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Abstract

Exact analytical expressions are derived for the long time compo-
nents of the dimensionless velocities and shear stresses corresponding
to the modified Stokes problems for incompressible upper-convected
Maxwell fluids whose viscosity exponentially depends on pressure. The
influence of magnetic field and of the gravitational acceleration is taken
into account and some known results from the literature are recovered
as limiting cases. Obtained solutions can be used as tests for numeri-
cal methods that are developed for more complex flow problems and to
find the required time to reach the steady state. Graphical represen-
tations showed that the fluids with pressure dependent viscosity flow
more quickly in comparison with ordinary fluids.
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1 Introduction

Usually, the viscosity of fluids is assumed to be constant. However, it
was experimentally proved that, at high pressures it substantially increases
[6, 21, 26]. Such a situation appears, for instance, at pharmaceutical tablet
manufacturing, food processing, fluid film lubrication, fuel oil pumping, mi-
cro fluidics and elastohydrodynamic lubrication [5, 6, 19, 27]. Early enough
Andrade [2] and Bridgman [4] investigated the variation of viscosity with
pressure for different fluids. In addition, some experimental studies of Gri-
est et al. [12], Johnson and Cameron [15], Johnson and Greenwood [16], Bair
and Winer [3] attest the dependence of viscosity of pressure. On the other
hand, the influence of pressure on the fluid density is small enough and the
respective fluids can be treated as incompressible.

Steady solutions for motions in rectangular domains of fluids whose vis-
cosity depend of pressure have been established by Hron et al. [14], Ra-
jagopal [22, 23], Prusa [20], Akyildiz and Siginer [1] and Housiadas and
Georgiou [13]. Some of them were extended to unsteady motions of same
fluids by Rajagopal et al. [24], Fetecau and Vieru [7], Fetecau and Bridges [8]
and Fetecau et al. [9]. The authors of these papers have investigated mo-
tions of fluids with linear, exponential or power law dependence of viscosity
on the pressure. The most of them contain exact expressions for the steady
components of the start-up velocities. These expressions can be used to
determine the necessary time to reach the steady state. This time, which is
very important for the experimental researchers, can be graphically deter-
mined showing that the start-up velocities (numerical solutions) converge
to their long time components for increasing values of the time t. However,
in all above mentioned papers, the influence of magnetic field on the fluid
behavior has not been taken into consideration.

Effects of the magnetic field on the fluids’ motion are meaningful and
have a lot of industrial applications. The interaction between an electrical
conducting fluid in motion and a magnetic field implies effects with appli-
cations in physics, chemistry, engineering, biological fluids, plasma studies,
polymer manufacturing, MHD generators and many others. The influence
of magnetic field on the Couette flow of viscous fluids was early studied by
Tao [28] and Katagiri [18]. Exact solutions for MHD motions of some non-
Newtonian fluids between parallel plates were derived by Zahid et al. [29]
and Gosh et al. [11]. In this note we determine first long time solutions of
modified Stokes problems for incompressible upper-convected Maxell fluids
with exponential dependence of viscosity on pressure when magnetic effects
and the gravitational acceleration are taken into consideration. These so-
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lutions can be graphically used to determine the time to reach the steady
state.

2 Constitutive and governing equations

Let us consider an electrically conducting incompressible upper-convected
Maxwell fluid with exponential dependence of viscosity on pressure between
two unbounded horizontal parallel flat plates. Its constitutive equations
are [17]

T = −pI + S, S + λ
δS

δt
= µeα(p−p0)(L + LT ). (1)

Here T is the stress tensor, S is the extra-stress tensor, I is the unit tensor,
L = gradw where w is the velocity vector, p is the hydrostatic pressure, λ is
the relaxation time, µ is the fluid viscosity at the reference pressure p0 and
α > 0 is the dimensional pressure viscosity coefficient. The upper-convected
derivative δ/δt is defined by the relation

δS

δt
=
dS

dt
− LS− SLT , (2)

where d/dt denotes the material time derivative. When α = 0, the gover-
ning equations (1) correspond to ordinary incompressible upper-convected
Maxwell fluids. If λ = 0, the constitutive equations of incompressible New-
tonian fluids are recovered.

