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Abstract

Fixed domain approaches are used for some topology optimization
problems of clamped Kirchhoff-Love plates: detection of a damaged
zone using pointwise observation, respectively compliance minimiza-
tion and the first eigenvalue maximization. We discuss the derivability
with respect to functional variations of the geometry and some descent
directions are proposed. Numerical tests are presented.
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1 Introduction

Shape and topology optimization of structures were analyzed in the mono-
graphs [31] (speed method), [5], [3] (homogenization), [29] (topological deri-
vative) or in the paper [2] (level-set). In [4], the thickness optimization of
simply supported and clamped plates are expressed as distributed optimal
control problems governed by second order boundary value problems.

Fixed domain approaches based on a parametrization function for the
geometry are used in [27], [28] for shape and topology optimization. The
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problem can be rewritten as an optimal control problem studied in [26].
The state equations written in a unknown domain Ω are rewritten in a fixed
hold-all domain D. For simply supported plate this technique was used
in [17], for linear elasticity in [19], for Stokes in [20]. All the papers cited
in this paragraph, excepting [19], use penalization in the state equation
in D \ Ω. The approach can be also employed for non-linear problems as
Navier-Stokes [24] or variational inequalities [25].

The boundary of the unknown domain can be parameterized as well using
the solution of a Hamiltonian system. The analysis of shape and topology
optimization for elliptic boundary value problems are presented in [18] for
Dirichlet boundary condition, in [21] for boundary observation and in [22]
for Neumann boundary condition. This technique was used for clamped
plate in [23].

Here, we investigate some problems concerning topology optimization
of clamped Kirchhoff-Love plates. We discuss the detection of a damaged
zone using pointwise observation [30] in Section 2, compliance minimization
[2] in Section 3 and maximization of the first eigenvalue [8] in Section 4.
Differentiability with respect to the shape parametrization is studied and
descent directions for the different cost functionals are proposed, using just
functional variations [27], [28]. For other geometric variation types, see
[15]. Since the original state equations are written directly in the hold-all
domain (the plate is composed by two materials), then penalization in the
complementary set or the Hamiltonian parametrization of the boundary of
the unknown domain are not necessary. Numerical tests are presented in
the last section.

2 Pointwise observation for Kirchhoff-Love plate
with non-constant thickness

Let D ⊂ R2 be a given bounded Lipschitz domain and Ω ⊂⊂ D an open set.
We consider a Kirchhoff-Love plate of thickness

e(x) =

{
e0, x ∈ D \ Ω
e1, x ∈ Ω

(1)
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with 0 < e1 < e0. The set Ω represents the damaged zone. Denoting
V = H2

0 (D), let us introduce a : V × V → R given by

a(w, v) =

∫
D

Ee3(x)

12(1− ν2)

[
ν∆w∆v
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∂2w
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∂x1∂x2
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∂2w

∂x2
2

∂2v

∂x2
2

)]
dx(2)

where E > 0 the Young modulus and 0 < ν < 1/2 the Poisson ratio are
constants. Also, we introduce ` : V → R given by

`(v) = 〈f, v〉 (3)

where f ∈ V ′ (the dual of V and 〈·, ·〉 is the duality bracket between V ′

and V ). Concentrated transverse loads are applied at the points ξm ∈ D,
m = 1, . . . ,M and we take f = b0

∑M
m=1 δ(ξm), where b0 ∈ R and δ(ξm) is

the Dirac function of pole ξm. We have 〈δ(ξm), v〉 = v(ξm) since V ⊂ C(D).
The scalar product and the norm of the Hilbert space Hk(D), k ∈ N are
denoted by (·, ·)k,D and ‖ · ‖k,D, respectively and H0(D) = L2(D).

The transverse displacement of the clamped plate is y ∈ V , such that

a(y, v) = `(v), ∀v ∈ V. (4)

The plate is clamped, i.e. y = ∂y
∂n = 0 on ∂D. The problem has a unique

solution by Lax-Milgram Theorem. The ellipticity is based on the fact that

a(v, v)

≥ Ee3
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dx

≥ Ee3
1(1− ν)

12(1− ν2)

∫
D

2∑
i,j=1

(
∂2v

∂xi∂xj

)2

dx =
Ee3

1

12(1 + ν)
|v|22,D

and |v|2,D is a norm equivalent to ‖v‖2,D in H2
0 (D), see [12], p. 34-35.

We consider a family F ⊂ C(D) of admissible controls, F is an open
cone and

Ω = Ωg = int{x ∈ D; g(x) ≤ 0}, g ∈ F . (5)

We point out that Ωg defined by (5) is not necessarily connected.
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The thickness can be written using H : R→ R the Heaviside function

e(g) = e0H(g) + e1 (1−H(g)) .

Let Hη : R → R be a regularization of H, where η is a positive parameter,
such that

Hη ∈ C2(R), 0 ≤ Hη ≤ 1, 0 ≤ H ′η, for η fixed H ′η, H
′′
η bounded in R. (6)

We put
eη(g) = e0Hη(g) + e1 (1−Hη(g))

and let aη : V × V → R be obtained from (2) by replacing e by eη(g).
The regularized problem is: find yg ∈ V such that

aη(yg, v) = `(v), ∀v ∈ V. (7)

Proposition 1. The regularized problem has a unique solution yg ∈ V and

‖yg‖2,D ≤ C‖f‖V ′ (8)

Proof. Since Hη ≥ 0, e0− e1 > 0 we get e(g) = e1 +Hη(g)(e0− e1) ≥ e1 and

aη(v, v) ≥ Ee3
1

12(1 + ν)
|v|22,D ≥ C1‖v‖22,D

then aη is elliptic. Since Hη ≤ 1 and using Cauchy-Schwarz inequality, we
get

aη(w, v) ≤ C2|w|2,D|v|2,D.

