THE BEREZIN TRANSFORMATION ON $L^2(\mathbb{U}_+)^*$

Sworup Kumar Das[†] Namita Das[‡]

Dedicated to Dr. Dan Tiba on the occasion of his 70th anniversary

Abstract

Let $L^2_a(\mathbb{U}_+)$ be the Bergman space of the upper half plane \mathbb{U}_+ . In this paper, we consider the integral operator H from $L^2(\mathbb{U}_+)$ into $L^2(\mathbb{U}_+)$ defined by $(Hf)(w)=\widetilde{f}(w)=\int_{\mathbb{U}_+}f(s)|d_{\overline{w}}(s)|^2d\widetilde{A}(s), w\in\mathbb{U}_+,$ where $d_{\overline{w}}(s)=\frac{1}{\sqrt{\pi}}\frac{w+i}{\overline{w}-i}\frac{(-2i)\mathrm{Im}\ w}{(s+w)^2}$ and $d\widetilde{A}$ is the area measure on \mathbb{U}_+ . We refer the map H as the Berezin transformation defined on $L^2(\mathbb{U}_+)$. We have derived various algebraic properties of the operator and showed that $||H||\leq \frac{3\pi}{4}$ considered as an operator on $L^2_a(\mathbb{U}_+)$.

Keywords: Bergman space, upper half plane, integral operators, Berezin transformation, reproducing kernel.

MSC: 47B38, 30H20, 45P05.

DOI https://doi.org/10.56082/annalsarscimath.2024.2.162

1 Introduction

The Berezin transform was first introduced by F.A. Berezin [1] as a tool in quantization [2]. It has since found applications in many areas of mathematics and mathematical physics [3]. The Berezin transform was studied

^{*}Accepted for publication on May 19, 2024

[†]sworup.math@gmail.com, P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India

[†]namitadas440@yahoo.co.in, P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India