At the moment t = 0 the whole system is at rest. After this moment the
inferior plate begins to oscillate in its plane with the velocity W cos(ωt) or
W sin(ωt) or to slide in the same plane with the constant velocity W . Here,
ω is the oscillations frequency. Owing to the shear the fluid begins to move
and since both plates are unbounded, we are seeking for a velocity vector w
and a pressure p of the form [24]

w = w(x, t) = w(x, t)ez, p = p(x), (3)

in a convenient Cartesian coordinate system x, y and z. Here ez is the unit
vector along the z-axis. We also assume that S as well as the velocity vector
w is a function of x and t only. The continuity equation is satisfied. Using
the fact that the fluid has been in rest up to the initial moment t = 0, it is
not difficult to show that the non-trivial shear stress η(x, t) = Sxz(x, t) has
to satisfy the partial differential equation

λ
∂η(x, t)

∂t
+ η(x, t) = µeα(p−p0)

∂w(x, t)

∂x
; 0 < x < d, t > 0, (4)
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where d is the distance between plates.
In the following we assume that the fluid is finitely conducting and a

magnetic field of constant strength B acts orthogonal to plates. Further-
more, supposing that the magnetic permeability of the fluid is constant,
the induced magnetic field can be neglected and there is no electric charge
distribution in fluid, the balance of linear momentum reduces to [30]

ρ
∂w(x, t)

∂t
=
∂η(x, t)

∂x
− σB2w(x, t),

dp(x)

dx
= −ρg; 0 < x < d, t > 0, (5)

where ρ is the fluid density, σ is its electrical conductivity and g is the gravi-
tational acceleration. Integrating the second equation from the equalities
(5), it results that

p = p(x) = ρg(d− x) + p0 where p0 = p(d). (6)

Substituting p from the last relation in (4) one finds that

λ
∂η(x, t)

∂t
+ η(x, t) = µeαρg(d−x)

∂w(x, t)

∂x
; 0 < x < d, t > 0. (7)

The unknown functions w(x, t) and η(x, t) have to satisfy the following initial
and boundary conditions

w(x, 0) = 0, η(x, 0) = 0; 0 ≤ x ≤ d, (8)

respectively,

w(0, t) = W cos(ωt), W sin(ωt) or W, w(d, t) = 0; t > 0. (9)

Using the next non-dimensional variables, functions and parameters

x∗ =
1

d
x, t∗ =

ν

d2
t, w∗ =

1

W
w, η∗ =

d

µW
η, α∗ = αρgd, ω∗ =

d2

ν
ω, (10)

and neglecting the star notation, one finds the dimensionless forms

∂w(x, t)

∂t
=
∂η(x, t)

∂x
−Mw(x, t); 0 < x < 1, t > 0, (11)

We
∂η(x, t)

∂t
+ η(x, t) = eα(1−x)

∂w(x, t)

∂x
; 0 < x < 1, t > 0, (12)

of the governing equations. In these last relations ν = µ/ρ is the kinematic
viscosity of the fluid while the magnetic parameter M and the Weissenberg
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number We (which is the ratio of the relaxation time λ and a characteristic
time scale d2/ν) are defined by the relations

M =
σB2

ρ

d2

ν
=
d2

µ
σB2, We =

νλ

d2
. (13)

The dimensionless initial and boundary conditions are

w(x, 0) = 0, η(x, 0) = 0; 0 ≤ x ≤ 1, (14)

w(0, t) = cos(ωt), sin(ωt) or 1, w(1, t) = 0; t > 0. (15)

3 Long time solutions

The staring solutions corresponding to Stokes problems for such fluids have
to satisfy the governing equations (11) and (12) with the corresponding
initial and boundary conditions. These solutions describe the fluid motion
some time after its initiation. After this time, the fluid behavior is described
by the long time (steady state or permanent) solutions which are indepen-
dent of the initial conditions but satisfy the boundary conditions and the
governing equations. This is the time to reach the steady state. In practice,
this time is very important for the experimental researchers who want to
know the transition moment of the motion to the steady state. In order
to determine this time, it is necessary and sufficient to know the long time
solutions. This is the reason that, in the following we shall determine these
solutions. By eliminating the shear stress η(x, t) between Eqs. (11) and (12)
one obtains the governing equation

We
∂2w(x, t)

∂t2
+
∂w(x, t)

∂t
= eα(1−x)

[
∂2w(x, t)

∂x2
− α ∂w(x, t)

∂x

]
−M

[
We

∂w(x, t)

∂t
+ w(x, t)

]
; 0 < x < 1, t > 0,

(16)

for the fluid velocity w(x, t).