From the Lax-Milgram Theorem we get the conclusion.

For w, v ∈ V and r ∈ F , we put

∂aη
∂g

(w, v)r =

∫
D

E

12(1− ν2)
3e2
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[
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∂x2
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+ 2
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+
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2

)]
dx.

Proposition 2. When λ→ 0, then:
i) y(g+λr) converges to yg strongly in V ,

ii) zλ =
y(g+λr)−yg

λ ∈ V converges to q strongly in V , where q is the unique
solution of:

aη(q, v) = −∂aη
∂g

(yg, v)r, ∀v ∈ V. (9)
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Proof. To simplify the calculus, we note

[y, v]# =
E

12(1− ν2)
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)]
we get: [y, v]# ∈ L1(D), [v, v]# ≥ 0 a.e. in D, for all v ∈ V and

aη(y, v) =

∫
D
e3
η(g)[y, v]# dx.

i) Subtracting (7) written for g from (7) written for (g + λr), we get

0 =

∫
D
e3
η(g + λr)[y(g+λr), v]# − e3

η(g)[yg, v]# dx

=

∫
D
e3
η(g + λr)[y(g+λr), v]# − e3

η(g)[y(g+λr), v]# dx

+

∫
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=
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(e3
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η(g))[y(g+λr), v]# dx

+

∫
D
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[
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]
#
dx.

For v = y(g+λr) − yg, we get∫
D
e3
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[
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#
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= −
∫
D

(e3
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It follows from the coercivity of aη and Cauchy-Schwarz inequality

C1

∥∥y(g+λr) − yg
∥∥2

2,D
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x∈D

∣∣e3
η(g + λr)− e3

η(g)
∣∣ ∥∥y(g+λr)

∥∥
2,D

∥∥y(g+λr) − yg
∥∥

2,D
C3.

But e1 ≤ eη(g) ≤ e0, for all g and from (9), we obtain

C1

∥∥y(g+λr) − yg
∥∥

2,D
≤ max

x∈D
|eη(g + λr)− eη(g)| 3e2

0C‖f‖V ′C3.
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Since H ′η is bounded in R and g is continuous in D, we have

|eη(g + λr)− eη(g)| = (e0 − e1) |Hη(g + λr)−Hη(g)|
≤ |λ|(e0 − e1) max

R

∣∣H ′η∣∣max
x∈D
|r(x)|

and the conclusion of i) is proved. The boundedness of H ′η for η fixed from
(6) was used at the end of the proof of i).

ii) Weak convergence. We have deduced at i) that

C1

∥∥∥∥y(g+λr) − yg
λ

∥∥∥∥
2,D

≤ (e0 − e1) max
R

∣∣H ′η∣∣max
x∈D
|r(x)|3e2

0C‖f‖V ′C3

then there exits z̃ ∈ V and zλ such that zλ converges weakly to z̃ on a
subsequence.

Subtracting (7) written for g from (7) written for (g + λr) and dividing
by λ, we get

0 =

∫
D

e3
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λ
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We have the relations

e3
η(g + λr)− e3

η(g)

λ

= (e0 − e1)
Hη(g + λr)−Hη(g)

λ
(e2
η(g + λr) + eη(g + λr)eη(g) + e2

η(g))

and from the Lipschitz propriety of Hη we obtain

∀x ∈ D,
∣∣∣∣Hη(g(x) + λr(x))−Hη(g(x))

λ
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R

∣∣H ′η∣∣max
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It follows using eη(g) ≤ e0

∀x ∈ D,

∣∣∣∣∣e3
η(g(x) + λr(x))− e3

η(g(x))

λ
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In addition, we have the pointwise convergence

Hη(g(x) + λr(x))−Hη(g(x))

λ
→ H ′η(g(x))r(x), ∀x ∈ D (12)

then

eη(g(x) + λr(x))3 − eη(g(x))3

λ
→ (e0 − e1)3e2

0H
′
η(g(x))r(x), ∀x ∈ D.

We get that∣∣∣∣∣
∫
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but y(g+λr) → yg strongly in V , then∫
D

e3
η(g + λr)− e3

η(g)

λ
[y(g+λr) − yg, v]# dx→ 0.

From the Lebesgue’s dominated convergence theorem, we obtain∫
D

e3
η(g + λr)− e3
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λ
[yg, v]# dx→

∫
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(e0 − e1)3e2
0H
′
η(g)r [yg, v]# dx.

Since zλ → z̃ weakly on a subsequence, we obtain∫
D
e3
η(g)

[
y(g+λr) − yg

λ
, v

]
#

dx→
∫
D
e3
η(g) [z̃, v]# dx

Passing to the limit λ→ 0 in (10), we obtain

aη(z̃, v) = −∂aη
∂g

(yg, v)r, ∀v ∈ V

but the problem (9) has a unique solution denoted by q ∈ V . Then z̃ = q
and the weak convergence of zλ → q holds without taking subsequence.

Strong convergence. Putting v = zλ − q in (10) and using (9) we obtain

aη(zλ − q, zλ − q) = aη(zλ, zλ − q)− aη(q, zλ − q)

=

∫
D
e3
η(g)

[
y(g+λr) − yg

λ
, zλ − q

]
#

dx− aη(q, zλ − q)

= −
∫
D

e3
η(g + λr)− e3

η(g)

λ
[y(g+λr) − yg, zλ − q]# dx

−
∫
D

e3
η(g + λr)− e3

η(g)

λ
[yg, zλ − q]# dx +

∂aη
∂g

(yg, zλ − q)r (13)
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We have ∣∣∣∣∣
∫
D

e3
η(g + λr)− e3

η(g)

λ
[y(g+λr) − yg, zλ − q]# dx

∣∣∣∣∣
≤ C

∥∥y(g+λr) − yg
∥∥

2,D
‖zλ − q‖2,D

and the last line of (13) is equal to∫
D

(
(e0 − e1)3e2(g)H ′η(g)r −

e3
η(g + λr)− e3

η(g)

λ

)
[yg, zλ − q]# dx.

