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Abstract

In this work, we develop a new and efficient iterative method for di-
agonalization of the Frobenius companion matrix. The method can be
used for approximating all of the eigenvalues and corresponding eigen-
vectors. It can also be used for simultaneous inclusion of all simple
zeros of the corresponding characteristic polynomial. Local conver-
gence analysis of the method is included. We prove that it is locally
quadratically convergent. Some numerical examples demonstrating ef-
fectiveness of the proposed iterative method are also included.
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1 Introduction

This section gives a very short overview of the theory from the linear algebra
concerning the matrix spectral decomposition and diagonalization.

∗Accepted for publication on March 9-th, 2020
†g.nedzhibov@shu.bg Faculty of Mathematics and Informatics, Shumen University,

Shumen 9700, Bulgaria; Paper written with financial support of Shumen University under
Grant RD 08-93/01.02.2019.

45

DOI    https://doi.org/10.56082/annalsarscimath.2021.1-2.45



46 G.H. Nedzhibov

1.1 Eigenvalues, eigenvectors and eigendecomposition

We begin by reviewing some basic terminology and definitions (see [1, 2]).

Definition 1 Let A ∈ Cn×n. A complex number λ is an eigenvalue of the
matrix A if there exists a non-zero vector v ∈ Cn such that Av = λv. The
vector v is a (right) eigenvector associated to the eigenvalue λ and (λ, v) is
called an eigenpair of A.

A nonzero vector w ∈ Cn such that w∗A = λw∗ is called a left eigenvector
associated to λ (recall that w∗ = (w)T is the conjugate transpose of w). The
set σ(A) = {λ1, λ2, . . . , λn} of all eigenvalues of the matrix A is reffered to
as spectrum of A.

Eigenvalues and eigenvectors are a standard tool in the mathematical
sciences and in scientific computing. They have many applications, particu-
larly in physics and engineering. Control theory, vibration analysis, electric
circuits, advanced dynamics and quantum mechanics are just a few of the
application areas. Eigenvalue decompositions play also an important role in
the analysis of many numerical methods. Many of the applications involve
the use of eigenvalues and eigenvectors in the process of reduction square
matrices into matrices that have simpler form. By reduction we mean a
transformation that preserves the eigenvalues of a matrix.

Definition 2 We say that two matrices A and B are similar if there exists
a nonsingular matrix X such that B = XAX−1.

The mapping B → A is called a similarity transformation. It is equivalence
transformation and preserves the eigenvalues of matrix.

The simplest form in which a matrix can be reduced is undoubtedly the
diagonal form.

Definition 3 The eigenvalue decomposition (spectral decomposition) of the
matrix A ∈ Cn×n is its factorization in the form

A = SΛS−1,

where Λ = diag(λ1, λ2, . . . , λn) has all elements of the spectrum on its diag-
onal and S is a non-singular matrix whose columns are eigenvectors asso-
ciated with λ1, λ2, . . . , λn, respectively. Likewise, every row of S−1 contains
coordinates of a single (left) eigenvector.

But this reduction not always possible, and there are matrices that have
no eigenvalue decomposition. A matrix that can be reduced to the diagonal
form is called diagonalizable. It is well known that a matrix is diagonalizable
if it has all distinct eigenvalues, the converse is not necessarily true.
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1.2 Polynomial rootfinding using companion matrices

Computing roots of polynomials via eigen solving problem is a classical
approach recently revived (see [3, 4, 5, 6] and the bibliography therein).

Definition 4 The characteristic polynomial of A ∈ Cn×n, denoted PA(z)
for z ∈ C, is the degree n polynomial defined by

PA(z) = det(A− zI).

The matrix A is called companion matrix of the polynomial PA(z). It follows
that the roots of the characteristic polynomial of a matrix are exactly the
eigenvalues of the matrix, since the matrix A−λI is singular precisely when
λ is an eigenvalue of A. We have seen that eigenvalues may be found by
solving polynomial equations. The converse is also true.

Let be given a monic polynomial p(z) of degree n

p(z) = a0 + a1z + . . .+ an−1z
n−1 + zn, (1)

with ai ∈ C (i = 0, . . . , n− 1). The companion matrix of p(z) is defined as

Fp =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 (2)

which is called Frobenius companion matrix. Then the eigenvalues of Fp

can be computed by applying certain matrix methods. This is the approach
followed by MATLAB command roots which uses the QR-algorithm on the
balanced Frobenius companion matrix to get its eigenvalues.

