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Abstract

This paper is devoted to study a quasistatic contact problem be-
tween a viscoelastic material with long memory and a foundation. The
contact is modelled with a version of Coulomb’s law of dry friction and
a general normal compliance condition. We derive a variational formu-
lation of the model and, under a smallness assumption, we establish
the existence of a weak solution to the problem. The proof is based on
the time-discretization method, the Banach fixed point theorem and
arguments of compactness, lower semicontinuity and monotonicity.
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1 Introduction

It is well known that the Kelvin-Voigt model of viscoelasticity cannot predict
the stress relaxation whereas the Maxwell model cannot adequately describe
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viscoelastic behaviour in creep. For this reason, we need to build up more
sophisticated models. For example, the standard solid model which can be
expressed in the form

σ (t) = Aε(u (t)) +

∫ t

0
B (t− s) ε (u (s)) ds, (1)

can describe both precedent phenomena (see, e.g., [3, 4, 19]). Here t is
the time variable, u denotes the displacement field, σ represents the stress
tensor, ε (u) is the linearized strain tensor, A is the elasticity operator and
B is the tensor of relaxation.

Analysis of various contact problems with constitutive laws of the form
(1) also known as the viscoelastic law with long memory can be found in [8,
9, 13, 18, 19], for instance. In [8], the contact was assumed to be frictionless
and was modelled with a version of normal compliance condition including
unilateral constraint and an adhesive condition of a nonconvex function; the
unique solvability of the problem was shown through existence and unique-
ness results on abstract inclusions and abstract variational–hemivariational
inequalities. In [9], the contact condition was modelled with Tresca’s law
involving slip dependent coefficient of friction; an existence result to the cor-
responding problem, for small enough friction coefficients, was established.
Contact problems with Tresca’s law and a number of frictional contact con-
ditions were considered in [18]; an abstract existence and uniqueness result
for a class of evolutionary variational inequalities were used to prove the
unique solvability of the corresponding problems.

The novelty, in this paper, consists in dealing with a quasistatic contact
problem for viscoelastic materials with a constitutive law of the form (1),
such that the contact is modelled with normal compliance and the asso-
ciated version of Coulomb’s law of dry friction, which leads to a new and
nonstardard mathematical problem.

We note that an early attempt to study the contact problem with normal
compliance was done in [12]. Since then, the normal compliance contact con-
dition has been extensively employed as an approximation of the Signorini
contact condition, see for instance [1, 10, 11, 16, 17].

Our analysis is based on the time-discretization method. We construct a
sequence of elliptic quasi-variational inequalities for which at each time step,
under a smallness assumption, we prove the existence of a unique solution.
Then, we construct approximate solutions and prove that the limit of a
subsequence of the solutions of the approximate problems is a solution of
the continuous problem.
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The rest of this paper is organized as follows. In Section 2 we present the
notation and some preliminary material. In Section 3 we describe the contact
problem and state the assumptions on the data, we derive its variational
formulation. Section 4 is dedicated to establish the existence of a weak
solution to the model.

2 NOTATION AND PRELIMINARIES

Here we introduce the notation we shall use and some preliminary materials.
For further details we refer the reader to [5, 7, 15, 19]. We use the notation
N∗ for the set of positive integers. We denote by Sd the space of second
order symmetric tensors on Rd (d=2, 3). We define the inner products and
the corresponding norms on Rd and Sd by

u · v=
d∑
i=1

uivi, |u| = 2
√
u · u, ∀u, v ∈ Rd;

σ · ξ =
∑

1≤i,j≤d
σijξij , |σ| = 2

√
σ · σ, ∀σ, ξ ∈ Sd.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ and let ν
denote the unit outer normal on Γ. Let T > 0, let [0, T ] be the time interval
of interest and let x ∈ Ω be the spatial variable. We introduce the spaces

H = L2(Ω;Rd), Q = L2(Ω;Sd),

H1 = {u ∈ H; ε(u) ∈ Q}, Q1 = {σ ∈ Q; Divσ ∈ H},

where ε : H1 → Q is the deformation operator defined by

ε(u) = (εij(u)), εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ d, ∀u ∈ H1,

Div : Q1 → H is the divergence operator for tensor functions defined by

Divσ = ((Divσ)i)1≤i≤d =

 d∑
j=1

∂σij
∂xj


1≤i≤d

, ∀σ ∈ Q1.

Note that H, Q, H1 and Q1 are Hilbert spaces equipped with the respective
canonical inner products

(u, v)H =

∫
Ω
u · vdx, (σ, τ)Q =

∫
Ω
σ · τdx,
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(u, v)H1 = (u, v)H + (ε(u), ε(v))Q,

(σ, τ)Q1 = (Divσ,Divτ)H + (σ, τ)Q,

where the associated norms are denoted by ‖.‖H , ‖.‖Q, ‖.‖H1
and ‖.‖Q1

. Let
Q∞ be the space of fourth-order tensor fields defined by

Q∞ = {E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), ∀i, j, k, l ∈ {1, ..., d}} .

The space Q∞ is a real Banach space with the norm

‖E‖Q∞ = max
1≤i,j,k,l≤d

‖Ejikl‖L∞(Ω) . (2)

Let γ̃ : H1 → L2
(
Γ;Rd

)
be the trace map. For every element v ∈ H1 we

use the notation v to denote the trace γ̃(v) of v on Γ and for all v ∈ H1 we
denote by vν and vτ , respectively, the normal and the tangential components
of v on the boundary Γ

vν = v · ν, vτ = v − vνν on Γ.