We have eη(t) = e1 +(e0−e1)Hη(t), then e′η(t) = (e0−e1)H ′η(t), e
′′
η(t) =

(e0 − e1)H ′′η (t). Using Taylor formula of order two for the real function
t→ e3

η(t) and the assumption H ′′η bounded, we get∣∣e3
η(t1)− e3

η(t0) + (t1 − t0)3e2
η(t0)(e0 − e1)H ′η(t0)

∣∣ ≤ (t1−t0)2M, ∀t0, t1 ∈ R.

For t0 = g(x) and t1 = g(x) + λr(x), we obtain∣∣∣∣∣(e0 − e1)3e2(g(x))H ′η(g(x))r(x)−
e3
η(g + (x)λr(x))− e3

η(g(x))

λ

∣∣∣∣∣
≤ λr2(x)M ≤ λmax

x∈D
|r2(x)|M.

Finally, from the coercivity of aη, (13) and the above estimations, we
obtain

C1 ‖zλ − q‖22,D ≤ C
∥∥y(g+λr) − yg

∥∥
2,D
‖zλ − q‖2,D

+λmax
x∈D
|r2(x)|M ‖yg‖2,D ‖zλ − q‖2,D .

But
∥∥y(g+λr) − yg

∥∥
2,D
→ 0 when λ → 0, then we get that zλ converges

strongly to q in V . The boundedness of H ′′η from (6) was used for the proof
of the strong convergence in ii).

We consider N sensors located at xn ∈ D, n = 1, . . . , N . Since V ⊂
C(D), we can define yg(xn), but not ∇yg(xn). Formally, we want to solve
the optimization problem:

inf
g∈F

J(g) =
N∑
n=1

(
(yg − y∗)2 +

(
∂yg
∂x1
− ∂y∗

∂x1

)2

+

(
∂yg
∂x2
− ∂y∗

∂x2

)2
)

(xn)

(14)
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for given y∗ ∈ C1(D). This cost function is well adapted when the shape of
the industrial deformed part y∗ could be measured only pointwise by a finite
number of sensors. The aim is to detect the damaged zone Ω∗ ⊂ D using
only pointwise observation of y∗, the displacement of the plate corresponding
to Ω∗. It is an inverse problem.

For testing the descent direction algorithm in the last section, the given
displacement y∗ is computed by the Finite Element Method, corresponding
to a given Ω∗. We point out that the algorithm does not “know” Ω∗. The
continuous version of this optimization problem has a global minimum cor-
responding to Ω∗ and the optimal value of the cost function is zero. We
ignore if the global minimum is unique.

We can increase the regularity of yg by using ϕε(x − ξm), a mollifier
approximation of the Dirac functional δ(ξm). We put ϕε(x) = 1

ε2
ϕ
(
x
ε

)
,

where ϕ ∈ C∞(R2) with support in the unitary disk centered at (0, 0) and∫
R2 ϕ(x) dx = 1. In this case, we get fε =

∑M
m=1 b0ϕε(x − ξm) ∈ C∞(D).

If we use smooth coefficient eη(g) ∈ C2(D), for example g ∈ F ⊂ C2(D),
from [1], Ch. 9, for fε ∈ L2(D) we obtain yg ∈ H4

loc(D) and

‖yg‖4,D1
≤ C ‖fε‖0,D

where D1 is an open set with C1 boundary, such that {xn}1≤n≤N ⊂ D1 ⊂
D1 ⊂ D.

From the Sobolev inequalities, see [13], Ch. 5 for example, we have
H4(D1) ⊂ C2,γ(D1), with 0 < γ < 1 and in addition, we have

‖yg‖C2,γ(D1) ≤ C ‖yg‖4,D1
.

For the interior regularity, it is not necessary supplementary smoothness of
∂D. In the case where some sensors xn are on ∂D, we have to assume then
∂D is at least C4.

We introduce the adjoint problem: find pg ∈ V , such that

aη(v, pg) = 2

N∑
n=1

(
(y − y∗)v +

∂(yg − y∗)
∂x1

∂v

∂x1
+
∂(yg − y∗)

∂x2

∂v

∂x2

)
(xn)

(15)
for all v ∈ V .

Proposition 3. The directional derivative of J given by (14) at g in the
direction r is

J ′(g)r = −∂aη
∂g

(yg, pg)r. (16)
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Proof. We have for λ 6= 0

(y(g+λr) − y∗)2(xn)− (yg − y∗)2(xn)

λ

=
(y(g+λr) − yg)(xn)

λ

(
y(g+λr) − 2y∗ + yg

)
(xn).

We have proved Prop. 2, that y(g+λr) converges to yg and zλ converges to q
strongly in V = H2

0 (D). We have from the Sobolev inequalities∥∥y(g+λr) − yg
∥∥
C0,γ(D)

≤ C
∥∥y(g+λr) − yg

∥∥
2,D

,

‖zλ − q‖C0,γ(D) ≤ C ‖zλ − q‖2,D ,

it follows limλ→0 y(g+λr)(xn) = yg(xn) and limλ→0
(y(g+λr)−yg)(xn)

λ = q(xn)
then

lim
λ→0

(y(g+λr) − y∗)2(xn)− (yg − y∗)2(xn)

λ
= q(xn)2(yg − y∗)(xn).

