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Abstract

Analytical expressions for the steady-state components of the di-
mensionless starting solutions corresponding to some oscillatory mo-
tions through a horizontal rectangular channel of two classes of in-
compressible Newtonian fluids with power-law dependence of viscosity
on the pressure are established in the simplest forms. The fluid mo-
tion is generated by the lower plate that oscillates in its plane. For
validation, three limiting cases are considered and interesting graph-
ical representations are provided. It is worth pointing out the fact
that such solutions are important in practice for those who want to
eliminate the transients from their experiments. In addition, the di-
mensionless steady shear stresses corresponding to the simple Couette
flow of such fluids are constants on the whole flow domain although
the adequate velocity fields are functions of y.
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1 Introduction

The fact that the fluid viscosity depends on the pressure was already long
time ago remarked by Stokes in his seminal work [1] and the adequate lit-
erature prior to 1931 can be found in the book of Bridgman [2]. Later,
the dependence of the liquid viscosity on the pressure has been experimen-
tally attested by Cutler et al. [3], Johnson and Cameron [4], Johnson and
Tevaarwerk [5], Johnson and Greenwood [6], Bair and Winer [7], etc. An
important physical situation in which the dependence of viscosity on the
pressure cannot be ignored is the problem of elastohydrodynamics lubrica-
tion [8] in which the fluid viscosity strongly varies with the pressure.

Some theoretical studies regarding the existence and uniqueness of the
flow of fluids with pressure-dependent viscosity were developed by Malek et
al. [9] and exact steady solutions for such motions of fluids in discussion
have been established by Hron et al. [10] and Rajagopal [11,12]. The first
exact solutions for some unsteady flows of such fluids seem to be those
of Rajagopal and Saccomandi [13]. A little later, Prusa [14] established
some exact expressions in terms of Kelvin functions for the steady-state
(permanent or long time) solutions corresponding to the modified Stokes
problems for the fluids with linear or exponential dependence of viscosity on
the pressure whose numerical solutions have been obtained by Srinivasan and
Rajagopal [15]. Qualitative and uniqueness results as well as exact solutions
for the same motion problems of fluids with power-law and exponential
dependence of velocity on the pressure have been established by Rajagopal
et al. [16] in terms of a suitable system of eigenvalues and eigenfunctions.
Steady flows of these fluids in cylindrical or spherical domains have been
studied by Kalagirou et al. [17], respectively Housiadas et al. [18] using a
perturbation scheme for small values of the pressure-viscosity coefficient.

As it results from the previous presentation, there are very few exact
solutions for motions of fluids with pressure-dependent viscosity although
they play a very important role in the study of these fluids. In addition
to provide solutions to problems with technical applications, they can be
used as tests to verify numerical schemes that are developed to study more
complex unsteady flow problems. Our purpose here is to provide simple ana-
lytical expressions for the steady-state solutions corresponding to oscillatory
motions of two classes of incompressible Newtonian fluids with power-law
dependence of viscosity on the pressure. As a check of their correctness
it is shown, both analytically and graphically, that these solutions tend to
those of ordinary Newtonian fluids performing the same motions when the
dimensionless pressure-viscosity coefficient tend to zero. Furthermore, the
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dimensionless steady solutions corresponding to the simple Couette flow of
the same fluids are also obtained as limiting cases of previous solutions.

2 Governing equations

Let us consider an incompressible Newtonian fluid with pressure-dependent
viscosity at rest between two infinite horizontal parallel plates at the distance
h apart. Its constitutive equation is

T = −pI + S = −pI + η(p)A, (1)

where T is the Cauchy stress tensor, I is the unit tensor, S is the extra-stress
tensor, A is the first Rivlin-Ericksen tensor, p is the hydrostatic pressure and
η(p) is the fluid viscosity which depends on the pressure.

In the following we study oscillatory motions of incompressible Newto-
nian fluids with power-law dependence of viscosity on the pressure of the
forms

η(p) = µ[α(p− ph) + 1]1/2 or η(p) = µ[α(p− ph) + 1]2, (2)

where µ is the fluid viscosity at the reference pressure ph and α is a positive
constant that is called the pressure-viscosity coefficient [18]. The case of
ordinary incompressible Newtonian fluids is obtained making α→ 0 in Eqs.
(2). The gravity effects will be also taken into consideration.

