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Abstract

The level set method has outstanding applications in free bound-
ary problems or in optimal design (geometric optimization). In the
computations, a crucial question is to obtain parameterizations of the
involved implicitly defined curves, surfaces. The general solution has
a local character. This note is devoted to the construction of almost
global parameterizations, that we introduce here. First, a general geo-
metric description is indicated, of the region generated by our param-
eterization technique, on the implicitly defined surfaces and hypersur-
faces. Then, we formulate necessary and/or sufficient conditions for
the global character of the defined parameterizations, valid in many
cases of interest. The essential points in our methodology are Hamil-
tonian systems and the Poincaré - Bendixson theory and we also under-
line the constructive characteristics of our approach. To obtain global
or almost global parametrizations has strong consequences to global
optimization algorithms in nonlinear programming and to extending
Hamiltonian techniques in shape/topology optimization, beyond di-
mension two (including in the computational applications).

∗Accepted for publication on February 24, 2025
†dan.tiba@imar.ro, Simion Stoilow Institute of Mathematics of the Romanian

Academy, P.O. Box 1-764, 70700 Bucharest & Academy of Romanian Scientists, Bucharest,
Romania

239



Almost global implicit parameterizations 240

Keywords: (local, regional, global) parameterizations, arbitrary dimen-
sion, Hamiltonian systems.

MSC: 65D17, 65K10, 34D20.

1 Introduction

A general and constructive local parameterization approach, based on it-
erated Hamiltonian systems, was developed in [25], for implicitly defined
manifolds in arbitrary dimension and codimension. If Fj ∈ C1(D), D ⊂ Rd

bounded domain, j = 1, l, l ≤ d− 1, are such that Fj(x
0) = 0, j = 1, l, for

some given x0 ∈ D and the independence condition:

D(F1, F2, . . . , Fl)

D(x1, x2, . . . , xl)
(x0) 6= 0 (1)

is satisfied, then the (nonlinear) algebraic system:

Fj(x1, x2, . . . , xd) = 0, j = 1, l, (2)

defines in a neighborhood V ⊂ D of x0 (where condition (1) remains valid) a
(d− l)-dimensional manifold in Rd. A local parameterization, around x0, of
the manifold defined in (2), is obtained via the iterated Hamiltonian system
(d− l subsystems of dimension d):

∂y1(t1)

∂t1
= v1(y1(t1)), t1 ∈ I1 ⊂ R, (3)

y1(0) = x0;

∂y2(t1, t2)

∂t2
= v2(y2(t1, t2)), t2 ∈ I2(t1) ⊂ R, (4)

y2(t1, 0) = y1(t1);

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∂yd−l(t1, t2, . . . , td−l)

∂td−l
= vd−l(yd−l(t1, t2, . . . , td−l)), (5)

td−l ∈ Id−l(t1, . . . , td−l−1) ⊂ R,

yd−l(t1, . . . , td−l−1, 0) = yd−l−1(t1, t2, . . . , td−l−1).
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In (3) - (5), we have considered the undetermined linear algebraic system
with unknowns v(x) ∈ Rd, x ∈ V :

v(x) · ∇Fj(x) = 0, j = 1, l, (6)

and vj(x) ∈ Rd, j = 1, d− l denote linearly independent solutions of (6),
continuous with respect to x ∈ V . The choice of such sets of independent so-
lutions is infinite. The notations I1, I2(t1), . . . , Id−l(t1, . . . , td−l−1) represent
open intervals in R containing the origin and given by the Peano existence
theorem applied to (3) - (5). They are, in fact, ordinary differential systems
with parameters introduced via their initial condition, although PDE’s no-
tations are used (since just one derivative appears in each subsystem).

In the paper [25], we used special sets of such independent solutions
of (6), that helped to obtain a complete constructive local parameteriza-
tion theory, containing the implicit functions theorem as a particular case.
Moreover, the generalization to the singular case (when (1) is not valid) is
also included. In the sequel, another (simpler and ”bidimensional”) set of
independent solutions of (6) will play the essential role to derive an almost
global theoretical extension of [25], in the case of surfaces and hypersurfaces.

Other properties, related to the above approach, are: the existence inter-
vals I1, I2(t1), . . . , Id−l(t1, . . . , td−l−1) may be selected independently of the
parameters, the uniqueness is also valid (in each subsystem), new deriva-
tion formulas are proved, see [25] and [26] (where applications in nonlinear
programming, both theoretical and computational, are indicated as well).