Also, we have

∂

∂x1

(
(y(g+λr) − y∗)2 − (yg − y∗)2

λ

)

=
∂

∂x1

(
(y(g+λr) − yg)

λ

(
y(g+λr) − 2y∗ + yg

))
=

(
y(g+λr) − 2y∗ + yg

) ∂

∂x1

(
y(g+λr) − yg

λ

)
+

(
y(g+λr) − yg

λ

)
∂

∂x1

(
y(g+λr) − 2y∗ + yg

)
.

Since the restriction to D1 of y(g+λr), yg, y
∗ are in C2(D1), then for λ→ 0(

y(g+λr) − 2y∗ + yg
)
→ 2 (yg − y∗) , in C2(D1)

∂

∂x1

(
y(g+λr) − 2y∗ + yg

)
→ 2

∂

∂x1
(yg − y∗) , in C1(D1).

Moreover, we have

zλ → q, in C0(D1)

then zλ(xn)→ q(xn).
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Now we study the convergence of ∂zλ
∂x1

(xn). In the beginning of the proof
of Prop. 2, we have deduced∫
D
e3
η(g) [zλ, v]# dx = − 1

λ

∫
D

(e3
η(g + λr)− e3

η(g))[y(g+λr), v]# dx, ∀v ∈ V.

But the coefficients e3
η(g + λr) are in C2(D) and y(g+λr) ∈ H2

0 (D), then
the right-hand side is in the dual of L2(D). Consequently, zλ ∈ H4(D1) ⊂
C2,γ(D1) and ‖zλ‖4,D1

bounded. There exists ẑ ∈ H4(D1) such that zλ
converges in a subsequence to ẑ weakly in H4(D1) and strongly in H2(D1).
Then ẑ = q in D1 and the convergence holds without taking subsequences.
It follows that ∂zλ

∂x1
(xn)→ ∂q

∂x1
(xn).

Finally, we get

J ′(g)r = 2

N∑
n=1

(
(y − y∗)q +

∂(yg − y∗)
∂x1

∂q

∂x1
+
∂(yg − y∗)

∂x2

∂q

∂x2

)
(xn). (17)

Putting v = pg in (9) and v = q in (15), we get the conclusion.

Remark 1. Putting

dg = ν∆yg∆pg

+(1− ν)

(
∂2yg
∂x2

1

∂2pg
∂x2

1

+ 2
∂2yg
∂x1∂x2

∂2pg
∂x1∂x2

+
∂2yg
∂x2

2

∂2pg
∂x2

2

)
, (18)

since 0 < ν < 1
2 , e0 − e1 > 0, H ′η ≥ 0, it follows

−∂aη
∂g

(yg, pg)dg = −
∫
D

E

12(1− ν2)
3e2
η(g)(e0 − e1)H ′η(g)d2

gdx ≤ 0,

then rg = dg is a descent direction for J at g, i.e. J ′(g)rg < 0, if J ′(g)rg 6= 0.
The condition J ′(g)rg = 0 could be used as stopping criteria for the descent
direction algorithm. For an introduction to descent direction methods, see
[9]. Similarly, we have that −∂aη

∂g (yg, pg)rg is equal to

−
∫
D

E

12(1− ν2)
3e2
η(g)(e0 − e1)

(
H ′η(g)dg

)2
dx ≤ 0, for rg = H ′η(g)dg

−
∫
D

E

12(1− ν2)
3e3
η(g)(e0 − e1)H ′η(g)d2

gdx ≤ 0, for rg = eη(g)dg

−
∫
D

E

12(1− ν2)
3e3
η(g)(e0 − e1)

(
H ′η(g)dg

)2
dx ≤ 0, for rg = eη(g)H ′η(g)dg.

Then, rg = H ′η(g)dg, rg = eη(g)dg and rg = eη(g)H ′η(g)dg are descent
directions, too, if J ′(g)rg 6= 0.
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3 Compliance minimization of Kirchhoff-Love
plate with elastic support

Let D ⊂ R2 be a given bounded Lipschitz domain and Ω ⊂ D an open
set. We consider clamped boundary condition and we put V = H2

0 (D).
We consider ` ∈ V ′ as in (3) with f = b0

∑M
m=1 δ(ξm), where b0 ∈ R and

δ(ξm) is the Dirac function of pole ξm. We follow [8] and we introduce
ac : V × V → R given by

ac(w, v) =

∫
D
α(x)

Ee3

12(1− ν2)

[
ν∆w∆v

+ (1− ν)

(
∂2w

∂x2
1

∂2v

∂x2
1

+ 2
∂2w

∂x1∂x2

∂2v

∂x1∂x2
+
∂2w

∂x2
2

∂2v

∂x2
2

)]
dx

+

∫
D
s(x)wv dx (19)

where E > 0 the Young modulus, 0 < ν < 1/2 the Poisson ratio, e the
thickness are constants, but α, s : D → R

α(x) =

{
α0, x ∈ Ω

α1, x ∈ D \ Ω
s(x) =

{
s0, x ∈ Ω

s1, x ∈ D \ Ω
(20)

where α0, α1 > 0, s0, s1 ≥ 0.
The problem is to find y ∈ V , such that

ac(y, v) = `(v), ∀v ∈ V. (21)

and it can be interpreted as a clamped Kirchhoff-Love plate with elastic
support, see [8]. The term containing s in (19) is modeling the elastic
support, like springs, which reduces the displacement of the plate. We can
interpret s as the stiffness of the elastic support. The problem (21) has a
unique solution.