At the moment t = 0+ the lower plate begins to oscillate in its plane
according to

v = V cos(ωt)i or v = V sin(ωt)i, (3)

where v is the velocity vector, V and ω are the amplitude, respectively the
frequency of the oscillations and i is the unit vector along the x-direction of
a suitable Cartesian coordinate system x, y and z whose y-axis is perpen-
dicular to the plates. Owing to the shear the fluid is gradually moved and
we are looking for a solution of the form [14,16]

v = v(y, t)i, p = p(y). (4)

Substituting Eqs. (4) in (1) and the result in the balance of linear mo-
mentum

divT + ρb = ρ
dv

dt
, (5)

we find the following relevant differential equations

∂

∂y

[
η(p)

∂v(y, t)

∂y

]
= ρ

∂v(y, t)

∂t
,
dp(y)

dy
+ ρg = 0. (6)
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Into above relations ρ is the fluid density, b = −gj is the specific body force,
g is the acceleration due to the gravity and j is the unit vector along the
y-direction.

The continuity equation is identically verified and Eq. (6)2 implies

p = p(y) = ρg(h− y) + ph, (7)

where ph = p(h) is the dimensional pressure at the upper plate. The pressure
at the lower plate is p0 = p(0) = ρgh + ph. Replacing p(y) in Eqs. (2) and
the results in Eq. (6)1, we find the governing equations for the velocity field,
namely

µ
√
αρg(h− y) + 1

∂2v(y, t)

∂y2
− µαρg

2
√
αρg(h− y) + 1

∂v(y, t)

∂y
= ρ

∂v(y, t)

∂t
; (8)

0 < y < h, t > 0,

respectively

µ[αρg(h− y) + 1]2
∂2v(y, t)

∂y2
− 2µαρg[αρg(h− y) + 1]

∂v(y, t)

∂y

= ρ
∂v(y, t)

∂t
; 0 < y < h, t > 0, (9)

corresponding to the two types of fluids with pressure-dependent viscosity.

The corresponding non-trivial shear-stresses, as it results from Eqs. (1),
(2) and (7) are given by

τ(y, t) = µ
√
αρg(h− y) + 1

∂v(y, t)

∂y
or

τ(y, t) = µ[αρg(h− y) + 1]2
∂v(y, t)

∂y
, (10)

while the appropriate initial and boundary conditions are

v(y, 0) = 0; 0 ≤ y ≤ h, (11)

v(0, t) = V cos(ωt), v(h, t) = 0 or

v(0, t) = V sin(ωt), v(h, t) = 0; t > 0. (12)

In Eqs. (10) τ = Syx is the non-trivial component of the extra-stress tensor
S.
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In order to determine solutions that are independent of the flow geom-
etry, we introduce the following non-dimensional variables, functions and
parameter

y∗ =
y

h
, t∗ =

t

t0
, v∗ =

v

V
, τ∗ =

t0τ

ρhV
, α∗ = αρgh, (13)

where t0 = h2/ν is a characteristic time which is suitable chosen and ν = µ/ρ
is the kinematic viscosity. Using the entities (13) in Eqs. (8) and (9) and
dropping out the star notation, we get the next dimensionless governing
equations

√
α(1− y) + 1

∂2v(y, t)

∂y2
− α

2
√
α(1− y) + 1

∂v(y, t)

∂y

=
∂v(y, t)

∂t
; 0 < y < 1, t > 0, (14)

respectively

[α(1− y) + 1]2
∂2v(y, t)

∂y2
− 2α[α(1− y) + 1]

∂v(y, t)

∂y
=
∂v(y, t)

∂t
;

0 < y < 1, t > 0. (15)

The adequate dimensionless initial and boundary conditions are

v(y, 0) = 0; 0 ≤ y ≤ 1, (16)

v(0, t) = cos(ωt), v(1, t) = 0 or v(0, t) = sin(ωt), v(1, t) = 0; t > 0, (17)

while the dimensionless non-trivial shear stresses are given by

τ(y, t) =
√
α(1− y) + 1

∂v(y, t)

∂y
or τ(y, t) = [α(1− y) + 1]2

∂v(y, t)