In dimension two (d = 2), the system (3) - (5) reduces to the sim-
plest Hamiltonian system. Under appropriate assumptions and using the
Poincaré - Bendixson theory of limit cycles, [6], [21], we have established
in [24], [10] that its solution is periodic and the period is differentiable with
respect to the so-called functional variations in the system (2), see [16], [15].
The derivative can be computed via a certain adjoint system. This plays
a key role in the extension of the level set method (introduced in [19], in
the frame of evolutionary free boundary problems) to shape/topology op-
timization problems formulated in an elliptic setting, see [11], [12]. For a
general presentation of such geometric optimization problems, see the mono-
graphs [14], [18] and their references.

Notice that the periodicity property for Hamiltonian systems in R2 en-
sures the global parameterization of the boundaries of the involved two
dimensional domains defined as sublevel sets F (x1, x2) < 0, for instance.
Related periodicity results in dimension two are already known in differen-
tial geometry, via a different approach [22], Ch.10, Ch.11. The literature
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on global parameterizations, especially from the algorithmic point of view,
is very rich. See [20], [9] and their references. Our constructive extension
to higher dimension of global parameterizations seems to be new and the
necessary and/or sufficient conditions, that we discuss, put into evidence
the difficult points of the subject. The examples that we have in mind are
bounded connected hypersurfaces that are connected components of domain
boundaries. In [23], [27], the case of closed curves in arbitrary dimension is
investigated via different arguments.

In the preliminaries from Section 2, we consider just the case of planar
curves (d = 2, l = 1), that plays an important role in the sequel. The last
section reports our main results on regional and almost global parameteri-
zations of implicitly defined surfaces and hypersurfaces. Our methodology
here is relevant in dimension two or higher (for the manifolds), since we
investigate the general system (3) - (5) with at least two subsystems. We
also mention the possible applications to nonlinear programming (global op-
timization algorithms, see [26] for an example) or to the extension of the
Hamiltonian approach to shape/topology optimal design problems beyond
dimension two or to problems involving manifolds of codimension higher
than one and we quote the paper [11] for the basics in this respect.

2 Preliminaries in dimension two

In R2, we have d = 2, l = 1 and just one equation in (2), that implicitely
defines a curve in the plane x1x2. The hypothesis (1) becomes ∇F (x0) 6= 0,
where x0 = (x01, x

0
2) is a given point in the bounded domain D ⊂ R2 and F ∈

C1(D). This situation is thoroughly studied in [22], Ch.10, Ch.11. In [24],
[10], we prove similar periodicity results, based on the Poincaré - Bendixson
theory and, in the next Section, we partially extend them to dimension
three and higher. Notice that the vector of partial derivatives v(x1, x2) =
(−∂2F (x1, x2), ∂1F (x1, x2)) 6= 0 is a solution of (6) in a neighborhood x0 ∈
V ⊂ D, due to the definition of V and (1). The system (3) - (5) becomes
the simplest Hamiltonian system in dimension two:

y′1(t) = −∂2F (y1(t), y2(t)), t ∈ I, (7)

y′2(t) = ∂1F (y1(t), y2(t)), t ∈ I, (8)

y1(0) = x01, y2(0) = x02. (9)
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We know that (7) - (9) has a unique local solution in some maximal open
interval t ∈ I with 0 in its interior. And it gives a local parameterization
around x0 of the plane curve F (x1, x2) = 0, as in [25]. We introduce

G = {(x1, x2) ∈ D;F (x1, x2) = 0} (10)

which is a compact subset of D, not necessarily connected. On G, we assume
now

∇F (x1, x2) 6= 0, (11)

which also ensures the linear independence condition required in (6). More-
over, G cannot contain isolated points, since they would be extremum points
for F and (11) would be contradicted. Due to the well known conservation
property of Hamiltonian systems, we get 0 = F (x01, x

0
2) = F (y1(t), y2(t)), t ∈

I, i.e. (y1(t), y2(t)) ∈ G, t ∈ I and (11) gives

∇F (y1(t), y2(t)) 6= 0, t ∈ I. (12)

Relation (12), together with F ∈ C2(D), is exactly the main Poincaré -
Bendixson assumption for (7) - (9): there is no equilibrium point on the
trajectory. We also assume a constant sign condition on ∂D:

|F (x1, x2)| > 0. (13)

Then, again by the conservation property of the Hamiltonian, the solution
(y1(t), y2(t)) has to remain in D and is bounded (another assumption of
Poincaré - Bendixson type). The general structure theorem for ODE’s, [1],
[21] gives global existence, i.e. I = (−∞,∞), under (12), (13). Moreover,
one can argue as in [24], [11] and show that the limit cycles are not possible
for Hamiltonian systems like (7) - (9). Then, the solution of (7) - (9) has
to be periodic and gives a global parameterization of the closed curve in
G ⊂ D, passing through x0. In fact, we have:

Proposition 1. The compact set G ⊂ D is a finite union of closed curves,
parameterized by (7) - (9), if some initial condition is fixed on each connected
component of G.