The elipticity of ac is based on min(α0, α1) > 0, in other words, there
are two materials, one in Ω with coefficients depending on α0, s0 and the
other in D \Ω with coefficients depending on α1, s1. The clamped boundary
conditions all over ∂D are used, too. In [19], the minimization of the compli-
ance for linear elasticity equation is analyzed using similar technique. But
there is only one material. The elipticity in this case is obtained if the ma-
terial “touches” a part of ∂D, where the homogeneous Dirichlet boundary
condition is imposed.
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Let acη : V × V → R be obtained from (19) by replacing α, s by

αη(g) = α0(1−Hη(g)) + α1Hη(g) sη(g) = s0(1−Hη(g)) + s1Hη(g)

for g ∈ F ⊂ C(D) a parametrization of Ω as in (5) and Hη ∈ C1(R),
0 ≤ Hη ≤ 1, 0 ≤ H ′η, H

′
η bounded. The regularized problem is: find

yg ∈ V such that
acη(yg, v) = `(v), ∀v ∈ V. (22)

Since 0 ≤ Hη(g) ≤ 1, we can get α(g) = α1 + (1 − Hη(g))(α0 − α1) ≥ α1

if α0 − α1 ≥ 0 or αη(g) = α0 + Hη(g)(α1 − α0) ≥ α0, if α1 − α0 ≥ 0 and
similarly we get sη(g) ≥ min(s0, s1) ≥ 0, then acη is elliptic. It follows that
the regularized problem has a unique solution yg ∈ V .

We define the compliance j : F → R by

j(g) = `(yg) (23)

(the work done by the load, see [3], p. 5) and we observe that j(g) =
acη(yg, yg) from (22).

Let jD = j(g), for a g such that maxx∈D g(x) < 0 and |Ω| the area of
set Ω. Also, we introduce A : F → R by

A(g) =

∫
D

(1−Hη(g))dx (24)

and A(g) is an approximation of |Ω|. The cost functional to be minimized
adapted from [8] is

J(g) =
j(g)

jD
+ µ
A(g)

|D|
(25)

where µ > 0 is a penalization term for the area of Ω. This cost function
combines the relative compliance j(g)

jD
and an approximation of the volume

fraction |Ω||D| . It is more appropriate to compare the performance of different
numerical methods.

For w, v ∈ V and r ∈ F , we put

∂acη
∂g

(w, v)r =

∫
D
H ′η(g)r

(α1 − α0)Ee3

12(1− ν2)

[
ν∆w∆v

+(1− ν)

(
∂2w

∂x2
1

∂2v

∂x2
1

+ 2
∂2w

∂x1∂x2

∂2v

∂x1∂x2
+
∂2w

∂x2
2

∂2v

∂x2
2

)]
dx

+

∫
D
H ′η(g)r(s1 − s0)wv dx.

We have similar results as in the precedent Section. The proof of the
Proposition 4 follows the same techniques as for the Proposition 2.
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Proposition 4. When λ→ 0, zλ =
y(g+λr)−yg

λ converges to q strongly in V ,
where q is the unique solution of

acη(q, v) = −
∂acη
∂g

(yg, v)r, ∀v ∈ V. (26)

Proposition 5. The directional derivative of the cost function (25) is

J ′(g)r = − 1

jD

∂acη
∂g

(yg, yg)r −
µ

|D|

∫
D
H ′η(g)r dx. (27)

Proof. From the Lipschitz propriety of Hη (11), the pointwise convergence
(12) and the Lebesgue’s dominated convergence theorem, we get the direc-
tional derivative of A exists and

A′(g)r = −
∫
D
H ′η(g)r dx.

Since ` ∈ V ′, and from the Proposition 4, we have

`(y(g+λr))− `(yg)
λ

= `

(
y(g+λr) − yg

λ

)
= `(zλ)

→ `(q) = acη(yg, q) = acη(q, yg) = −
∂acη
∂g

(yg, yg)r

which gives the conclusion.

Remark 2. Putting

dcg =
1

jD

(α1 − α0)Ee3

12(1− ν2)

[
ν(∆yg)

2

+(1− ν)

((
∂2yg
∂x2

1

)2

+ 2

(
∂2yg
∂x1∂x2

)2

+

(
∂2yg
∂x2

2

)2
)]

+
1

jD
(s1 − s0)(yg)

2 +
µ

|D|
(28)

it follows that J ′(g)r = −
∫
DH

′
η(g)rdcg dx, consequently for rg = H ′η(g)dcg we

get J ′(g)rg = −
∫
D

(
H ′η(g)dcg

)2
dx ≤ 0, then rg is a descent direction for J

at g, if J ′(g)rg 6= 0. Since H ′η(g) ≥ 0, J ′(g)dg = −
∫
DH

′
η(g)

(
dcg
)2
dx ≤ 0,

then rg = dcg is a descent direction, too, if J ′(g)rg 6= 0.
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4 Maximization of the first eigenvalue for
Kirchhoff-Love plates

Let D ⊂ R2 be a given bounded Lipschitz domain and Ω ⊂⊂ D an open
set. We set V = H2

0 (D). For g ∈ F ⊂ C(D), we introduce aeη : V × V → R
given by

aeη(w, v) =

∫
D
αη(g)

Ee3

12(1− ν2)

[
ν∆w∆v

+(1− ν)

(
∂2w

∂x2
1

∂2v

∂x2
1

+ 2
∂2w

∂x1∂x2

∂2v

∂x1∂x2
+
∂2w

∂x2
2

∂2v

∂x2
2

)]
dx (29)

where E > 0 the Young modulus, 0 < ν < 1/2 the Poisson ratio, e the
thickness are constants, but αη(g) = α0(1 − Hη(g)) + α1Hη(g) in D with
0 < α1 < α0, Hη verifiyng (6). Also, we define beη : V × V → R given by

beη(w, v) =

∫
D
ρη(g)ewv dx +

∫
D

(
M∑
m=1

bmϕε(x− ξm)

)
ewv dx (30)

where bm > 0 are constants, ξm ∈ D are the concentrated mass locations,
m = 1, . . . ,M and ρη(g) = ρ0(1−Hη(g)) + ρ1Hη(g) in D with 0 < ρ1 < ρ0.
We set

fε(g) = ρη(g)e+

M∑
m=1

bmϕε(x− ξm)e

then beη(w, v) =
∫
D fε(g)wv dx with f ∈ L2(D).