3.1 Long time solutions for the second problem of Stokes

In the next, for distinction, we denote by wc(x, t), ws(x, t) the dimensionless
start-up velocity fields corresponding to motions induced by cosine or sine
oscillations of the inferior plate and by ηc(x, t), ηs(x, t) the associated shear
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stresses. It is well known that these motions become steady in time and the
corresponding solutions can be written as sum of their long time (steady
state or permanent) and transient components. For instance,

wc(x, t) = wcp(x, t) + wct(x, t), ws(x, t) = wsp(x, t) + wst(x, t);
0 < x < 1, t > 0.

(17)

As we previously mentioned, in order to determine the necessary time
to touch the steady state, the long time solutions wcp(x, t) and wsp(x, t)
have to be known. From mathematical point of view, this is the time after
which the diagrams of start-up velocities wc(x, t) and ws(x, t) overlap over
those of their long time components wcp(x, t) and wsp(x, t), respectively. To
determine both velocity fields in the same time we use the complex velocity

wcom(x, t) = wcp(x, t) + iwsp(x, t); 0 < x < 1, t > 0, (18)

which has to satisfy the next boundary value problem

We
∂2wcom(x, t)

∂t2
+
∂wcom(x, t)

∂t

= eα(1−x)
[
∂2wcom(x, t)

∂x2
− α ∂wcom(x, t)

∂x

]
−M

[
We

∂wcom(x, t)

∂t
+ wcom(x, t)

]
; 0 < x < 1, t > 0,

(19)

wcom(0, t) = eiωt, wcom(1, t) = 0; t > 0. (20)

In the equality (18), i is the imaginary unit.
Making the change of the independent variable x = 1 + ln α

√
r, one finds

the following boundary value problem

We
∂2wcom(r, t)

∂t2
+
∂wcom(r, t)

∂t
= α2r

∂2wcom(r, t)

∂r2

−M
[
We

∂wcom(r, t)

∂t
+ wcom(r, t)

]
= 0,

(21)

wcom(1/eα, t) = eiωt, wcom(1, t) = 0; t > 0. (22)

The homogeneity of the partial differential equation (21) and the form of
boundary conditions (22) suggest us to look for a solution of the form

wcom(r, t) = U(r)eiωt; 1/eα < r < 1, t > 0. (23)
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Replacing wcom(r, t) from Eq. (23) in (21) and bearing in mind the boundary
conditions (22), it results that the complex function U(·) has to satisfy the
boundary value problem

rU ′′(r) + βU(r) = 0; U(1/eα) = 1, U(1) = 0, (24)

where β = − (iω+M)(iωWe+1)
α2 .

Now, using the following observation (see [30] the exercise 37 from the
page 251) the general solution of the differential equation xy′′ + λy = 0 on
the interval (0,∞) is

y =
√
x [c1J1(2

√
λx) + c2Y1(2

√
λx)], (25)

we can show that U(r) is given by the relation

U(r) =
√
reα

× Y1(2
√
β)J1(2

√
βr)− J1(2

√
β)Y1(2

√
βr)

Y1(2
√
β)J1(2

√
βe−α)− J1(2

√
β)Y1(2

√
βe−α)

;
1

eα
< r < 1,

(26)

where J1(·) and Y1(·) are Bessel functions of the first and second kind and
first order.

Finally, bearing in mind the relations (18), (23) and (26), we conclude
that the long time velocities wcp(x, t) and wsp(x, t) are given by the next
relations

wcp =
√

eαx Re

{
Y1(2
√
β)J1(2

√
βeα(x−1))−J1(2

√
β)Y1(2

√
βeα(x−1))

Y1(2
√
β)J1(2

√
βe−α)−J1(2

√
β)Y1(2

√
βe−α)

eiωt
}
, (27)

wsp =
√

eαx Im

{
Y1(2
√
β)J1(2

√
βeα(y−1))−J1(2

√
β)Y1(2

√
βeα(y−1))

Y1(2
√
β)J1(2

√
βe−α)−J1(2

√
β)Y1(2

√
βe−α)

eiωt
}
, (28)

where Re and Im means the real and the imaginary part of that which
follows.