In a similar manner, the normal and the tangential components of a regular
(say C1) tensor field σ are defined by

σν = σν · ν, στ = σν − σνν on Γ,

moreover the following Green formula holds

(Divσ, v)H + (σ, ε(v))Q =

∫
Γ
σν · vda, ∀ v ∈ H1, (3)

where da is the surface measure element. For every real Banach space
(X, ‖.‖X), we denote by C([0, T ];X) the space of continuous functions from
[0, T ] to X and we use the standard notation for the spaces Lp(0, T ;X) and
W k,p(0, T ;X), p ∈ [1,∞] and k ≥ 1.

Finally, we conclude this section with two Gronwall type inequalities.
Other versions of Gronwall inequalities can be found for instance in [6] and
references therein.

Lemma 1. Assume that ã and b̃ : [0, T ]→ R are two functions in L1(0, T )
satisfying

ã (t) ≤ b̃ (t) + α

∫ t

0
ã (s) ds, ∀ t ∈ [0, T ] , (4)

where α is a nonnegative constant. Then, it follows

ã (t) ≤ b̃ (t) + α

∫ t

0
eα(t−s)b̃ (s) ds, ∀ t ∈ [0, T ] . (5)
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Proof. Use arguments similar to those in [6, proof of Proposition 2.1].

Lemma 2. Let T > 0 be a constant. Let α1 and α2 be two nonnegative
constants. For each m ∈ N∗, let {wi}mi=0 ⊂ R be a nonnegative sequence,
which satisfies

wi+1 ≤ α1 + α2h

i∑
j=0

wj, 0 ≤ i ≤ m− 1, (6)

where h =
T

m
. Then, it holds

wi+1 ≤ (α1 + α2Tw0) eα2T , 0 ≤ i ≤ m− 1. (7)

The proof of Lemma 2 may be found in [10].

3 Problem statement and variational formulation

The physical setting is as follows. A deformable body occupies a bounded do-
main Ω ⊂ Rd (with d=2, 3). We assume that the boundary Γ of the domain
Ω is Lipschitz continuous, and it is divided into three disjoint measurable
parts Γ1, Γ2, Γ3, such that meas(Γ1) > 0. The mechanical behaviour of
the material is described with a viscoelastic law with long memory and the
process is assumed to be quasistatic in the time interval [0, T ]. The body
is clamped on Γ1 and therefore the displacement field vanishes there, while
volume forces of density f0 act in Ω and surface tractions of density f2 act
on Γ2. The body is supposed to be in contact over Γ3 with a foundation and,
moreover, both normal compliance and a version of Coulomb’s law of dry
friction are included. To simplify the notation, we do not indicate explicitly
the dependence of various functions on the spatial variable x ∈ Ω ∪ Γ. Un-
der the above assumptions, the classical formulation of our problem is the
following.

Problem 1. Find a displacement field u : Ω× [0, T ]→ Rd and stress field



A frictional contact problem 147

σ : Ω× [0, T ]→ Sd such that

σ (t) = Aε(u (t)) +

∫ t

0
B (t− s) ε (u (s)) ds, in Ω× (0, T ), (8)

Divσ + f0 = 0, in Ω× (0, T ), (9)

u = 0, on Γ1 × (0, T ), (10)

σν = f2, on Γ2 × (0, T ), (11)

−σν = pν (uν − g) , on Γ3 × (0, T ), (12)

|στ | ≤ pτ (uν − g) ,

|στ | < pτ (uν − g)⇒ u̇τ = 0,

|στ | = pτ (uν − g)⇒ ∃λ ≥ 0

such that στ = −λu̇τ ,

on Γ3 × (0, T ), (13)

u(0) = u0 in Ω. (14)

Equation (8) represents the viscoelastic law with long memory. Equation
(9) is the equilibrium equation posed on the domain Ω. Conditions (10)-(11)
are the displacement-traction boundary conditions, where σν represents the
Cauchy stress vector. (12)-(13) characterize the contact boundary conditions
where uν denotes the normal displacement, u̇τ represents the tangential
velocity, σν is the normal stress, στ represents the tangential traction and g
is the gap, between Γ3 and the foundation, measured along the direction of
the outward normal ν. Here and below the dot above a variable represents
its derivative with respect to the time variable. Equation (12) is a general
expression of the normal compliance condition, where pν is a nonnegative
prescribed function which vanishes for negative arguments, such that when
uν < g there is no contact and the normal pressure vanishes; and when
the contact takes place then uν − g ≥ 0 is a measure of the penetration of
the surface asperities into those of the foundation. A possible choice of the
function pν is

pν (r) = cν (r)+ ,

where (r)+ denotes the positive part of r, that is (r)+ = max {r, 0}, cν is the
surface stiffness coefficient, such that Signorini’s nonpenetration condition
is obtained in the limit cν →∞ and thus interpenetration is not allowed.

The relations (13) represent a version of Coulomb’s law of dry friction
where pτ is a prescribed nonnegative function, the so-called friction bound.
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This condition states that, if there is contact, the tangential traction στ
is bounded by the friction bound pτ . If the strict inequality is satisfied,
then sliding does not occur and when equality holds the friction stress is
proportional and opposed to the slip rate (see, e.g., [17]). Finally, (14) is
the initial condition.

In order to obtain the variational formulation of the mechanical problem
(8)-(14), we introduce the space V defined by

V = {v ∈ H1, v= 0 on Γ1}.