∂y
. (18)

It is well known the fact that the starting solutions vc(y, t) and vs(y, t),
corresponding to the two motion problems of fluids in discussion, can be
presented as sums of steady-state (permanent or long time [14]) and tran-
sient components. Some time after the motion initiation, the fluid moves
according to the starting solutions. After this time, when the transients
vct(y, t) and vst(y, t) disappear or can be neglected, the fluid flows according
to the steady-state components vcp(y, t) or vsp(y, t). In practice this time
is very important for the experimentalists who want to know the moment
when the steady-state is acquired. They need to determine the required time
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to reach the steady-state. In order to determine this time, it is necessary to
know exact solutions at least for the steady-state components of the starting
solutions.

To determine the steady-state solutions in a simple way, we denote by

vp(y, t) = vcp(y, t) + ivsp(y, t), (19)

the dimensionless complex velocity where i is the imaginary unit. This
complex velocity, as well as its dimensionless real and imaginary components
vcp(y, t) and vsp(y, t), is independent of the initial condition but has to satisfy
the governing equation (14) or (15) and the boundary conditions

vp(0, t) = eiωt, vp(1, t) = 0; t ∈ R. (20)

3 Exact expressions for non-dimensional steady-
state solutions

In order to determine exact expressions for the dimensionless steady-state
components vcp(y, t) and vsp(y, t) of the starting solutions vc(y, t), respec-
tively vs(y, t) corresponding to the problems in discussion, we have to solve
adequate boundary values problems for the dimensionless complex velocity
vp(y, t).

3.1. Case η(p) = µ
√
α(p− ph) + 1

The dimensionless complex velocity field corresponding to this case has
to satisfy the partial differential equation (see also Eq. (14))√

α(1− y) + 1
∂2vp(y, t)

∂y2
− α

2
√
α(1− y) + 1

∂vp(y, t)

∂y
=
∂vp(y, t)

∂t
;

0 < y < 1, t > 0 (21)

and the boundary conditions (20). In order to solve the partial differential
equation (21) with the conditions (20), we make the change of independent
variable

y =
α+ 1− r2

α
or equivalently r =

√
α(1− y) + 1 (22)

and attain to the following boundary value problem

α2

4r

∂2vp(r, t)

∂r2
=
∂vp(r, t)

∂t
; 1 < r < a, t ∈ R, (23)

vp(1, t) = 0, vp(a, t) = eiωt; t ∈ R (24)
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where a =
√
α+ 1.

For this boundary value problem we are looking for a separable solution

vp(r, t) = V (r)T (t). (25)

Introducing vp(r, t) from Eq. (25) in (23), we find that

α2d
2V (r)

dr2
− 4λrV (r) = 0,

dT (t)

dt
− λT (t) = 0, (26)

where λ is constant. According to the boundary conditions (24), it results
that λ = iω and the function V (r) has to satisfy the conditions

V (1) = 0, V (a) = 1. (27)

The equation (26)1 is an ordinary differential equation of Airy type (see
[19], the exercise 34 on the page 251) whose general solution is of the form

V (r) =
√
r[C1J 1

3
(

4r

3α

√
−iωr) + C2Y 1

3
(

4r

3α

√
−iωr)], (28)

where C1 and C2 are arbitrary constants. Using the boundary conditions
(27) we find the two constants and as a result

V (r) =

√
r√
a

Y 1
3
(4
√
−iω
3α )J 1

3
( 4r
3α

√
−iωr)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4r
3α

√
−iωr)

Y 1
3
(4
√
−iω
3α )J 1

3
( 4a
3α

√
−iωa)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4a
3α

√
−iωa)

. (29)

Consequently, based on the definition (19) of the complex velocity vp(y, t)
and the previous calculi, we can say that the dimensionless steady-state
components vcp(y, t) and vsp(y, t) of the problem in discussion are given by
the equalities

vcp(y, t) =

√
r√
a

×Re

Y 1
3
(4
√
−iω
3α )J 1

3
( 4r
3α

√
−iωr)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4r
3α

√
−iωr)

Y 1
3
(4
√
−iω
3α )J 1

3
( 4a
3α

√
−iωa)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4a
3α

√
−iωa)

eiωt

 , (30)

vsp(y, t) =

√
r√
a

× Im

Y 1
3
(4
√
−iω
3α )J 1

3
( 4r
3α

√
−iωr)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4r
3α

√
−iωr)

Y 1
3
(4
√
−iω
3α )J 1

3
( 4a
3α

√
−iωa)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4a
3α

√
−iωa)

eiωt

 , (31)
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where r =
√
α(1− y) + 1 while Re and Im denote the real, respectively the

imaginary part of that which follows.