As in the precedent sections, we can prove that aeη is elliptic, continuous,
symmetric and beη is continuous, symmetric and beη(v, v) ≥ ρ1e ‖v‖20,D, for all

v ∈ V , based on bm > 0. In addition, the continuous inclusion H2
0 (D) ⊂

L2(D) is compact, L2(D) is separable and H2
0 (D) is dense in L2(D). In fact,

beη(·, ·) is a scalar product in L2(D) and the induced norm is equivalent to
‖ · ‖0,D.

The eigenvalue λi(g) ∈ R and its associated eigenfunction φi(g) ∈ V are
verifying

aeη(φi(g), v) = λi(g) beη(φi(g), v), ∀v ∈ V (31)

beη(φi(g), φi(g)) = 1 (32)

for all i ∈ N \ {0}. We have from [10], vol. 3, Ch. VIII, Sect. 2.6, Th. 7
that

0 < λ1(g) ≤ λ2(g) ≤ · · · ≤ λi(g) ≤ . . .
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with limi→∞ λi(g) = +∞.
We intend to maximize λ1(g) or equivalently to minimize 1

λ1(g) . Opti-
mization of the first eigenvalue under constant area of Ω is studied in many
works, see for example [15], [7] or [16]. Here, we relax this constraint and
we introduce

J(g) =
λ1,D

λ1(g)
+ µ
A(g)

|D|
(33)

where λ1,D > 0 is a reference first eigenvalue obtained for some g < 0 in D,
µ > 0 is a penalization term for the area of Ω and A(g) is given by (24).

The derivability of a simple eigenvalue with respect to the variation of
domain by deformation field is presented in [15], Ch. 5, Sect. 7 for the second
order PDE and in [7] for the fourth order problem. The proof is based on the
Implicit Function Theorem. For the second-order elliptic operator, the first
eigenvalue is simple, see [13], Sect. 6.5, Th. 2. The proof is based on the
positivity of the eigenfunction. For the clamped plate in general domains,
positivity preserving property does not hold, see [32], [11].

To simplify the calculus, we note

[w, v] = ν∆w∆v + (1− ν)

(
∂2w

∂x2
1

∂2v

∂x2
1

+ 2
∂2w

∂x1∂x2

∂2v

∂x1∂x2
+
∂2w

∂x2
2

∂2v

∂x2
2

)
.

For w, v ∈ V fixed, r ∈ F and g an interior element of F for the topol-
ogy of C(D), the applications g → aeη(w, v) and g → beη(w, v) are Fréchet
differentiable and

∂aeη
∂g

(w, v)r =

∫
D
H ′η(g)r

(α1 − α0)E e3

12(1− ν2)
[w, v] dx

∂beη
∂g

(w, v) =

∫
D
H ′η(g)r (ρ1 − ρ0)ewv dx.

We recall that F is supposed an open cone.

Proposition 6. Assuming that λ1(g) is simple, the application g ∈ F →
λ1(g) ∈ R is Fréchet differentiable and for all r ∈ F we have

λ′1(g)r =
∂aeη
∂g

(φ1(g), φ1(g))r − λ1(g)
∂beη
∂g

(φ1(g), φ1(g))r. (34)

Also, the application g ∈ F → φ1(g) ∈ V is Fréchet differentiable and
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q = φ′1(g)r ∈ V is the unique solution of

aeη(q, v)− λ1(g) beη(q, v) = λ′1(g)r beη(φ1(g), v)

−
∂aeη
∂g

(φ1(g), v)r + λ1(g)
∂beη
∂g

(φ1(g), v), ∀v ∈ V, (35)

2beη(q, φ1(g)) = −
∂beη
∂g

(φ1(g), φ1(g)). (36)

Proof. We adapt the proofs from [15], Ch. 5, Sect. 7 and [7].
We can define A(g) : V → V and B(g) : V → V by

aeη(w, v) = (A(g)w, v)2,D, beη(w, v) = (B(g)w, v)2,D

and introduce H : F × V × R→ V × R

H(g, v, λ) = (A(g)v − λB(g)v, (B(g)v, v)2,D − 1) .

We have H(g, φ1(g), λ1(g)) = (0, 0) and the partial derivative of H with
respect to (v, λ) exists in L(V ×R, V ×R) and for all (v̂, λ̂) ∈ V ×R, it has
the form

∂H
∂(v, λ)

(g, v, λ)(v̂, λ̂) =
(
A(g)v̂ − λB(g)v̂ − λ̂B(g)v, 2(B(g)v, v̂)2,D

)
∈ V×R.

We want to prove that ∂H
∂(v,λ)(g, φ1(g), λ1(g)) is invertible. Let (Z,Λ) be

in V × R, we will prove that the system

A(g)v̂ − λ1(g)B(g)v̂ − λ̂B(g)φ1(g) = Z (37)

2(B(g)φ1(g), v̂)2,D = Λ (38)

has a unique solution (v̂, λ̂) ∈ V×R. Let V1 ⊂ V be the eigenspace associated
to λ1(g). We have that V1 = {t φ1(g), t ∈ R} and it is closed in V .

In the following, we look for v̂ ∈ V and λ̂ ∈ R such that

(A(g)− λ1(g)B(g)) v̂ − λ̂B(g)φ1(g) = Z

⇔ (A(g)− λ1(g)B(g)) v̂ = Z + λ̂B(g)φ1(g) (39)

⇔
(

1

λ1(g)
I −A−1(g)B(g)

)
v̂ =

1

λ1(g)
A−1(g)

(
Z + λ̂B(g)φ1(g)

)
.

