OPERATORS IN $\mathcal{L}(L^2_a(\mathbb{D}))$ **AND THE ASSOCIATED SYMBOLS***

Namita Das[†]

Dedicated to Dr. Dan Tiba on the occasion of his 70th anniversary

Abstract

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{L}(L^2_a(\mathbb{D}))$ be the space of all bounded linear operators from the Bergman space $L^2_a(\mathbb{D})$ into itself. In this paper we shall associate symbols to bounded linear operators in $\mathcal{L}(L^2_a(\mathbb{D}))$ and analyse if a symbol calculus can be obtained.

MSC: 47B35, 32M15

keywords: Toeplitz operators, Berezin transform, reproducing kernel, bounded harmonic functions, Bergman space.

DOI https://doi.org/10.56082/annalsarscimath.2024.1.97

1 Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane \mathbb{C} . Let dA(z) be the area measure on \mathbb{D} normalized so that the area of the disk is 1. Let $L^2(\mathbb{D}, dA)$ be the Hilbert space of Lebesgue measurable functions on \mathbb{D} with the inner product

$$\langle f,g\rangle = \int_{\mathbb{D}} f(z)\overline{g(z)} dA(z), f,g \in L^2(\mathbb{D}).$$

The Bergman space $L^2_a(\mathbb{D})$ is the set of those functions in $L^2(\mathbb{D}, dA)$ that are analytic on \mathbb{D} . The norm on $L^2_a(\mathbb{D})$ is also described by $||f||^2 = \sum_{n=0}^{\infty} \frac{|a_n|^2}{n+1}$,

^{*}Accepted for publication on January 17-th, 2024

[†]**namitadas440@yahoo.co.in** P.G. Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar, 751004, Odisha, India