = 0,

A11|1 = 0, A11|2 = jpj , A
11|3 = ... = A11|9 = 0, A11|10 = 1;

A11|11 = ... = A11|15 = 0,

A11|16 = −jpj , A
11|17 = ... = A11|20 = 0, A11|21 = vj ,

A11|22 = ... = A11|26 = 0,

A12|1 = 0, A12|2 = qj , A
12|3 = ... = A12|10 = 0, A12|11 = 1,

A12|12 = ... = A12|15 = 0,

A12|16 = −qj , A12|17 = ... = A12|21 = 0, A12|22 = vj ,

A12|23 = ... = A12|26 = 0.
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