From the Fredholm alternative, [6], Ch. VI, applied to µ1I − T with µ1 =
1

λ1(g) and the compact operator T = A−1(g)B(g) : V → V see also [7],

Lemma 2, there exists v ∈ V a solution of (39), if and only if(
A−1(g)

(
Z + λ̂B(g)φ1(g)

)
, u
)

2,D
= 0, ∀u ∈ Ker(µ1I − T ∗) (40)
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where T ∗ = (A−1(g)B(g))∗ = B(g)A−1(g) is the adjoint of T . We obtain
that

u ∈ Ker(µ1I − T ∗)⇔ B(g)A−1(g)u = µ1u

⇔ λ1(g)B(g)v1 = A(g)v1 and A−1(g)u = v1 ⇔ v1 ∈ V1 and u = A(g)v1.

Then (40) is equivalent to(
A−1(g)

(
Z + λ̂B(g)φ1(g)

)
, A(g)v1

)
2,D

= 0, ∀v1 ∈ V1

⇔
(
Z + λ̂B(g)φ1(g),

(
A−1(g)

)∗
A(g)v1

)
2,D

= 0, ∀v1 ∈ V1

⇔
(
Z + λ̂B(g)φ1(g), v1

)
2,D

= 0, ∀v1 ∈ V1 (41)

since
(
A−1(g)

)∗
= A−1(g).

But V1 is of dimension one, so we look for λ̂ such that

0 =
(
Z + λ̂B(g)φ1(g), φ1(g)

)
2,D

⇔ 0 = (Z, φ1(g))2,D + λ̂ (B(g)φ1(g), φ1(g))2,D

⇔ 0 = (Z, φ1(g))2,D + λ̂

since (B(g)φ1(g), φ1(g))2,D = beη (φ1(g), φ1(g)) = 1. We put

λ̂ = − (Z, φ1(g))2,D.
If v ∈ V is a particular solution of (39) then all the solutions of the same

equation has the form v̂ = γφ1(g) + v, γ ∈ R. Using (32), we get

2(B(g)φ1(g), v̂)2,D = Λ⇔ 2(B(g)φ1(g), γφ1(g) + v)2,D = Λ

⇔ γ =
1

2
(Λ− (B(g)φ1(g), v)2,D) .

So, we have proved that the system (37)-(38) has at least a solution.
Now, we prove the uniqueness. Supposing, (v̂, λ̂), (ṽ, λ̃) in V ×R are two

solutions of (37)-(38). From the orthogonality condition (41), it follows that
λ̂ = λ̃ and from (39) we obtain v̂− ṽ ∈ V1. But 0 = (B(g)φ1(g), v̂− ṽ)2,D =
(B(g)φ1(g), tφ1(g))2,D = t.

Finally, ∂H
∂(v,λ)(g, φ1(g), λ1(g)) is invertible. Its inverse is continuous by

Open Mapping Theorem, see [6], Sect. II.3. Then, we can apply the Implicit
Function Theorem. Since H is of classe C1, we get that g → λ1(g) and
g → φ1(g) are Fréchet differentiable.
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Deriving in (31) we obtain

∂aeη
∂g

(φ1(g), v)r + aeη(φ
′
1(g)r, v)

= λ′1(g)r beη(φ1(g), v) + λ1(g)
∂beη
∂g

(φ1(g), v) + λ1(g) beη(φ
′
1(g)r, v).

Putting v = φ1(g), using (31), (32) and the symmetry of aeη, b
e
η, we get (34).

Deriving in (32), we obtain that q = φ′1(g)r ∈ V is solution of (35)-(36).
The uniqueness is as before, similar to (37)-(38).

We set

deg =
λ1,D

λ2
1(g)

(
(α1 − α0)E e3

12(1− ν2)
[φ1(g), φ1(g)]− λ1(g)(ρ1 − ρ0)e(φ1(g))2

)
+
µ

|D|
(42)

and we can deduce that the directional derivative of J given by (33) is

J ′(g)r = −
∫
D
H ′η(g)r deg dx. (43)

Remark 3. Consequently, for rg = H ′η(g)deg, J
′(g)rg = −

∫
D

(
H ′η(g)deg

)2
dx

≤ 0, then rg is a descent direction for J at g, if J ′(g)rg 6= 0. Since H ′η(g) ≥
0, J ′(g)deg = −

∫
DH

′
η(g)

(
deg
)2
dx ≤ 0, then rg = deg is a descent direction,

too, if J ′(g)rg 6= 0.

5 Numerical tests

For Th a triangulation of D with mesh size h > 0, let Vh ⊂ H2
0 (D) be the

vectorial space based on the Hsieh, Clough and Tocher (HCT) finite element,
globally of class C1, see [10], vol. 4, Ch. XII, Sect. 4.

The finite element approximation of (7) is: find yh ∈ Vh, such that

aη(yh, vh) = `(vh), ∀vh ∈ Vh

and similarly for the adjoint problem, compliance minimization, etc.
We use the software FreeFem++, [14] and we show that our approach

based on functional variations works efficiently. In some examples the nu-
merical minimization gives very good results.
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Pointwise observation

Test 1.
The test is inspired from [30], where the topological derivative was used

(see also [29]). We consider a square plate of sides 1 m, D =]0, 1[×]0, 1[,
background thickness h0 = 0.01 m, Young Modulus E = 210 GPa, Poisson
ratio ν = 0.3.

Figure 1: Test 1. Ω at iterations: 0, 1, 2, 3, 6, 39 (from left to right and
from top to the bottom). The damaged zone Ω∗ to be detected is in interior
of the two circles.