Since meas (Γ1) > 0, Korn’s inequality holds

CK ‖v‖H1
≤ ‖ε (v) ‖Q, ∀v ∈ V , (15)

where CK > 0 is a positive constant depending only on Ω and Γ1 (see, e.g.,
[14]). Over the space V , we consider the inner product given by

(w, v)V =(ε(w), ε(v))Q, ∀w, v ∈ V ,

and let ‖.‖V be the associated norm. It follows from Korn’s inequality (15)
that ‖.‖H1

and ‖.‖V are equivalent norms on V . Therefore (V, (., .)V ) is a
real Hilbert space. Moreover, by the Sobolev trace theorem, there exists a
positive constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3;Rd) ≤ c0‖v‖V , ∀v ∈ V . (16)

In the study of the mechanical Problem (8)-(14), we consider the following
assumptions. We assume that the elasticity operator A : Ω × Sd → Sd
satisfies

(i) There exists mA > 0 such that

(A (x, ε1)−A (x, ε2)) · (ε1 − ε2) ≥ mA |ε1 − ε2|2
a.e. x ∈ Ω, ∀ε1, ε2 ∈ Sd;

(ii) There exists LA > 0 such that
|A (x, ε1)−A (x, ε2)| ≤ LA |ε1 − ε2|
a.e. x ∈ Ω, ∀ε1, ε2 ∈ Sd;

(iii) The mapping x 7−→ A (x, ε) is Lebesgue measurable on Ω
for any ε ∈ Sd;

(iv) The mapping x 7−→ A (x, 0Sd) belongs to Q.

(17)
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We assume that the relaxation tensor B satisfies

B ∈W 1,∞(0, T ;Q∞). (18)

We assume that the function pα : Γ3 × R→ R+, (α = ν, τ), satisfies

(i) There exists Lα > 0 such that
|pα (x, r1)− pα (x, r2)| ≤ Lα |r1 − r2| ,
∀r1, r2 ∈ R, a.e. x ∈ Γ3 ;

(ii) pα (x, r) = 0, ∀r ≤ 0, a.e. x ∈ Γ3;

(iii) For each r ∈ R, x 7→ pα (x, r) is Lebesgue measurable on Γ3.
(19)

The densities of forces satisfy

(i) f0 ∈W 1,∞(0, T ;H), (ii) f2 ∈W 1,∞(0, T ;L2(Γ2;Rd)). (20)

The gap function satisfies

g ∈ L2(Γ3), g ≥ 0 a.e. x ∈ Γ3 . (21)

Finally, we assume that the initial data satisfies

u0 ∈ V . (22)

In the sequel, we use the functional ψ : V × V −→ R defined by

ψ(z, w) =

∫
Γ3

pν (zν − g)wνda+

∫
Γ3

pτ (zν − g) |wτ | da, (23)

for all z, w ∈ V . Using (16), (19), (21) and (23), we deduce that the
functional ψ satisfies the following

ψ(η, v)− ψ(η, w) + ψ(z, w)− ψ(z, v) ≤ c2
0 (Lτ + Lν) ‖η − z‖V ‖v − w‖V ,

(24)

ψ(η,−z)− ψ(η, η − z) ≤ c0 (Lτ + Lν)
(
c0 ‖η‖V + ‖g‖L2(Γ3)

)
‖η‖V , (25)

ψ(η, v)− ψ(η, w) ≤ ψ(η, v − w), (26)

ψ(η, w)− ψ(z, w) ≤ c2
0 (Lτ + Lν) ‖η − z‖V ‖w‖V , (27)

|ψ(η, v)− ψ(η, w)| ≤ c0 (Lτ + Lν)
(
c0 ‖η‖V + ‖g‖L2(Γ3)

)
‖v − w‖V , (28)
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ψ(η, w) ≤ (Lτ + Lν)
(
c0 ‖η‖V + ‖g‖L2(Γ3)

)
‖w‖L2(Γ3;Rd) , (29)

for all η, v, w, z ∈ V . It follows from (20) that the function f : [0, T ] → V
defined by

(f(t), w)V =

∫
Ω
f0(t) · wdx+

∫
Γ2

f2(t) · wda, ∀w ∈ V , ∀t ∈ [0, T ] , (30)

has the following regularity

f ∈W 1,∞(0, T ;V ). (31)

Also, using (18) and (2), we conclude that there exists LB > 0 such that

‖(B (t)− B (s)) ε (w)‖
Q
≤ LB |t− s| ‖w‖V , (32)

‖B (t) ε (w)‖
Q
≤
(
TLB + ‖B (0)‖Q∞

)
‖w‖V , (33)

for all w ∈ V and for all t, s ∈ [0, T ]. Now, assume u and σ are smooth
functions satisfying (8)-(14) and use the Green formula (3) to obtain the
following variational formulation of the mechanical Problem 1 in terms of
the displacement field only.

Problem 2. Find a displacement field u : [0, T ]→ V such that

(Aε(u (t)), ε (w − u̇(t)))Q +

(∫ t

0
B (t− s) ε (u (s)) ds, ε (w − u̇(t))

)
Q

+ψ(u (t) , w)− ψ(u (t) , u̇(t))

≥ (f(t), w − u̇(t))V , for all w ∈ V , for a.e. t ∈ (0, T ),
(34)

u(0) = u0. (35)

To study the problem (34)-(35), we need the following additional as-
sumption on the initial data

(A (ε(u0)) , ε(w))Q + ψ(u0, w) ≥ (f (0) , w)V , ∀ w ∈ V , (36)

and we make the following smallness assumption

Lτ + Lν <
mA
c2

0

. (37)

where c0, mA and Lα, (α = ν, τ) are given in (16), (17) and (19), respec-
tively.
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4 Existence of a weak solution

The following theorem is the main result of this paper.