The solutions given by Eqs. (30) and (31), as we already mentioned
before, are independent of the initial condition (16) but satisfy the bound-
ary conditions (17)1,2, respectively (17)3,4 and the governing equation (14).
In order to determine the dimensionless steady-state frictional forces per
unit area exerted by the fluid on the plates, we firstly have to determine
the corresponding shear stresses τcp(y, t) and τsp(y, t) by substituting the
expressions of vcp(y, t) and vsp(y, t) from Eqs (30) and (31) in (18)1. The
dimensionless steady-state frictional forces per unit area exerted by the fluid
on the upper plate, for instance, are given by

τcp(1, t) = − 2

α
√
a
× (32)

Re

 J 1
3
(4
√
−iω
3α )Y 4

3
(4
√
−iω
3α )− Y 1

3
(4
√
−iω
3α )J 4

3
(4
√
−iω
3α )

Y 1
3
(4
√
−iω
3α )J 1

3
( 4a
3α

√
−iωa)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4a
3α

√
−iωa)

√
−iωeiωt

 ,

τsp(1, t) = − 2

α
√
a
× (33)

Im

 J 1
3
(4
√
−iω
3α )Y 4

3
(4
√
−iω
3α )− Y 1

3
(4
√
−iω
3α )J 4

3
(4
√
−iω
3α )

Y 1
3
(4
√
−iω
3α )J 1

3
( 4a
3α

√
−iωa)− J 1

3
(4
√
−iω
3α )Y 1

3
( 4a
3α

√
−iωa)

√
−iωeiωt

 ,

3.2. Case η(p) = µ[α(p− ph) + 1]2

In this case we have to solve the following partial differential equation

[α(1− y) + 1]2
∂2vp(y, t)

∂y2
− 2α[α(1− y) + 1]

∂vp(y, t)

∂y
=
∂vp(y, t)

∂t
, (34)

0 < y < 1, t ∈ R

with the same boundary conditions (20). Making the change of variable

y =
α+ 1− er

α
or equivalently r = ln[α(1− y) + 1], (35)

in Eq. (34), we attain to the partial differential equation with constant
coefficients

∂2vp(r, t)

∂r2
+
∂vp(r, t)

∂r
=

1

α2

∂vp(r, t)

∂t
, 0 < r < b, t ∈ R (36)
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where b = ln(α+ 1). The corresponding boundary conditions are

vp(0, t) = 0, vp(b, t) = eiωt, t ∈ R. (37)

Looking again for a separable solution of the same form (25), we find
that the new function V (r) has to satisfy the ordinary differential equation

d2V (r)

dr2
+
dV (r)

dr
− λ

α2
V (r) = 0 (38)

and the boundary conditions

V (0) = 0, V (b) = 1. (39)

The solution of the ordinary differential equation (38) with the boundary
conditions (39) is given by

V (r) =
er1r − er2r

er1b − er2b
, r1,2 =

−α±
√
α2 + 4iω

2α
(40)

and the dimensionless steady-state velocities fields corresponding to this case
are

vcp(y, t) = Re{ [α(1− y) + 1]r1 − [α(1− y) + 1]r2

(α+ 1)r1 − (α+ 1)r2
eiωt}, (41)

vsp(y, t) = Im{ [α(1− y) + 1]r1 − [α(1− y) + 1]r2

(α+ 1)r1 − (α+ 1)r2
eiωt}, (42)

The corresponding shear-stresses τcp(y, t) and τsp(y, t) are immediately ob-
tained substituting vcp(y, t) and vsp(y, t) from Eqs. (41) and (42) in (18)2.
Using them, we can determine the dimensionless steady-state frictional forces
per unit area exerted by the fluid to the plates. Dimensionless steady-state
frictional forces per unit area exerted by the fluid to the upper plate, for
example, are given by