The complete proof can be found in [24]. The hypothesis (11) is, in
fact, necessary and sufficient for the conclusion of Prop.1, if (13) is valid.
Such analytic representations of domains bordered by closed curves from G
(and not necessarily simply connected) are a key step in our approach in
shape/topology optimization, in dimension two, and in the equivalence of
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such geometric optimization problems with certain optimal control problems
with mixed constraints, [11]. Another essential property is the differentia-
bility of the period corresponding to (7) - (9) with respect to functional
variations of the Hamiltonian F and of the geometry given by its sublevel
domains, [11]. The period of the solution (y1(t), y2(t)) is, in principle, dif-
ferent on each connected component of G.

3 Dimension three and higher

We discuss first the case d = 3, l = 1, which is related to surfaces in D ⊂ R3,
bounded domain. The equation (2) becomes

F (x1, x2, x3) = 0, F ∈ C2(D), F (x0) = 0, (14)

and is associated to a surface S ⊂ D, defined around a non critical point
x0 ∈ D, ∇F (x0) 6= 0. The case d = 3, l = 2 concerns general curves in
D and is studied in [23], [27], where conditions to obtain closed curves are
indicated (in higher dimension too).

The system (3) - (5) has now just two subsystems of dimension three,
that may be chosen of the form (such a choice is not unique):

x′1 = −∂2F (x1, x2, x3), t ∈ I1,
x′2 = ∂1F (x1, x2, x3), t ∈ I1, (15)

x′3 = 0, t ∈ I1,
x0 = (x1(0), x2(0), x3(0)). (16)

Below, the point denotes derivative with respect to s ∈ I2:

ϕ̇ = −∂3F (ϕ,ψ, ξ), s ∈ I2,
ψ̇ = 0, s ∈ I2, (17)

ξ̇ = ∂1F (ϕ,ψ, ξ), s ∈ I2,
ϕ(0) = x1(t), ψ(0) = x2(t), ξ(0) = x3(t), (18)

The system (15)-(18) gives a local parameterization around x0 of the im-
plicitly defined manifold F (x1, x2, x3) = 0. The Hamiltonian structure of
each of its two subsystems is obvious, in the planes x3 = x03, respectively
ψ = x2(t). We assume that the vectors (−∂2F (x1, x2, x3), ∂1F (x1, x2, x3)),
(−∂3F (x1, x2, x3), ∂1F (x1, x2, x3)) are linearly independent in a neighbor-
hood x0 ∈ V ⊂ D. They give solutions to (6), as required in [25]. From
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the previous section, this condition yields the main Poincaré - Bendixson
assumption: each subsystem of (15)-(18) has no equilibrium points on its
trajectory. We also impose

|F (x1, x2, x3)| > 0, (x1, x2, x3) ∈ ∂D, (19)

that ensures the second Poincaré - Bendixson hypothesis (the trajectories
are bounded), due to the conservation property of Hamiltonian systems:

F (x1(t), x2(t), x3(t)) = F (ϕ(t, s), ψ(t, s), ξ(t, s)) = F (x0) = 0. (20)

By [25], the system (15)-(18) gives a local parameterization around x0 of S ⊂
D. The Poincaré - Bendixson hypotheses ensure (as in the previous section)
that the trajectories associated to each subsystem of (15)-(18) are planar
and periodic. However, this periodicity does not yield that the obtained
parameterization of S is of global type, as the examples related to the torus,
from [17], show. We also underline, that in the monograph of Thorpe [22],
in dimension higher than two, just local theory is investigated.

The following result is a strengthening of the local parameterization
property, giving an accurate geometric description of the achieved parame-
terization region, in dimension three:

Proposition 2. Assume that F ∈ C2(D) satisfies the above Poincaré -
Bendixson conditions. Then, the iterated Hamiltonian system (15)-(18)
gives a parameterization of the region of S obtained as the union of all
the nonvoid intersections Sc, of the planes x2 = c, c ∈ R, with S, that touch
the trajectory generated by (15)-(16).