Theorem 1. Assume that (17)-(22) and (36)-(37) hold. Then, Problem
(34)-(35) has at least one solution u which satisfies

u ∈W 1,∞ (0, T ;V ) . (38)

We will split the proof into several steps.
First step. For each m ∈ N∗, we introduce a uniform partition of the

time interval [0, T ], denoted by tmi = ihm, hm =
T

m
, i = 0,...,m. For a

sequence
{
wim
}m
i=0

, we denote δwi+1
m =

wi+1
m − wim
hm

and for a continuous

function z ∈ C ([0, T ] ;X) with values in a normed space X, we use the
notation zmi = z (tmi ), i = 0,...,m. Using the Riesz representation theorem,
we can introduce the operator F : V → V defined by

(Fv, w)V = (Aε(v), ε(w))Q , ∀v, w ∈ V . (39)

From (17) and (39), it follows that the operator F satisfies

mA ‖w1 − w2‖2V ≤ (Fw1 −Fw2, w1 − w2)V , ∀w1, w2 ∈ V , (40)

‖Fw1 −Fw2‖V ≤ LA ‖w1 − w2‖V , ∀w1, w2 ∈ V . (41)

We consider the following incremental problems P i+1
m , i ∈ {0 , ..., m− 1}.

Problem 3 (P i+1
m ). Find a function ui+1

m ∈ V such that

(
Fui+1

m , w − δui+1
m

)
V

+

hm i∑
j=0

Bmi+1,j , ε
(
w − δui+1

m

)
Q

+ψ(ui+1
m , w)− ψ(ui+1

m , δui+1
m )

≥
(
fmi+1, w − δui+1

m

)
V

, for all w ∈ V ,

(42)

where
u0
m = u0, (43)

ujm is the unique solution of the problem Pjm, j = 1, ..., i,

Bmi+1,j = B
(
tmi+1 − tmj

)
ε
(
ujm
)

, i = 0, ...,m− 1, j = 0, ..., i, (44)

fmi = f(tmi ), i = 0, ...,m. (45)
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Now, by setting w =
v − uim
hm

in (42), it follows that the problem P i+1
m is

formally equivalent to the following problem.

Problem 4 (Qi+1
m ). Find a function ui+1

m ∈ V such that

(
Fui+1

m , v − ui+1
m

)
V

+

hm i∑
j=0

Bmi+1,j , ε
(
v − ui+1

m

)
Q

+ψ(ui+1
m , v − uim)− ψ(ui+1

m , ui+1
m − uim)

≥
(
fmi+1, v − ui+1

m

)
V

, for all v ∈ V ,

(46)

where u0
m,
{
Bmi+1,j

}
and

{
fmi+1

}
are given by (43)-(45) and ujm is the

unique solution of problem Pjm, j = 1, ..., i.

Lemma 3. Problem P i+1
m , i ∈ {0 , ..., m− 1}, has a unique solution.

Proof. From (40)-(41), it follows that the operator F is strongly monotone
and Lipschitz continuous. On the other hand let η ∈ V . Using (23) and
(28), it follows that the functional ϕ : V → R defined by

ϕ (v) =

hm i∑
j=0

Bmi+1,j , ε (v)


Q

+ ψ(η, v − uim), for all v ∈ V,

is a proper convex and continuous function. Therefore, using a standard
result on elliptic variational inequalities of the second kind, (see [7, p.60]),
we deduce that the following problem. Find ui+1

mη ∈ V such that

(
Fui+1

mη , v − ui+1
mη

)
V

+

hm i∑
j=0

Bmi+1,j , ε
(
v − ui+1

mη

)
Q

+ψ(η, v − uim)− ψ(η, ui+1
mη − uim)

≥
(
fmi+1, v − ui+1

mη

)
V

, for all v ∈ V ,

(47)

has a unique solution ui+1
mη ∈ V . To continue, we define the operator Ψ :

V → V by
Ψ (η) = ui+1

mη , for all η ∈ V. (48)
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Let η1, η2 ∈ V . Using the notation u1 = ui+1
mη1 and u2 = ui+1

mη2 in (47), we get

(Fu1 −Fu2, u1 − u2)V ≤ ψ(η1, u2 − uim)− ψ(η1, u1 − uim)

+ψ(η2, u1 − uim)− ψ(η2, u2 − uim),

which together with (24) and (40), implies that

mA ‖u1 − u2‖2V ≤ c
2
0 (Lτ + Lν) ‖η1 − η2‖V ‖u1 − u2‖V .

Thus, using (48), we obtain

‖Ψη1 −Ψη2‖V ≤
c2

0 (Lτ + Lν)

mA
‖η1 − η2‖V .

This last inequality implies that if c2
0 (Lτ + Lν) < mA, then Ψ is a contrac-

tion function in the Banach space V . Therefore, Ψ has a unique fixed point
η∗ ∈ V . We have now all the ingredients to prove Lemma 3. Let η∗ be
the unique fixed point of Ψ and let ui+1

m = η∗ =ui+1
mη∗ be the unique solution

of the problem (47) for η = η∗, then we deduce that ui+1
m is a solution to

the problem Qi+1
m which is equivalent to the problem P i+1

m . The uniqueness
of the solution is a consequence of the uniqueness of the fixed point of the
operator Ψ and of the uniqueness of the solution of the problem (47).

In the rest of this paper, the same letter c will be used to denote different
positive constants which do not depend on m ∈ N∗ nor on t ∈ (0, T ).

Second step. In this step we have the following result.

Lemma 4. There exists c > 0, such that for all m ∈ N∗,∥∥ui+1
m

∥∥
V
≤ c, i = 0, ..., m− 1. (49)∥∥δui+1

m

∥∥
V
≤ c, i = 0, ..., m− 1. (50)

Proof. It follows from (43) and (22), that there exists c > 0, such that∥∥u0
m

∥∥
V
≤ c, ∀ m ∈ N∗.