In addition if we assume that the polynomial (1) has n simple roots
λ1, λ2, . . . , λn, then the corresponding Frobenius companion matrix (2) is di-
agonalizable. In this case, it is immediate to verify that if λs is an eigenvalue
of Fp, then the eigenvector associated with λs has the form

us = (1, λs, λ
2
s, . . . , λ

n−1
s )T .

Then the eigenvector matrix V actually equals

V = V (λ) =


1 1 . . . 1
λ1 λ2 . . . λn

. . . . . .
. . . . . .

λn−11 λn−12 . . . λn−1n

 , (3)
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which is the well-known Vandermonde matrix. Then we have the following
eigenvalue decomposition of (2)

Fp = V ΛV −1. (4)

Now the Fobenius companion matrix (2) has complete biorthogonal systems
of right eigenvectors v1,v2, . . . ,vn (the columns of V ) and left eigenvectors
w∗1,w

∗
2, . . . ,w

∗
n (the rows of V −1), i.e.

w∗i vj = δij and w∗iFpvj = λiδij , (5)

for each i, j = 1, . . . , n.

2 Diagonalization of Frobenius companion matrix

The algorithms for the eigenvalue problem are usually distinguished be-
tween direct (full space) methods and iterative (subspace) methods. Direct
methods are intended to compute the complete set of eigenvalues and, if
necessary, the eigenvectors. Note that direct methods are also of iterative
nature, since as we mentioned finding eigenvalues is equivalent to finding
zeros of polynomials, for which noniterative methods can not exist. Since
direct methods usually transform the original matrices to diagonal or trian-
gular form by applying transformation matrices, they have a complexity of
O(n3) and therefore have a limited range of applications. Iterative methods
typically provide approximations only to a subset of the eigenvalues and, if
necessary, the corresponding eigenvectors. These methods work only with
matrix vector products on the original matrix, which is inexpensive if it is
sparse and hence they can theoretically be applied to large sparse matrices
of unlimited size.

In this paper we explore a new approach for diagonalization of a special
subclass of the Frobenius companion matrix, namely when all of its eigen-
values are distinct. This new iterative scheme may be classified as direct
method, rather than an iterative method. Frobenius companion matrix is
important in theory, numerical computations and in applications. It is used
to find bounds on eigenvalues of matrices and also is used in algorithms for
finding roots of polynomials. Companion matrices are widely used in control
theory and signal processing, for example, in the observable canonical form
as well as the controllable canonical form (see for example [7, 8] and the
references therein).
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2.1 Two-sided Rayleigh quotient

Before to state the new iterative scheme we need to introduce the two-sided
Rayleigh quotient, which will play an important role in the algorithm.

Definition 5 The two-sided Rayleigh quotient of a square matrix A ∈ Cn×n

and nonzero vectors x, y ∈ Cn is

ρ(x, y) = ρ(A, x, y) =
y∗Ax

y∗x
,

provided y∗x 6= 0.

The two-sided Rayleigh quotient is introduced by Ostrowski in [9] and have
been used in a number of papers (see for example [10, 11, 12, 13]). It has
the following basic and known properties:

• Homogenity: ρ(αx, βy, γA) = γρ(x, y,A) for all α, β, γ ∈ C.

• Translation invariance: ρ(x, y,A− αI) = ρ(x, y,A)− αfor all α ∈ C.

• Stationarity: ρ(x, y,A) is stationary iff x and y are right and left
eigenvectors of A with eigenvalue ρ and y∗x 6= 0.

If v and w are right and left eigenvectors of Fp associated with same
eigenvalue, then from the definition of two-sided Rayleigh quotient and the
biorthogonality condition (5) it follows that

ρ(v, w) = ρ(Fp, v, w) =
w∗Fpu

v∗u
= w∗Fpv, (6)

where Fp is the Frobenius companion matrix (2) with n distinct eigenvalues.

2.2 Description of the new iterative algorithm

Let Fp be the Frobenius companion matrix (2) with n distinct eigenvalues

λ1, λ2, . . . , λn

and let denote
z(k) = (z

(k)
1 , z

(k)
2 , . . . , z(k)n )

the approximations of the corresponding eigenvalues. We will denote by

v
(k)
i and w

(k)
i the right and left eigenvectors, respectively, associated to

eigenvalue λi for i = 1, 2, . . . , n. By right upper index in brackets (k) is
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Algorithm 1: Diagonalization of the Frobenius companion matrix

Input: Fp, initial vector z(0)(where z
(0)
i 6= z

(0)
j for i 6= j), tolerance ε� 1.