τcp(1, t) = αRe{ r2 − r1
(α+ 1)r1 − (α+ 1)r2

eiωt},

τsp(1, t) = αIm{ r2 − r1
(α+ 1)r1 − (α+ 1)r2

eiωt}. (43)

4 Limiting cases

In order to bring to light the accuracy of results that have been previously
obtained, we now consider some limiting cases whose steady-state solutions
can be directly determined or as asymptotical approximations of present
solutions.
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4.1 Case ω = 0 (Simple Couette flow)

The flow between two parallel plates, one of them moving in its plane with
a constant velocity V and the other one being stationary is called the sim-
ple Couette flow [20]. Dimensionless steady solutions corresponding to this
motion, namely

vCp(y) =

√
α(1− y) + 1− 1√

α+ 1− 1
and vCp(y) =

(α+ 1)(1− y)

α(1− y) + 1
, (44)

can be immediately obtained solving the ordinary differential equations

d

dy
[
√
α(1− y) + 1

dv(y)

dy
] = 0, respectively

d

dy
[[α(1− y) + 1]2

dv(y)

dy
] = 0;

(45)

0 < y < 1,

with the boundary conditions (see Eqs. (17)1,2)

v(0) = 1, v(1) = 0. (46)

Simple computations show that the velocity field vCp(y) given by Eq. (44)2
can be immediately obtained as a limiting case of vcp(y, t) given by Eq. (41)
when ω → 0. In addition Fig. 1, as it was to be expected, clearly show that
for small enough values of the oscillations’ frequency ω and suitable values
of the time t (so that the product ωt to be small enough), the diagrams of
the steady-state solution vcp(y, t) given by Eq. (30) are almost identical to
those of the steady solution vCp(y, t) given by Eqs. (44)1.

It is worth pointing out the fact that, in both cases, the dimensionless
steady components

τCp = − α

2(
√
α+ 1− 1)

and τCp = −(α+ 1), (47)

of the shear stress τC corresponding to the simple Couette flow of Newtonian
fluids with power-law dependence of viscosity on the pressure are constant
on the whole flow domain, although the adequate velocities which are given
by Eqs. (44) are functions of the spatial variable y.
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Figure 1: Profiles of the permanent solutions vcp(y, t) and vCp(y) given by
Eqs. (30), respectively (44)1.

4.2 Case α = 0 (Flows of incompressible Newtonian fluids)

The dimensionless steady-state solutions [21]

vNcp(y, t) = Re{sh[(1− y)
√
iω]

sh(
√
iω)

eiωt}, vNsp(y, t) = Im{sh[(1− y)
√
iω]

sh(
√
iω)

eiωt},

(48)
corresponding to incompressible Newtonian fluids performing the same mo-
tions as in Section 3, can be easy determined using the separable variable
method. Figs. 2, 3, 4 and 5, as expected, show that the diagrams of the
dimensionless steady-state velocity fields vcp(y, t) and vsp(y, t) given by Eqs.
(30) and (31), respectively (41) and (42) tend to superpose over those of
vNcp(y, t) and vNsp(y, t) given by Eqs. (48).

Furthermore, using the asymptotic approximations

Jν(z) ≈
√

2

πz
cos[z − (2ν + 1)π

4
], Yν(z) ≈

√
2

πz
sin[z − (2ν + 1)π

4
] (49)

for |z| � 1, it is not difficult to show that the dimensionless steady-state
components vcp(y, t) and vsp(y, t) given by Eqs. (30), respectively (31) can
be well enough approximated by the equalities

vcp(y, t) ≈
√
α(1− y) + 1√

α+ 1
Re{

sin{4
√
−iω
3α [1− 4

√
[α(1− y) + 1]3]}

sin{4
√
−iω
3α [1− 4

√
(α+ 1)3]}

eiωt}.

(50)
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Figure 2: Profiles of the permanent solutions vcp(y, t) for three decreasing
values of the parameter α and vNcp(y, t) given by Eqs. (30), respectively
(48)1.

Figure 3: Profiles of the permanent solutions vsp(y, t) for three decreasing
values of the parameter α and vNsp(y, t) given by Eqs. (31), respectively
(48)2.
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Figure 4: Profiles of the permanent solutions vcp(y, t) for three decreasing
values of the parameter α and vNcp(y, t) given by Eqs. (41), respectively
(48)1.