Taking v= 0V in (46) yields(
Fui+1

m , ui+1
m

)
V
≤ ψ(ui+1

m ,−uim)− ψ(ui+1
m , ui+1

m − uim)

−

hm i∑
j=0

Bmi+1,j , ε
(
ui+1
m

)
Q

+
(
fmi+1, u

i+1
m

)
V

,



154 A. Kasri

and using (25), (33), (40), (44), we get

mA
∥∥ui+1

m

∥∥2

V
≤ c2

0 (Lτ + Lν)
∥∥ui+1

m

∥∥2

V
+ c0 (Lτ + Lν) ‖g‖L2(Γ3)

∥∥ui+1
m

∥∥
V

+

+

chm i∑
j=0

∥∥∥ujm∥∥∥
V

∥∥ui+1
m

∥∥
V

+
∥∥fmi+1

∥∥
V

∥∥ui+1
m

∥∥
V

+ ‖F (0V )‖V
∥∥ui+1

m

∥∥
V

,

which with (37) and (31) gives

∥∥ui+1
m

∥∥
V
≤ chm

i∑
j=0

∥∥ujm∥∥V + c.

Now, applying Lemma 2 in the last inequality, we obtain (49). Setting v= u0
m

in (46) for i=0, and w = u1
m − u0

m in (36), adding the two inequalities, we
obtain

(
Fu1

m −Fu0
m, u

1
m − u0

m

)
V
≤ ψ(u0

m, u
1
m − u0

m)− ψ(u1
m, u

1
m − u0

m)

−
(
hmBm1,0, ε

(
u1
m − u0

m

))
Q +

(
fm1 − fm0 , u1

m − u0
m

)
V

.
(51)

We use now (51), (40), (33), (44) and (27), to see that

 mA
∥∥u1

m − u0
m

∥∥2

V
≤ c2

0 (Lτ + Lν)
∥∥u1

m − u0
m

∥∥2

V

+chm
∥∥u0

m

∥∥
V

∥∥u1
m − u0

m

∥∥
V

+ ‖fm1 − fm0 ‖V
∥∥u1

m − u0
m

∥∥
V

,

and thanks to (31) and (37), we get∥∥∥∥u1
m − u0

m

hm

∥∥∥∥
V

≤ c+ c

∥∥∥∥fm1 − fm0hm

∥∥∥∥
V

≤ c+ c
∥∥∥ḟ∥∥∥

L∞(0,T ;V )
.

Thus, we obtain ∥∥δu1
m

∥∥
V
≤ c. (52)

Now, for i ∈ {1, ..., m− 1}, taking w= 0V in problem P i+1
m , and



A frictional contact problem 155

w=
ui+1
m − ui−1

m

hm
in problem P im, adding the two inequalities, we obtain



(
Fui+1

m −Fuim, δui+1
m

)
V
≤ hm

 i−1∑
j=0

(
Bmi,j − Bmi+1,j

)
, ε
(
δui+1

m

)
Q

−hm
(
Bmi+1,i, ε

(
δui+1

m

))
Q

+

+

(
ψ(uim,

ui+1
m − ui−1

m

hm
)− ψ(uim,

uim − ui−1
m

hm
)

)
− ψ(ui+1

m ,
ui+1
m − uim
hm

)

+
(
fmi+1 − fmi , δui+1

m

)
V

.

(53)
It follows from (53), (40), (32), (33), (44), (26) and (27) that

mA
∥∥ui+1

m − uim
∥∥2

V
≤ ch2

m

 i−1∑
j=0

∥∥∥ujm∥∥∥
V

∥∥ui+1
m − uim

∥∥
V

+

+chm
∥∥uim∥∥V ∥∥ui+1

m − uim
∥∥
V

+ c2
0 (Lτ + Lν)

∥∥ui+1
m − uim

∥∥2

V

+
∥∥fmi+1 − fmi

∥∥
V

∥∥ui+1
m − uim

∥∥
V

,

which, with (31) and (37), gives

∥∥δui+1
m

∥∥
V
≤ chm

 i−1∑
j=0

∥∥ujm∥∥V
+ c

∥∥uim∥∥V + c
∥∥∥ḟ∥∥∥

L∞(0,T ;V )
. (54)

Now, (50) is a consequence of (49), (52) and (54).

Third step. In this step we construct an approximate solution to the
problem (34)-(35) and we provide some estimate results. To this end, for
each m ∈ N∗, let ujm be the unique solution of the Problem Pjm, j = 1, ...,m.
We introduce the following functions um : [0, T ]→ V , ũm : [0, T ]→ V , Bm :
[0, T ]→ Q and fm : [0, T ]→ V defined, respectively, by

um(0) = u0, um(t) = uim + (t− tmi ) δui+1
m , ∀t ∈

(
tmi , t

m
i+1

]
, i = 0, ...,m− 1,

(55)

ũm(0) = u0, ũm(t) = ui+1
m , ∀t ∈

(
tmi , t

m
i+1

]
, i = 0, ...,m− 1, (56)
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Bm(0) = 0Q, Bm(t) = hm

i∑
j=0

Bmi+1,j , ∀t ∈
(
tmi , t

m
i+1

]
, i = 0, ...,m− 1, (57)

fm(0) = f(0), fm(t) = fmi+1, ∀t ∈
(
tmi , t

m
i+1

]
, i = 0, ...,m− 1, (58)

where u0
m,
{
Bmi+1,j

}
and

{
fmi+1

}
are given by (43)-(45). Using (55), we

deduce that the function um has a derivative function given by

u̇m(t) = δui+1
m , ∀t ∈

(
tmi , t

m
i+1

)
, i = 0, ...,m− 1. (59)

We have the following estimate results.