Output: Approximate eigenvalues and eigenvector matrices:
λ = (λ1, . . . , λn), V (λ), W (λ).
1: Set k=0.
2: While not converged do

3: Compute the Vandermonde matrix Vk = V (z(k)).

4: Compute the inverse Vandermonde matrix W ∗k = V (z(k))−1.
5: For i=1:n do
6: Compute next eigenvalue estimate

z
(k+1)
i = ρk = (w

(k)
i )∗Fpv

(k)
i ,

where v
(k)
i is the i-th column vector of Vk,

and (w
(k)
i )∗ is the i-th row vector of W ∗k

7: End for
8: Set k=k+1.

8: If ‖z(k+1) − z(k)‖ < ε then

9: Set λ = z(k+1), V = Vk, W = W ∗k .
10: break
11: End If
12: End While

denoted the iteration index. We study an iterative process of the following
form (see Algorithm 1).

The basic idea of our approach is combining the following two operations:

1. We construct approximate eigenvector matrices from the set of esti-
mated eigenvalues, by using the special structure of the eigenvectors
of Frobenius companion matrix (see (3)).

2. The Rayleigh quotient produces an approximate eigenvalue when ap-
proximated left and right eigenvectors are given.

Note that on step 6, we use the Rayleigh quotient of the form (6) because
on each iteration step we get a complete biorthogonal systems of approxi-
mate right and left eigenvectors. Which means that the conditions (5) also
hold for the approximate eigenvectors.
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3 Convergence analysis

In this section we will prove that the asymptotic rate of convergence of the
presented algorithm is quadratic.

For the sake of brevity and without loosing generality for the remainder
of this text we fix the value of i and use the following notations:

• λ = λi - the i−th eigenvalue of Fp;

• zk = z
(k)
i - the approximate value of λi after k iterations;

• vk = v
(k)
i - approximate right eigenvector of λi after k iterations;

• wk = w
(k)
i - approximate left eigenvector of λi after k iterations;

• ρk = ρ(vk,wk) = w∗kFpvk - the Rayleigh quotient of v
(k)
i and w

(k)
i ;

• the vector norm ‖.‖ is the Euclidean norm ‖a‖ =
√
a∗a and the norm

of matrices is the subordinated spectral norm.

First, we will state and prove certain auxiliary results.

Lemma 1 Let x and y be right and left eigenvectors associated with eigen-
value λ of the Frobenius companion matrix Fp, which has n distinct eigenval-
ues. If the corresponding approximate eigenvectors vk and wk (k = 1, 2, . . .)
are of the form

vk = τx + dk and wk = θy + sk, (7)

where τ, θ ∈ C and y∗dk = s∗kx = 0. Then

(i) ρk − λ = w∗k(Fp − λI)vk = s∗k(Fp − λI)dk, (8)

(ii) ρk − λ = µ(ρk−1 − λ), (9)

where µ = 1 + (ρk−1 − λ)−1uk and uk = w∗k(Fp − ρk−1I)vk.

Proof. Firstly, we recall that the presentations (7) are unique by using
spectral projections. Namely the spectral projection of vk onto column
eigenspace of λ is in the direction of x. Moreover, the column eigenspace
of λ has unique invariant complement which is orthogonal to y. Therefore,
there is an unique presentation of the form vk = τx + dk, where dk⊥y and
τ = y∗vk. Similarly, it follows that there is an unique presentation of the
form wk = θy + sk, where sk⊥x and θ = x∗wk.
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The assertion (i) follows from (7), definition of ρk and the biorthogonality
of vk and wk

ρk − λ = w∗kFpvk − λ = w∗k(Fp − λI)vk = (θy∗ + s∗k)(Fp − λI)(τx + dk)
= θτy∗(Fp − λI)x + θτy∗(Fp − λI)dk+

+τs∗k(Fp − λI)x + s∗k(Fp − λI)dk

= s∗k(Fp − λI)dk.