Figure 5: Profiles of the permanent solutions vsp(y, t) for three decreasing
values of the parameter α and vNsp(y, t) given by Eqs. (42), respectively
(48)2.
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vsp(y, t) ≈
√
α(1− y) + 1√

α+ 1
Im{

sin{4
√
−iω
3α [1− 4

√
[α(1− y) + 1]3]}

sin{4
√
−iω
3α [1− 4

√
(α+ 1)3]}

eiωt}.

(51)
for small enough values of α.

Now, using the Taylor series for [1+α(1−y)]3/4 and (1+α)3/4 around the
zero value of the dimensionless pressure-viscosity coefficient α, the identity

sin[(1− y)
√
−iω] = −ish[(1− y)

√
iω], (52)

and taking the limit of Eqs. (50) and (51) when α → 0 we recover Eqs.
(48).

4.3 Case α = ω = 0 (Simple Couette flow of incompressible
Newtonian fluids)

Finally, taking the limit of either one of Eqs. (44) when α→ 0 or the limit
of Eq. (48)1 if ω → 0, we recover the steady component

vNCp(y) = 1− y, (53)

of the dimensionless velocity field vNC(y, t) corresponding to the simple
Couette flow of incompressible Newtonian fluids. The corresponding shear
stress, namely τNCp = −1, is obtained taking the limit of Eq. (47)1 or (47)2
when α→ 0.

5 Conclusions

Exact expressions for the steady-state components of the starting solutions
corresponding to some oscillatory motions of two classes of incompressible
Newtonian fluids with power-law dependence of viscosity on the pressure be-
tween two infinite horizontal parallel plates are established in simple forms
using suitable changes of the independent spatial variable. The fluid motion
is generated by the lower plate that oscillates in its plane. The obtained so-
lutions are independent of the initial condition but they satisfy the boundary
conditions and governing equations. They are important for the experimen-
talists who want to eliminate the transients from their experiments. For
that they have to know the required time to reach the steady-state. This is
the time after which the fluid moves according to the steady-state solutions.
Graphically, it is the time after which the diagrams of starting solutions
(which can be numerically obtained) are almost identical to those of the
corresponding steady-state solutions.



Exact Solutions for Oscillating Motions of Some Fluids 309

To validate the results, some limiting cases are considered and differ-
ent graphical representations are presented in Figs. 1-5. The dimensionless
velocity fields vCp(y) corresponding to the simple Couette flow of fluids
in consideration are also determined. From Figs. 1, as it was to be ex-
pected, it clearly results that for small values of the oscillations’ frequency
ω the diagrams of the dimensionless steady-state solution vcp(yt) given by
Eq. (30) are almost identically to those of the steady solution vCp(y) given
by Eq. (44)1 which corresponds to the simple Couette flow of fluids with
pressure-dependent viscosity given by Eq. (2)1. In the second case when
the dependence of viscosity on the pressure is given by Eq. (2)2, it is easy
to prove that the adequate velocity field vCp(y) given by Eq. (44)2 is just
the limit of vcp(y, t) given by Eq. (41) when ω → 0. It is worth to point
out the fact that, as it results from Eqs. (47), the steady-state components
τCp of the dimensionless non-trivial shear stresses τC corresponding to the
simple Couette flow of both fluids in consideration is constant on the whole
flow domain although the corresponding velocity fields given by Eqs. (44)1
or (44)2 are functions of y.

Figs. 2, 3, 4 and 5 are here included to show that, as expected, the
diagrams of the solutions vcp(y, t) and vsp(y, t) corresponding to oscillatory
motions of fluids with pressure-dependent viscosity tend to superpose over
those of the Newtonian fluids performing the same motions when the dimen-
sionless pressure-viscosity coefficient α → 0. The boundary conditions are
clearly satisfied. In all cases the fluid velocity smoothly decreases from max-
imum values on the lower plate to the zero value on the stationary plate. It
is a decreasing function with respect to the parameter α and this behaviour
is in accordance with the dependence of the fluid viscosity on the pressure.
If the parameter α increases, the fluid viscosity also brings up and the fluid
flows slower.
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