Lemma 5. There exists c > 0 , such that for all m ∈ N∗,

‖ũm(t)‖V ≤ c, ∀t ∈ [0, T ] , (60)

‖um(t)‖V ≤ c, ∀t ∈ [0, T ] , (61)

‖u̇m(t)‖V ≤ c, a.e.t ∈ [0, T ] , (62)

‖ũm(t)− um(t)‖V ≤ chm, ∀t ∈ [0, T ] , (63)

‖fm(t)− f(t)‖V ≤ chm, ∀t ∈ [0, T ] , (64)

‖um (t)− um (s)‖V ≤ c |t− s| , ∀t, s ∈ [0, T ] , (65)

‖um (t)− um (s)‖L2(Γ3;Rd) ≤ c |t− s| , ∀t, s ∈ [0, T ] . (66)

Proof. Use arguments similar to those in [10, proof of Lemma 5].

Lemma 6. There exists c > 0, such that for all m, n ∈ N∗ with m > n,

‖Bm(t)− Bn(t)‖Q ≤ c
∫ t

0
‖um (s)− un (s)‖V ds+ chn, ∀t ∈ [0, T ] . (67)

Proof. Let m, n ∈ N∗ with m > n. It is obvious that (67) holds for t = 0.
Now, let t ∈ (0, T ], then, there are three cases, (i) t ∈ (tm0 , t

m
1 ]∩ (tn0 , t

n
1 ], (ii)

t ∈
(
tmq , t

m
q+1

]
∩(tn0 , t

n
1 ] with q ∈ {1, ...,m− 1}, (iii) t ∈

(
tmq , t

m
q+1

]
∩
(
tnp , t

n
p+1

]
with q ∈ {1, ...,m− 1} and p ∈ {1, ..., n− 1}. Using (43), (44), (56), (57)
and (33), we get

‖Bm(t)− Bn(t)‖Q =
∥∥hmB (tm1 ) ε

(
u0
m

)
− hnB (tn1 ) ε

(
u0
n

)∥∥
Q

≤ chm + chn, ∀t ∈ (tm0 , t
m
1 ] ∩ (tn0 , t

n
1 ] . (68)

On the other hand, let t ∈
(
tmq , t

m
q+1

]
with q ∈ {1, ...,m− 1}, it follows from

(44), (57) and (56), that
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Bm(t) =

q∑
j=1

∫ tmj

tmj−1

B
(
tmq+1 − tmj

)
ε (ũm (s)) ds+ hmB

(
tmq+1

)
ε
(
u0
m

)
,

which gives

Bm(t) =

q∑
j=1

∫ tmj

tmj−1

(
B
(
tmq+1 − tmj

)
− B

(
tmq+1 − s

))
ε (ũm (s)) ds

+

q∑
j=1

∫ tmj

tmj−1

(
B
(
tmq+1 − s

)
− B (t− s)

)
ε (ũm (s)) ds+

∫ t

0
B (t− s) ε (ũm (s)) ds

+

∫ tmq

t
B (t− s) ε (ũm (s)) ds+ hmB

(
tmq+1

)
ε
(
u0
m

)
. (69)

Thus, for t ∈
(
tmq , t

m
q+1

]
∩ (tn0 , t

n
1 ] with q ∈ {1, ...,m− 1}, we have

‖Bm(t)− Bn(t)‖Q ≤ c

q∑
j=1

∫ tmj

tmj−1

∣∣s− tmj ∣∣ ‖ũm (s)‖V ds+ c

q∑
j=1

∫ tmj

tmj−1

∣∣tmq+1 − t
∣∣ ‖ũm (s)‖V ds

+

∫ tmq

0
‖B (t− s) ε (ũm (s))‖Q ds+

∥∥hmB (tmq+1

)
ε
(
u0
m

)∥∥
Q +

∥∥hnB (tn1 ) ε
(
u0
n

)∥∥
Q

≤ c
q∑
j=1

h2
m + c

q∑
j=1

h2
m + c

∫ tmq

0
‖ũm (s)‖V ds + chm + chn

≤ c
∫ tn1

0
‖ũm (s)‖V ds + chm + chn

≤ chn. (70)

Now, using (69) and (32)-(33), we get

‖Bm(t)− Bn(t)‖Q ≤ c

q∑
j=1

∫ tmj

tmj−1

∣∣s− tmj ∣∣ ‖ũm (s)‖V ds+ c

p∑
j=1

∫ tnj

tnj−1

∣∣s− tnj ∣∣ ‖ũn (s)‖V ds

+ c

q∑
j=1

∫ tmj

tmj−1

∣∣tmq+1 − t
∣∣ ‖ũm (s)‖V ds+ c

p∑
j=1

∫ tnj

tnj−1

∣∣tnp+1 − t
∣∣ ‖ũn (s)‖V ds

+ c

∫ t

0
‖ũm (s)− ũn (s)‖V ds+ chm + chn,
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from this and using (60) and (63), we get, for t ∈
(
tmq , t

m
q+1

]
∩
(
tnp , t

n
p+1

]
with

q ∈ {1, ...,m− 1} and p ∈ {1, ..., n− 1} ,

‖Bm(t)− Bn(t)‖Q ≤ c

q∑
j=1

h2
m + c

p∑
j=1

h2
n + c

q∑
j=1

h2
m + +c

p∑
j=1

h2
n

+c

∫ t

0
‖ũm (s)− ũn (s)‖V ds+ chm + chn

≤ c

∫ t

0
‖um (s)− un (s)‖V ds+ chm + chn,

which, with (70) and (68), gives (67).

Fourth step. In this step we prove some convergence results.