Proof. This is a direct consequence of the way we have constructed the
parameterization and the above discussion. Notice that although S is a con-
nected component of the solution of (14) (containing x0), its planar ”slices”
Sc may be not connected in the planes x2 = c, c ∈ R. But the number of the
connected components is finite in the plane x2 = c, due to Proposition 1 and
the Poincaré - Bendixson assumptions for (17)-(18). In the components that
touch the closed trajectory generated by (15)-(16), the intersection points
provide initial conditions for the subsystem (17)-(18) and the respective
components are parameterized by (15)-(18). The other components of Sc,
from the plane x2 = c, remain outside the parameterization range.

We see that the parameterized region is a rich one and Proposition 2
improves local parameterization results, but the global character is not en-
sured.
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Remark 1. Under the Poincaré-Bendixson assumptions, a necessary and
sufficient condition towards global parameterization is that the trajectory
generated by (15)-(16) touches all the connected components of Sc. Here,
we also use that S = ∪Sc, c ∈ R.

Remark 2. If some plane x2 = c is tangent with S in certain points (which
indeed happens), then they are extremum or saddle points for F (x1, c, x3) and
the Poincaré - Bendixson assumption for (17)-(18) is not true in such tan-
gency points since ∇x1x3F (x1, c, x3) = 0. Obviously, these tangency points
depend on the choice of the axes and the parametrization property may be
not valid in such points. See Example 1 and Remark 3 below, showing the
difficulties arising from this situation.

We notice that the Poincaré-Bendixson main hypothesis is, in fact, unre-
alistic for iterated Hamiltonian systems in R3. Fortunately, the mentioned
exceptional situations have limited consequences in computations.

Example 1. As in [17], in the torus example, we take F (x1, x2, x3) =
(x21 + x22 + x23 + R2 − r2)2 − 4R2(x21 + x22) = 0, R = 2, r = 1, x0 is on the
exterior maximal circle, parameterized by (15)-(16). There are two points
of tangency of the exterior maximal circle of the torus, with vertical planes
parallel to x1x3. They are extremum points of F (x1, c, x3). With these two
starting points, the trajectory of (17)-(18) remains in its initial condition,
which coincides with the corresponding ”slice” through it. The parameteri-
zation in exterior tangency points is indeed given by (15)-(16), starting in
x0. There exist as well two tangency points to the interior minimal circle
of the torus and they are saddle points for F (x1, c, x3). The corresponding
two planar ”slices” Sc resemble each to a lemniscate. See Fig. 1. The inter-
section of the maximal exterior circle of the torus with each lemniscate are
exactly two of the initial conditions of the subsystem (17)-(18). The associ-
ated two trajectories via (17)-(18) are global and the interior tangency point
is an equilibrium point for both (and never attained). That is, the param-
eterization is almost global in this example: just the two interior tangency
points are not parameterized, in fact.

Remark 3. Notice as well that, in the above example, the parts of the
torus around the two extreme points of F (x1, c, x3) are doubly parametrized.
Namely, starting from initial conditions on the maximal exterior circle, be-
fore the extreme point and after it, we get via (17)-(18) the same trajectories
two times. At the discrete level, this difficulty can be solved in various man-
ners. For instance, by choosing appropriately the discretization points (that
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Figure 1: Intersection of the torus with an interior ”tangent” plane, giving
a lemniscate.

give initial conditions for the second step) on the trajectory obtained via
(15)-(16).

The choice of x0 may play a fundamental role in obtaining almost global
parameterizations via (15)-(18). Farthest points A (on a compact surface
S), are defined to be at maximal distance from some other point A′ ∈ S with
respect to all the other pairs of points in S (see [7], [8] and their references,
for a discussion of this and related notions). Obviously, A′ is also a farthest
point of S. For instance, all the points on the exterior maximal circle of the
torus are farthest points, while the ellipsoid has a unique pair of farthest
points.

We indicate, as well, some geometric conditions, in order to obtain an
almost global parameterization: The initial condition x0 has to be a farthest
point A of S and the line AA′ should be chosen the axis Ox2 (according to
the above notations, in this section). The choice of the plane x1x2 should
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define a curve in S, (by cutting S), that connects A with A′ (if possible).
Then, the planes x2 = c, through the points of this curve AA′, intersect S in
any of its points. The solution of (15)-(16) should touch all the connected
components of Sc, see Remark 1.