Proceedings in the same way with the dimensionless shear stresses ηc(x, t),
ηs(x, t) and using the relation J ′1(z) = J0(z)− J1(z)/z, we can prove that

ηcp(x, t) =
√

eα

×Re

{
Y1(2
√
β)J0(2

√
βex−1)−J1(2

√
β)Y0(2

√
βeα(x−1))

Y1(2
√
β)J1(2

√
βe−α)−J1(2

√
β)Y1(2

√
βe−α)

i
√
iω+M√
iωWe+1

eiωt
}
,

(29)

ηsp(y, t) =
√

eα

×Im

{
Y1(2
√
β)J0(2

√
βex−1)−J1(2

√
β)Y0(2

√
βeα(x−1))

Y1(2
√
β)J1(2

√
βe−α)−J1(2

√
β)Y1(2

√
βe−α)

i
√
iω+M√
iωWe+1

eiωt
}
,

(30)
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In the absence of magnetic field, when M = 0, the relations (27)–(30) are
in accordance with those obtained by Fetecau et al. [9] using a different
normalization.

Taking We = 0 in the above relations, the dimensionless long time solu-
tions

wNcp(x, t) =
√

eαx

×Re

{
Y1(2
√
γ)J1(2

√
γeα(x−1))−J1(2

√
γ)Y1(2

√
γeα(x−1))

Y1(2
√
γ)J1(2

√
γe−α)−J1(2

√
γ)Y1(2

√
γe−α)

eiωt
}
,

(31)

wNsp(x, t) =
√

eαx

×Im

{
Y1(2
√
γ)J1(2

√
γeα(x−1))−J1(2

√
γ)Y1(2

√
γeα(x−1))

Y1(2
√
γ)J1(2

√
γrme−α)−J1(2

√
γ)Y1(2

√
γe−α)

eiωt
}
,

(32)

ηNcp(x, t) =
√

eα

×Re

{
Y1(2
√
γ)J0(2

√
γeα(x−1))−J1(2

√
γ)Y0(2

√
γeα(x−1))

Y1(2
√
γ)J1(2

√
γe−α)−J1(2

√
γ)Y1(2

√
γe−α)

i
√
iω +M eiωt

}
,

(33)

ηNsp(x, t) =
√

eα

×Im

{
Y1(2
√
γ)J0(2

√
γeα(x−1))−J1(2

√
γ)Y0(2

√
γrmeα(x−1))

Y1(2
√
γ)J1(2

√
γe−α)−J1(2

√
γ)Y1(2

√
γe−α)

i
√
iω +M eiωt

}
,

(34)
corresponding to the MHD modified second problem of Stokes for incompres-
sible Newtonian fluids with exponential dependence of viscosity on pressure
are obtained. In the last relations the complex constant γ = −(iω+M)/α2.

3.2 Study case ω = 0 (modified Stokes first problem)

The dimensionless start-up velocity and shear stress corresponding to the
MHD motion of the upper-convected incompressible Maxwell fluids with
exponential dependence of viscosity on the pressure induced by the lower
plate that moves in its plane with the constant velocity W will be denoted
by wC(x, t) and ηC(x, t). Taking ω = 0 in Eqs. (27) and (29) one obtains
the long time components wCp(x) and τCp(x) of these two entities, namely

wCp(x) =
√

eαx

×Re

{
Y1( 2i

α

√
M)J1

(
2i
α

√
Meα(x−1)

)
−J1( 2i

α

√
M)Y1

(
2i
α

√
Meα(x−1)

)
Y1( 2i

α

√
M)J1( 2i

α

√
Me−α)−J1( 2i

α

√
M)Y1( 2i

α

√
Me−α)

}
,

(35)
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ηCp(x) =
√
Meα

×Re

{
i
Y1( 2i

α

√
M)J0

(
2i
α

√
Meα(x−1)

)
−J1( 2i

α

√
M)Y0

(
2i
α

√
Meα(x−1)

)
Y1( 2i

α

√
M)J1( 2i

α

√
Me−α)−J1( 2i

α

√
M)Y1( 2i

α

√
Me−α)

}
,

(36)

These solutions are the identical for electrical conducting incompressible
Newtonian and Maxwell fluids with viscosity exponentially depending on
the pressure. This is not a surprise because the governing equations for
steady motions of these fluids are identical.