Part (ii) follows from (i)

ρk − λ = w∗k(Fp − λI)vk = w∗k(Fp − ρk−1I)vk + (ρk−1 − λ)
= (ρk−1 − λ)(1 + (ρk−1 − λ)−1w∗k(Fp − ρk−1I)vk)
= (ρk−1 − λ)(1 + (ρk−1 − λ)−1uk).

The lemma is proved.
Note that the second expression in Lemma 1 can be used to derive the

local convergence neighborhoods for the suggested algorithm. In the next
lemma we will prove that (ρk−1 − λ)−1uk in (9) is bounded.

Lemma 2 Let the assumptions of Lemma 1 be satisfied. Then

(i) the vector tk = (ρk−1 − λ)−1(Fp − ρk−1I)vk is bounded and

tk → (0, 0, . . . , 0, P ′F (λ))T as ρk−1 → λ,

where PF (z) is the characteristic polynomial of Fp.

(ii) the vector tk + τx is orthogonal to y.

Proof. (i) Using vk = (1, ρk−1, . . . , ρ
n−1
k−1)T , it is easy to verify that

(Fp − ρk−1I)vk = (0, 0, . . . , 0,−PF (ρk−1))
T ,

hence

tk =

(
0, 0, . . . , 0,−PF (ρk−1)

ρk−1 − λ

)T

.

Applying the L’Hospital rule we get

PF (ρk−1)

ρk−1 − λ
→ P ′F (λ)

as ρk−1 → λ. Which proves the first assertion.
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(ii) Substitution of vk = τx + dk in the expression of tk, gives

tk =
(Fp − ρk−1I)vk

ρk−1 − λ
= −τx +

(Fp − ρk−1I)dk

ρk−1 − λ
,

which is equivalent to

tk + τx =
(Fp − ρk−1I)dk

ρk−1 − λ
. (10)

Using that dk⊥y, it is easy to verify that

y∗
(Fp − ρk−1I)dk

ρk−1 − λ
= 0,

which yields (tk + τx)⊥y. The lemma is proved.

Corollary 1 Under the assumptions of Lemma 1, it follows that the vector
pk + θy is orthogonal to x, where pk = (ρk−1 − λ)−∗(Fp − ρk−1I)∗wk.

Proof. The proof is similar to the proof of assertion (ii) in Lemma 2.

Lemma 3 Let the assumptions of Lemma 1 hold. Then

(i) dk = (ρk−1 − λ)d̃k, where d̃k = (Fp − ρk−1I)−1(tk + τx), (11)

(ii) s∗k = (ρk−1 − λ)∗s̃∗k, where s̃k = (Fp − ρk−1I)−∗(pk + θy). (12)

Proof. (i) From the expression (10), it follows that

dk = (ρk−1 − λ)(Fp − ρk−1I)−1(tk + τx),

which implies (11). Similarly, we get the expression (12) from Corollary 1.
Note that as ρk−1 → λ, the operator (Fp − λI)−1 becomes unbounded.

However, we are only interested in applying (Fp − λI)−1 to vectors in
span{y⊥} and in applying (Fp − λI)−∗ to vectors in span{x⊥}. There-
fore (Fp − λI)−1 : y⊥ → y⊥ is bounded on y⊥ and (Fp − λI)−∗ : x⊥ → x⊥

is bounded on x⊥. The proof is completed.
Now we can prove the main theorem in this section.

Theorem 1 Let x and y be right and left eigenvectors associated with
eigenvalue λ of the Frobenius companion matrix Fp, which has n distinct
eigenvalues. Then limk→∞ vk = x and limk→∞wk = y in and only if
zk+1 = ρk = ρ(vk,wk) approaches λ and the asymptotic convergence rate is
quadratic.
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Proof. From the expression (11) it follows that as ρk → λ

‖dk‖ = ‖(ρk−1 − λ)(Fp − ρk−1I)−1(tk + τx)‖
= |ρk−1 − λ|‖((Fp − λI)|y⊥)−1‖‖tk + τx)‖+O((ρk−1 − λ)2)

(13)
and similarly

‖sk‖ = ‖(ρk−1 − λ)∗(Fp − ρk−1I)−∗(pk + θy)‖
= |ρk−1 − λ| ‖((Fp − λI)|x⊥)−∗‖ ‖pk + θy‖+O((ρk−1 − λ)2),

(14)
where dk, sk, d̃k and s̃k are bounded. Hence, ρk → λ iff vk → x and wk → y.