The coefficient for the pointwise transverse load is b0 = 104 N and
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the M = 64 source points ξm, m = 1, . . . ,M are located at (i/9, j/9) for
i, j = 1, . . . , 8. We use mollifier approximation of Dirac function

fε =
M∑
m=1

b0ϕε(x− ξm)

with ε = 0.05. There are N = 69 sensors xn, n = 1, . . . , N located on the
grid (i/10, j/10) for i, j = 1, . . . , 9, but excluding 3 nodes in each corner.

We use a descent direction algorithm, with the direction given by (18).
The stopping criterion is |Jh(gk+1

h )− Jh(gkh)| ≤ tol = 10−8. To simplify the
notation, we use Jk = Jh(gkh). The mesh for D has 23603 vertices and 46644
triangles.

The damaged zone Ω∗ to be detected is composed by two disks: one of
radius 0.04 m centered at (0.40, 0.60), the second of radius 0.02 m centered
at (0.70, 0.40), the contrast e1

e0
= 0.5 for both disks.

The algorithm stops after 39 iterations, starting from g0(x1, x2) = (x1−
0.5)2 + (x2 − 0.5)2 − 0.42. The domains change the topology during the
iterations, see Figure 1. The initial value of the discrete objective function
is 39.3798, the final value is 4.94866 × 10−5. The history of the discrete
objective function is plotted in Figure 2 The computing time for 39 iterations
was 454 minutes on a PC with 64 Go RAM.

 0
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 5  10  15  20  25  30  35  40

J
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Pointwise observation

Figure 2: Test 1. The history of the discrete objective function Jk for
iterations k ≥ 2. J0 = 39.3798 and J1 = 0.045051.

Compliance minimization

Test 2.
The tests are inspired from [8], where the topological derivative was

used. We consider a square plate of sides 1 m, D =]0, 1[×]0, 1[, thickness
e = 0.05 m, Young Modulus E = 210 GPa, Poisson ratio ν = 0.3.
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The coefficient for the pointwise transverse load is b0 = −106 N and
the M = 4 source points ξm, m = 1, . . . ,M are located at (0.25, 0.25),
(0.75, 0.25), (0.25, 0.75), (0.75, 0.75). We use mollifier approximation of
Dirac function fε =

∑M
m=1 b0ϕε(x− ξm) with ε = 0.05.

The coefficients are α0 = 1, α1 = 10−4α0, s0 = 10−2E, s1 = 10−4s0

and for penalization µ = 1.7. The mesh for D has 23603 vertices and 46644
triangles.

The compliance j, the area A and the objective function J are given
by the formulas (23), (24), (25), respectively. We use the descent direction
given by (28).

Case k1. We start from

g0(x1, x2) = −0.1
(
(x1 − 0.5)2 + (x2 − 0.5)2 − 0.22

)
.

The initial value of the objective function is J0 = 2.69573 and at the iteration
100 is J100 = 2.29042. In [8], the optimal value of the objective function
is about 2.35. Some Ω are plotted in Figure 5. It is not necessary to have
Ω connected, the plate occupies the domain D, but the material is not
homogeneous.

Case k2. We start from g0(x1, x2) = −0.01. The initial value of the
objective function is J0 = 2.7 and at the iteration 100 is J100 = 2.28547.
The computing time for 100 iterations was about 1143 minutes for k1 as
well as for k2. The history of J is plotted in Figure 3. The optimal value
of the objective function in [8] is similarly, less than 2.3. We observe in
Figure 4 that the compliance increases and area decreases. This behavior
was observed in [8], too.

Some Ω are plotted in Figure 6 and we observe that at the iteration 100,
the images are similar in both cases k1 and k2, despite the initial domains
are different. In [19], for different initial domains we have obtained different
local optimal solutions since this kind of optimization problem is highly non
convex.
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Figure 3: Test 2. The history of the objective function J given by (25) for
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Figure 5: Test 2, Case k1. Ω at iterations: 0, 1, 2, 3, 4, 100 (from left to
right and from top to the bottom).
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Figure 6: Test 2, Case k2. Ω at iterations: 0, 1, 2, 100 (from left to right
and from top to the bottom).

Maximization of the first eigenvalue

Test 3.
The tests are inspired from [8]. We consider a square plate of sides

1 m, D =]0, 1[×]0, 1[, thickness e = 0.05 m, Young Modulus E = 210 GPa,
Poisson ratio ν = 0.3, mass density ρ0 = 7800 kg/m3.

The coefficients are α0 = 1, α1 = 10−3α0, ρ1 = 10−3ρ0. We use the
descent direction given by (42), starting from g0 = −0.01. The mesh for D
has 23603 vertices and 46644 triangles.

Case k1. M = 1. The coefficient for the concentrated mass is b1 = 103ρ0

and the location is ξ1 = (0.5, 0.5). The penalization parameter is µ = 1.2.

Case k2. M = 4, bm = 103ρ0, m = 1, . . . ,M and the location of
ξm are (0.25, 0.25), (0.75, 0.25), (0.25, 0.75), (0.75, 0.75). The penalization
parameter is µ = 1.4.

The history of J is plotted in Figure 7. As in [8], we observe in Figure 8
that λ1/λ1,D and area decrease, with little bit exceptions. The final Ω are
plotted in Figure 9. The computing time for 100 iterations was about 2723
minutes for k1 and 2730 minutes for k2.



Topology optimization for plates 218

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 0  20  40  60  80  100

J

iterations

k1
k2

Maximization of the first eigenvalue

Figure 7: Test 3. The history of the objective function J given by (33) for
k1 and k2.
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Figure 8: Test 3. The history of the λ1/λ1,D (left) and area (right) for k1
and k2.

Figure 9: Test 3. Ω final in the case k1 (left) and k2 (right).
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