Now, we use the next asymptotic approximations

J0(z) ≈ 1, J1(z) ≈
z

2
, Y0(z) ≈

2

π

[
ln
(z

2

)
+δ
]
, Y1(z) ≈ −

2π

z
; |z| << 1, (37)

for the Bessel functions in order to recover some known results from the
literature. In Eq. (37) δ ≈ 0.5772 is the Euler Mascheroni constant. On the
base of these approximations that are valid for small values of the magnetic
parameter M , we recover the results

lim
M→0

wCp(x) =
eαx − eα

1− eα
= wCp0(x), lim

M→0
ηCp(x) =

αeα

1− eα
= ηCp0, (38)

obtained by Fetecau et al. [9] in a different way. The expression of wCp0(x)
can be also obtained solving the corresponding boundary value problem.
Now, it is interesting to observe that the shear stress ηCp0 is constant on the
entire flow domain although the fluid velocity wCp0(x) is a function of the
spatial variable x. As a check of the last results, Figure 1 is below included.

3.3 Limiting case α→ 0 (modified Stokes problems
for ordinary Maxwell fluids)

Using the well known asymptotic approximations

J1(z) ≈
√

2

πz
cos

[
z − 3π

4

]
, Y1(z) ≈

√
2

πz
sin

[
z − 3π

4

]
for |z| >> 1, (39)

it is not difficult to show that for small values of the parameter α

wcp(x, t) ≈ 4
√

eαx Re

sin
{

2
√
β
[
1− exp

(
α(x−1)

2

)]}
sin
{

2
√
β
[
1− exp

(
−α

2

)]} eiωt

, (40)
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Figure 1: Convergence of wCp(x) and ηCp(x) from Eqs. (35) and (36) to
wCp0(x) and ηCp0, from Eqs. (38) when α = 0.1 and M → 0.

ηcp(x, t)≈
√

eα

4
√
eαx

Re

cos
{

2
√
β
[
1− exp

(
α(x−1)

2

)]}
sin
{

2
√
β
[
1− exp

(
−α

2

)]} i
√
iω+M√
iωWe+1

eiωt

, (41)

Developing in Maclaurin series the functions exp[α(x−1)/2] and exp(−α/2),
taking the limits of the obtained results when α→ 0 and bearing in mind the
fact that sin(iz) = i sinh(z) and cos(iz) = i cosh(z), one finds the dimension-
less long time velocity wOcp(x, t) and the shear stress ηCcp(x, t) correspond-
ing to same motions of ordinary incompressible Maxwell. Their expressions
are given by the relations

wOcp(x, t) = lim
α→0

wcp(x, t)

= Re

{
sinh[(1− x)

√
(iω +M)(iωWe + 1)]

sinh[
√

(iω +M)(iωWe + 1)]
eiωt

}
,

(42)

ηOcp(x, t) = lim
α→0

ηcp(x, t)

= −Re

{
cosh[(1− x)

√
(iω +M)(iωWe + 1)]

sinh[
√

(iω +M)(iωWe + 1)]

√
iω +M√
iωWe + 1

eiωt

}
.

(43)
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Of course, in the same way one finds that

wOsp(x, t) = lim
α→0

wsp(x, t)

= Im

{
sinh[(1− x)

√
(iω +M)(iωWe + 1)]

sinh[
√

(iω +M)(iωWe + 1)]
eiωt

}
,

(44)

ηOsp(x, t) = lim
α→0

ηsp(x, t)

= −Im

{
cosh[(1− x)

√
(iω +M)(iωWe + 1)]

sinh[
√

(iω +M)(iωWe + 1)]

√
iω +M√
iωWe + 1

eiωt

}
.