To prove the asymptotically quadratic rate of convergence, we use the
expression (8) and the statement of Lemma 3

ρk − λ = s∗k(Fp − λI)dk = (ρk−1 − λ)2s̃∗k(Fp − λI)d̃k

and hence

|ρk − λ| = |ρk−1 − λ|2 |̃s∗k(Fp − λI)d̃k|+O((ρk−1 − λ)4).

Then from (13) and the last expression it follows that, as k →∞

‖x− vk‖ ≤ |ρk−1 − λ|2‖d̃k‖s̃k‖[k((Fp − λI)|y⊥)‖tk + τx‖] +O((ρk−1 − λ)3)

for k sufficiently large, and similarly, we can deduce

‖y−wk‖ ≤ |ρk−1−λ|2‖d̃k‖s̃k‖[k((Fp−λI)|x⊥)‖pk + θy‖] +O((ρk−1−λ)3)

which proves the asymptotically quadratic convergence (recall that in the
last two expression k(A|z⊥) is the condition number of matrix A restricted
to z⊥). Theorem is proved.

4 Numerical Examples

In order to demonstrate the performance of the introduced iterative method
(Algorithm 1, in Section 2.2) we performed a series of numerical experiments.
We have tested it for the approximation of real and complex eigenvalues
and corresponding eigenvectors of many companion matrix examples. In
this section we present only the results for three examples concerning the
root-finding problem. We illustrate Algorithm 1 with polynomials having
only simple zeros, which were also considered from other authors.
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The calculations were done using MATLAB. We have taken ε = 10−15

as the accuracy and the condition

‖z(k)i − λ‖ ≤ ε

as termination criterion.

Example 1 Consider the polynomial

p(z) = z3 − 8z2 − 23z + 30 ,

with root vector α = (−3, 1, 10) and the initial guess z(0) = (−4, 2, 9) which
is taken from Dochev[14](see also [15]).

The stopping criteria is reached after six iterations, see Table 1.

Table 1: Numerical results for Example 1.

iter(k) z
(k)
1 z

(k)
2 z

(k)
3

0 -4 2 9
6 -3.000000000000000 1.000000000000000 10.0000000000000

Example 2 We take the polynomial

p(z) = z5 − 15.5z4 + 77.5z3 − 155z2 + 124z − 32

with root vector α = (0.5, 1, 2, 4, 8), which was studied in Niell ([16], Ex.7.3).
We use the same initial approximation z(0) = (0.45, 0.9, 1.8, 3.6, 7.2).

Table 2: Numerical results for Example 2.

iter(k) z
(k)
1 z

(k)
2

0 0.45 0.9
6 0.5000000000000002 0.999999999999998

z
(k)
3 z

(k)
4 z

(k)
5

1.8 3.6 7.2
1.999999999999994 3.999999999999996 8.000000000000002

The stopping criteria is reached after six iterations, see Table 2.
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Example 3 Consider the polynomial

f(z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300

with the zero vector α = (2i, 2 + i,−3,−2i,−1, 1,−2 + i, 2− i,−2− i).

We use Abert’s initial approximation vector z(0) (see [17]) given by

z(0)s = −a1
n

+ r0 exp iθs , θs =
π

n

(
2s− 3

2

)
, s = 1, . . . , n ,

where n = 9 and r0 = 10 (see also [18]).

The stopping criteria is reached after eleven iterations, see Table 3.

Table 3: Numerical results for Example 3.

iter(k) z
(k)
1 z

(k)
2 z

(k)
3

0 -1.263 +1.736i -4.683 +7.660i -11.11+10i
11 2.963× 10−18 + 2i 2+i −3 + 1.009× 10−18i

z
(k)
4 z

(k)
5 z

(k)
6

-17.53 +7.660i -20.95+1.736i -19.77 -5i
5.340× 10−18 − 2i −1 + 2.222× 10−19i 1 + 2.568× 10−18i

z
(k)
7 z

(k)
8 z

(k)
9

-14.53-9.396i -7.690 -9.396i -2.450-4.999i
−2 + i 2− i −2− i

We compare Algorithm 1 and the well-known Weierstrass’ iterative method
(see [15]), which also has second order convergence. All the results show
that if we use the same initial vector and stopping criteria, the introduced
method get the root-vector after same number of iterations as the Weier-
strass’ method.
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