Lemma 7. There exists a function u ∈W 1,2(0, T ;V ) and two subsequences
of {um} and {ũm} again denoted by {um} and {ũm}, respectively, such that

um ⇀ u weakly in L2 (0, T ;V ) . (71)

u̇m ⇀ u̇ weakly in L2 (0, T ;V ) . (72)

ε (u̇m) ⇀ ε (u̇) weakly in L2 (0, T ;Q) . (73)

um → u strongly in C
(

[0, T ] ;L2
(

Γ3;Rd
))

. (74)

um → u strongly in C ([0, T ] ;V ) . (75)

ũm → u strongly in L2 (0, T ;V ) . (76)

Proof. To proof (71)-(74), we use Lemma 5 and compactness arguments
similar to those in [10, Lemma 7]. It follows from (46), (26), (56), (57), (44)
and (58) that {Bm}, {ũm} and {fm} satisfy the following inequality

(F ũm(t), v − ũm(t))V + (Bm(t), ε (v − ũm(t)))Q

+ψ(ũm(t), v − ũm(t)) ≥ (fm(t), v − ũm(t))V ,
(77)

for all v ∈ V and for all t ∈ [0, T ]. Now, let m, n ∈ N∗, such that
m > n > T, by taking (Bm, ũm, fm, v) = (Bm, ũm, fm, ũn), (Bm, ũm, fm,
v) = (Bn, ũn, fn, ũm) in (77) and adding the two inequalities, we get

(F ũm(t)−F ũn(t), ũm(t)− ũn(t))V ≤ (Bn(t)− Bm(t), ε (ũm(t)− ũn(t)))Q

+ψ(ũm(t), ũn(t)− ũm(t)) + ψ(ũn(t), ũm(t)− ũn(t))

+ (fm(t)− fn(t), ũm(t)− ũn(t))V , ∀t ∈ [0, T ] ,
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which combined with (29), (40), (60) and using the inequality

ab ≤ a2

mA
+
mA
4
b2, ∀a, b ∈ R,

leads us to

‖ũm(t)− ũn(t)‖2V ≤ c ‖Bn(t)− Bm(t)‖2Q + c ‖ũm(t)− ũn(t)‖L2(Γ3;Rd)

+c ‖fm(t)− f(t)‖2V + c ‖f(t)− fn(t)‖2V . (78)

Using (63) and (16), we deduce that

‖ũm(t)− ũn(t)‖L2(Γ3;Rd) ≤ ‖ũm(t)− um(t)‖L2(Γ3;Rd) + ‖um(t)− un(t)‖L2(Γ3;Rd)

+ ‖un(t)− ũn(t)‖L2(Γ3;Rd)

≤ ‖um(t)− un(t)‖L2(Γ3;Rd) + chm + chn. (79)

Now, it follows from (64), (67), (78) and (79), that

‖ũm(t)− ũn(t)‖2V ≤ c ‖um(t)− un(t)‖L2(Γ3;Rd) + c

∫ t

0
‖un (s)− um (s)‖2V ds

+chm + chn,

and using the inequality

‖um(t)− un(t)‖2V ≤ c ‖um(t)− ũm(t)‖2V +c ‖ũm(t)− ũn(t)‖2V +c ‖ũn(t)− un(t)‖2V ,

we get

‖um(t)− un(t)‖2V ≤ c ‖um(t)− un(t)‖L2(Γ3;Rd) + c

∫ t

0
‖un (s)− um (s)‖2V ds

+chm + chn, ∀t ∈ [0, T ] .

Using Lemma 1 in the last inequality leads to

‖um(t)− un(t)‖2V ≤ c ‖um(t)− un(t)‖L2(Γ3;Rd) + c

∫ t

0
‖um(s)− un(s)‖L2(Γ3;Rd) ds

+ chm + chn,

from this, we obtain

‖um − un‖2C([0,T ];V ) ≤ c ‖um − un‖C([0,T ];L2(Γ3;Rd)) + chn.

This last inequality and (74) imply that {um} is a Cauchy sequence in C ([0, T ] ;V )
and, threfore, by using the convergence (71), we obtain (75). Now, the con-
vergence (76) is a consequence of (63) and (75).
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In the rest of this paper {um} , {Bm} , {ũm} and {fm} represent appropri-
ate subsequences of {um}, {Bm}, {ũm} and {fm} such that the convergences
(71)-(76) hold.

Lemma 8. The following convergences hold.

F ũm → Fu strongly in L2 (0, T ;V ) . (80)

fm → f strongly in L2 ([0, T ] ;V ) . (81)

Bm → B̃ strongly in L2 (0, T ;Q) , (82)

where the function B̃ : [0, T ]→ Q is defined by

B̃ (t) =

∫ t

0
B (t− s) ε (u (s)) ds, ∀ t ∈ [0, T ] . (83)

Proof. Obviously, (41) and (76) imply (80). Using (58) and (64) we get (81).
Now, it follows from (43), (44), (56), (57), (83) and (33), that∥∥∥Bm(t)− B̃ (t)

∥∥∥
Q
≤

∥∥hmB (tm1 )u0
m

∥∥
Q + c

∫ t

0
‖u (s)‖V

≤ chm, ∀t ∈ (tm0 , t
m
1 ] . (84)

On the other hand, for each t ∈
(
tmi , t

m
i+1

]
, i = 1, ...,m− 1, using (44), (56),

(57) and (83), we obtain∥∥∥Bm(t)− B̃ (t)
∥∥∥
Q
≤

i∑
j=1

∫ tmj

tmj−1

∥∥B (tmi+1 − tmj
)
ε (ũm(s))

−B (t− s) ε (u (s))‖Q ds+ hm
∥∥B (tmi+1

)
ε
(
u0
m

)∥∥
Q

+

∫ t

tmi

‖B (t− s) ε (u (s))‖Q ds.