We investigate now the case of hypersurfaces S̃ in arbitrary dimension
Rd, that is d ∈ N, l = 1:

F̃ (x1, x2, . . . , xd) = 0, F̃ ∈ C2(D), F (x̃0) = 0, (21)

for some given x̃0 ∈ D ⊂ Rd, bounded domain, and under the hypothesis

|F̃ (x1, x2, . . . , xd)| > 0, (x1, x2, . . . , xd) ∈ ∂D. (22)

We choose now the solution of the linear algebraic system (6), with
l = j = 1, of the following form (not unique of this type). Its advantages
are the simplicity of writing and the reduction to dimension two:

v1 = (−∂2F̃ , ∂1F̃ , 0, . . . , 0),

v2 = (−∂3F̃ , 0, ∂1F̃ , 0, . . . , 0), (23)

. . .

vd−1 = (−∂dF̃ , 0, . . . , 0, ∂1F̃ ).

We assume that the vectors in (23) are linearly independent and form a
basis in the tangent space, in any point of S̃. In particular, it yields ∇F̃ 6= 0
in any point of S̃, which is the fundamental condition in the implicit def-
inition of hypersurfaces, [22]. The d-dimensional subsystems of (3) - (5)
are in fact the simplest Hamiltonian systems in dimension two since all the
other components of the vectors vj , j = 1, d− 1 are null. Moreover, the
independence condition yields the main Poincaré - Bendixson assumption:
the subsystems of (3) - (5) have no equilibrium points on their trajectories.
Together with (22), we obtain again that all these trajectories are planar
and periodic (closed). An example in arbitrary dimension, of a simple suf-
ficient condition (not realistic) for the vectors (23) to be independent, is
∂1F̃ (x1, x2, . . . , xd) 6= 0, (x1, x2, . . . , xd) ∈ S̃, and it has to be combined
with (22). We obtain, similarly with Proposition 2:

Proposition 3. Assume (22) and that the vectors (23) are linearly inde-
pendent on S̃. Then, the system (3) - (5), associated to them, has periodic
solutions in each variable t1, t2, . . . , td−1 and gives a parameterization of
the region of S̃ defined iteratively (in d − 1 iterations): in step 1 by (3)
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and in steps 2, . . . , d − 1 as the union of the nonvoid intersections S̃j,c̃j+2

of S̃ with the planes x1xj+2 defined by fixing (x2, . . . , x̂j+2, . . . , xd−1) =
(c2, . . . , ĉj+2, . . . , cd−1) = c̃j+2, j = 1, d− 3, d ≥ 4 (where the notations
x̂j+2, ĉj+2 mean that these variables are missing) and that touch a trajec-
tory from the previous step.

The proof is again based on the construction of the parametrization and
consists of a finite number of iterations. In step 1, we get just a planar curve
on S̃ and in each subsequent step, the region obtained in the previous step
is completed by considering the intersections of S̃ with the planes parallel
to x1xj+2, passing through the points obtained in the previous step. This
is achieved by solving the corresponding Hamiltonian system, with initial
conditions given in the region constructed previously. All the trajectories
computed in (3) - (5) are planar and periodic and represent the intersection
of one of the planes introduced in Proposition 3 with S̃.

The results of this section describe in analytic, respectively geometric
manners the region of S̃ that is parameterized via (3) - (5). Although S̃
from (21) is connected, the ”slices” S̃j,c̃j+2 may not be connected. Comments
similar to Remark 1, Remark 2, Remark 3 and conditions to ensure almost
global parameterizations can be formulated in this case too.

4 Conclusion

Our approach is based on a reduction to dimension two, by using simple ad-
vantageous bases in the tangent plane to the manifolds. In dimension two,
strong global parameterization properties are valid. But, even in dimension
three, our approach may not offer global results in complex examples like
certain trefoil knots (due to the condition that the choice of the plane x1x2
should define a curve that connects A with A′, by cutting S). Moreover,
concerning manifolds obtained for 2 ≤ l ≤ d − 2 (arbitrary codimension),
the existence and how to construct such ”bidimensional” simple bases sat-
isfying (6), is not clear. However, we stress that the case of surfaces and
hypersurfaces, discussed in this paper, is an important one, for applications
to shape/topology optimization problems in any dimension.
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