(45)

Making We = 0 in Eqs. (42)–(45) one obtains the dimensionless long time
solutions wNOcp(x, t), ηNOcp(x, t), wNOsp(x, t) and ηNOsp(x, t) correspond-
ing to the MHD modified Stokes second problem for ordinary incompressible
Newtonian fluids. Their expressions are given by the relations:

wNOcp(x, t) = Re

{
sinh[(1− x)

√
iω +M ]

sinh[
√
iω +M ]

eiωt
}
, (46)

wNOsp(x, t) = Im

{
sinh[(1− x)

√
iω +M ]

sinh[
√
iω +M ]

eiωt
}
, (47)

ηNOcp(x, t) = −Re

{
cosh[(1− x)

√
iω +M ]

sinh[
√
iω +M ]

√
iω +M eiωt

}
, (48)

ηNOsp(x, t) = −Im

{
cosh[(1− x)

√
iω +M ]

sinh[
√
iω +M ]

√
iω +M eiωt

}
. (49)

Finally, taking ω = 0 in Eqs. (42), (43) or (46), (48) one obtains the
dimensionless long time solutions corresponding to the MHD modified first
problem of Stokes for electrical conducting incompressible Newtonian or
upper-convected Maxwell fluids. Their expressions are given by the relations

wNCp(x) =
sinh[(1− x)

√
M ]

sinh(
√
M)

, ηNCp(x) = −
√
M

cosh[(1− x)
√
M ]

sinh(
√
M)

, (50)

Now, taking the limits of the relations (50) when the magnetic parameter
M → 0 we recover the solutions (65) of the reference [9], namely

lim
M→0

wNCp(x) = 1− x, lim
M→0

ηNCp(x) = −1. (51)

The Reynolds number Re does not appear in Eq. (51)2 because a different
normalization has been considered in the present relations (10).
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4 Some numerical results and conclusions

In this note analytical expressions are derived for the dimensionless long
time velocities and the associated shear stresses corresponding to the MHD
modified Stokes problems for incompressible electrical conducting upper-
convected Maxwell fluids whose viscosity exponentially depends on pressure.
The obtained solutions can be used to determine the necessary time to get
the steady state. Our main purpose here is to bring to light the oscillatory
behavior of the dimensionless long time velocities wcp(x, t), wsp(x, t) and
of the shear stresses ηcp(x, t), ηsp(x, t) corresponding to the modified se-
cond problem of Stokes and to show the influence of the magnetic field and
the pressure viscosity coefficient on the fluid velocity. In order to do that,
Figures 2-4 are prepared for fixed values of physical parameters α, ω and
decreasing values of M or We.

Figure 2: Variations in time of wcp(x, t) and wsp(x, t) given by Eqs. (27)
and (28) for α = 0.1, ω = π/6, M = 0.5, x = 0.5 and decreasing values of
the Weissenberg number We.

In Figures 2 and 3 are presented the variations in time of the long time
velocities wcp(x, t), wsp(x, t) and of the corresponding shear stresses ηcp(x, t),
ηsp(x, t) at the middle of the channel for decreasing values of Weissenberg
number We and fixed values for the other parameters. The phase difference
between the two motions induced by cosine or sine oscillations of the lower
plate and their oscillatory characteristics are clearly visualized. In addition,
as it was to be expected, the oscillation amplitudes which bring up for
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Figure 3: Variations in time of ηcp(x, t) and ηsp(x, t) given by Eqs. (29)
and (30) for α = 0.1, ω = π/6, M = 0.5, x = 0.5 and decreasing values of
Weissenberg number We.

increasing values of We and diminish for increasing values of the magnetic
parameter M are identical for the two motions at the same values of physical
parameters.

Last Figure 4 presents the profiles of the dimensionless long time velocity
wCp(x) and of the shear stress ηCp(x) at decreasing values of the pressure-
viscosity parameter α. From this figure, as it was to be expected, it clearly
results that the fluid velocity is a decreasing function with respect to α while
the shear stress is a decreasing one. Consequently, the fluids with pressure
dependent viscosity flow faster in comparison with ordinary fluids.

The main findings that have been obtained here are:

• Modified Stokes problems for incompressible Maxwell fluids with vis-
cosity depending exponentially on pressure were analytically investi-
gated when magnetic effects and gravitational acceleration are taken
into consideration.

• Exact expressions were derived for dimensionless long time velocity
fields and shear stresses. These expressions are important for the ex-
perimental researchers who want to know the transition moment of
the motion to the steady state.
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Figure 4: Variations in time of wCp(x) and ηCp(x) given by Eqs. (35) and
(36) for M = 0.5, and decreasing values of the parameter α.

• Results validation has been analytically and graphically investigated
or showing that known results from the literature are recovered as
limiting cases.

• The fluids with pressure dependent viscosity flow quickly than ordinary
fluids.
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