Thus, we obtain∥∥∥Bm(t)− B̃ (t)
∥∥∥
Q
≤

i∑
j=1

∫ tmj

tmj−1

∥∥[B (tmi+1 − tmj
)
− B (t− s)

]
ε (ũm(s))

∥∥
Q ds

+
i∑

j=1

∫ tmj

tmj−1

‖B (t− s) ε (ũm (s)− u (s))‖Q ds

+ hm
∥∥B (tmi+1

)
ε
(
u0
m

)∥∥
Q +

∫ t

tmi

‖B (t− s) ε (u (s))‖Q ds,
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and keeping in mind (32)-(33) and (60), we can show that

∥∥∥Bm(t)− B̃ (t)
∥∥∥
Q
≤

i

c
∑
j=1

∫ tmj

tmj−1

(∣∣tmi+1 − t
∣∣+
∣∣s− tmj ∣∣) ds

+
i

c
∑
j=1

∫ tmj

tmj−1

‖ũm (s)− u (s)‖V ds+ chm
∥∥u0

m

∥∥
V

+ chm ‖u‖C([0,T ];V )

≤ c
∫ t

0
‖ũm (s)− u (s)‖V ds+ chm.

This last inequality with (84), gives∥∥∥Bm − B̃∥∥∥
L2(0,T ;Q)

≤ c ‖ũm − u‖L2(0,T ;V ) + chm. (85)

Passing to the limit as m→ +∞ in (85) by using (76), we get (82).

The following properties hold.

Lemma 9. For all v ∈ L2 (0, T ;V ) , we have

lim
m→+∞

∫ T

0
ψ(ũm(s), v(s))ds =

∫ T

0
ψ(u(s), v(s))ds. (86)

lim
m→+∞

∫ T

0
[ψ(ũm(s), u̇m(s))− ψ(u(s), u̇m(s))] ds = 0. (87)

lim inf
m→+∞

∫ T

0
ψ(ũm(s), u̇m(s))ds ≥

∫ T

0
ψ(u(s), u̇(s))ds. (88)

Proof. Using (27), we deduce the following∣∣∣∣∫ T

0
[ψ(ũm(s), v(s))− ψ(u(s), v(s))] ds

∣∣∣∣ ≤ c ‖ũm − u‖L2(0,T ;V ) ‖v‖L2(0,T ;V ) ,

(89)
for all v ∈ L2 (0, T ;V ). From (76), (89) and (62), it follows that the con-
vergences (86)-(87) hold. To continue, let Φ : L2 (0, T ;V ) → R be the
functional defined by

Φ (v) =

∫ T

0
ψ(u(s), v(s))ds, ∀v ∈ L2 (0, T ;V ) . (90)
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Using (23), (28) and (90), we find that Φ is convex and continuous, which
implies that Φ is weakly lower semicontinuous, see [2]. Thus, from (72), we
get

lim inf
m→+∞

Φ (u̇m) ≥ Φ (u̇) . (91)

On the other hand, one has

∫ T

0
ψ(ũm(s), u̇m(s))ds =

∫ T

0
[ψ(ũm(s), u̇m(s))ds− ψ(u(s), u̇m(s))] ds

+Φ (u̇m) . (92)

Therefore, taking into account (87) and (91) when passing to the lim inf as
m→ +∞ in (92), we obtain (88).

Fifth step. We have now all the ingredients to prove Theorem 1.

Proof of Theorem 1. Let t ∈ (0, T ), let r > 0, such that t + r ∈ (0, T ). For
each w ∈ V, we define a function v ∈ L2 (0, T ;V ) by

v(s) =


w for s ∈ (t, t+ r)

u̇(s) elsewhere,

Now, we use (42), (44), (56), (57), (58), (59), to obtain the following in-
equality



∫ T

0
(F ũm(s), v(s)− u̇m(s))V ds+

∫ T

0
(Bm(s), ε (v(s)− u̇m(s)))Q ds+

+

∫ T

0
ψ(ũm(s), v(s))ds−

∫ T

0
ψ(ũm(s), u̇m(s))ds

≥
∫ T

0
(fm(s), v(s)− u̇m(s))V ds.

(93)
Passing to the lim sup as m → +∞ in (93), by using Lemma 8, Lemma 9,
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(72) and (73), we obtain

1

r

∫ t+r

t
(Fu(s), w − u̇(s))V ds +

1

r

∫ t+r

t

(
B̃(s), ε (w − u̇(s))

)
Q
ds

+
1

r

∫ t+r

t
[ψ(u(s), w)− ψ(u(s), u̇(s))] ds

≥ 1

r

∫ t+r

t
(f(s), w − u̇(s))V ds, for all w ∈ V.

(94)
Since um (t) → u (t) strongly in V, ∀t ∈ [0, T ], it follows from (55) that
u (0) = u0. Now, letting r → 0 in (94) and keeping in mind (39) and (83),
we conclude that u is a solution of the problem (34)-(35). On the other
hand, using (65), we obtain

‖u(t)− u(s)‖V ≤ ‖u(t)− um(t)‖V + ‖um(t)− um(s)‖V + ‖um(s)− u(s)‖V
≤ ‖u(t)− um(t)‖V + c |t− s|+ ‖um(s)− u(s)‖V ,
∀t, s ∈ [0, T ] .

Passing to the limit as m→ +∞, we get

‖u(t)− u(s)‖V ≤ c |t− s| , ∀t, s ∈ [0, T ] .

Thus, u satisfies the regularity (38). Finally, it is easy to see that the
function σ defined by (8) has the regularity σ ∈W 1,∞ (0, T ;Q1).

5 Conclusion

In this paper, we have studied a quasistatic contact problem with normal
compliance associated to a version of Coulomb’s law of dry friction, for
viscoelastic materials with long memory. We have shown the existence of a
weak solution under a smallness assumption depending only on the normal
compliance functions, the elasticity operator and on the geometry of the
problem. The uniqueness of the solution remains, as far as we know, an
open question.
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