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Abstract

We investigate a set of nonlinear matrix equations with nonnega-
tive matrix coefficients which has arisen in applied sciences. There are
papers where the minimal nonnegative solution of the set of nonlinear
matrix equations is computed applying the different procedures. The
alternate linear implicit method and its modifications have intensively
investigated because they have simple computational scheme. We con-
struct a new decoupled modification of the alternate linear implicit
procedure to compute the minimal nonnegative solution of the con-
sidered set of equations. The convergence properties of the proposed
iteration are derived and a sufficient condition for convergence is de-
rived. The performance of the proposed algorithm is illustrated on
several numerical examples. On the basis of the experiments we derive
conclusions for applicability of the computational schemes.
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1 Introduction

In the field of control theory and application, the research on a positive
system and its application is a hot topic. We need to solve a nonlinear
matrix equation with an M-matrix very often. The general nonsymmetric
matrix Riccati equation associated with M-matrices has many applications
- in the Markov chains [8], in the transport theory [14] and many others.
Nonsymmetric Riccati equation XCX − XD − AX + B = 0 arises from
the game theory and more specially from the investigation of the open-loop
Nash linear quadratic differential game [6, 1, 16].

A more general problem on connected to the properties of the stabilising
solution of the game theoretic algebraic Riccati equation is investigated in
[4, 5, 10].

Research on numerical methods to compute the minimal nonnegative
solution of the set of nonsymmetric coupled Riccati equations (SNCRE) as-
sociated with M-matrices is important topic in recent years. Zhang and Tan
[17] have investigated two numerical iteration methods for solving a SNCRE,
i.e. the inexact Newton method and the alternate linear implicit method
(ALI). They used these methods to compute the minimal nonnegative solu-
tion of the SNCRE. They have proved the convergence properties of these
iterations.

In this paper we propose two new effective modifications of the ALI
method. Convergence properties are discussed. Moreover, we show that Ai−
X̃iCi and Di−CiX̃i , i = 1, . . . , s are M-matrices, where (X̃1, . . . , X̃s) is the
minimal solution to the SNCRE. Numerical examples show the effectiveness
of the new modifications.

The notation Rs×q stands for s× q real matrices. We exploit the prop-
erties of nonnegative matrices. A matrix A = (aij) ∈ Rm×n is a non-
negative matrix if the inequalities aij ≥ 0 are satisfied for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n. We use an elementwise order relation. The inequality
P ≥ Q(P > Q) for P = (pij), Q = (qij) means that pij ≥ qij(pij > qij) for
all indexes i and j. A matrix A = (aij) ∈ Rn×n is said to be a Z-matrix if
it has nonpositive off-diagonal entries. Any Z-matrix A can be written in
the form A = αI −N with N being a nonnegative matrix. Each M-matrix
is a Z-matrix with if α ≥ ρ(N), where ρ(N) is the spectral radius of N .
It is called a nonsingular M-matrix if α > ρ(N) and a singular M-matrix if
α = ρ(N). A square matrix is said to be a c-stable matrix if every eigenvalue
has negative real part.

We exploit the following properties of M-matrices.
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Lemma 1 [3, 11] The following statements are equivalent for a Z-matrix
(-W):

(a) −W is a nonsingular M-matrix;
(b) (θIn − W ) is a nonsingular M-matrix, where θ < 0 and In is the

n× n unit matrix;
(c) W−1 ≤ 0 ( in elementwise order) ;
(d) All eigenvalues of W have negative real parts, i.e. W is stable .

Lemma 2 [9] Let A = (aij) be an n× n M-matrix. If the elements of
B = (bij) satisfy the relations:

aii ≥ bii , (aij) ≤ (bij) ≤ 0 , i 6= j, i, j = 1, . . . , n ,

then B is also an M-matrix.

2 A set of Riccati equations

Consider a SNCRE:

Ri(X1, . . . , Xs) := XiCiXi −XiDi −AiXi +Bi +
∑
j 6=i

eijXj = 0 , (1)

i = 1, . . . , s introduced in [17]. The matrix coefficients are Ai = (aikp) ∈
Rm×m, Bi ∈ Rm×n, Ci ∈ Rn×m, Di = (dikp) ∈ Rn×n and (X1, . . . , Xs) is a

solution of the set of equations (1) with Xi ∈ Rm×n, i = 1, . . . , s. Entries of
E = (eij) are nonnegative constants.

The couple of matrices (X̃1, . . . , X̃s) is the minimal nonnegative solution
to (1) if X̃i ≤ Xi, i = 1, . . . , s (elementwise order) for any nonnegative
solution (X1, . . . , Xs) to (1).

Define the ALI iterative method introduced by Zhang and Tan [17] with

initial matrices X
(0)
i = 0 ∈ Rn×n(m = n). The method uses positive con-

stants γi, i = 1, . . . , s which are computed via ( (31),[17]):

γi = max{maxjaijj , maxjdijj} . (2)

k = 0, 1, 2, . . . :

Y
(k)
i (γiIn +Di − CiX

(k)
i ) = (γiIn −Ai)X

(k)
i +Bi +

∑
j 6=i eijX

(k)
j

(γiIn +Ai − Y (k)
i Ci)X

k+1
i = Y

(k)
i (γiIn −Di) +Bi +

∑
j 6=i eijY

(k)
j .

(3)
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We propose two modifications of iteration (3).
The first one is:

X
(0)
i = 0, i = 1, 2, . . . s ,

For k = 0, 1, 2, . . . one computes :

Y
(k)
i (γiIn +Di) = (γiIn −Ai +X

(k)
i Ci)X

(k)
i +Bi +

∑
j 6=i eijX

(k)
j

(γiIn +Ai)X
(k+1)
i = Y

(k)
i (γiIn −Di + CiY

(k)
i ) +Bi +

∑
j 6=i eijY

(k)
j .

(4)

Motivation for iteration (4) is that the inversion of the matrices (γiIn +
Di) and (γiIn + Ai) are executed in the beginning of the iterative process,
i.e. it is only one time.

The second iteration is based on the transformation γiIn+Di−CiX
(k)
i =

L
(k)
i − U

(k)
i , i = 1, 2, . . . s, k = 0, 1, 2, . . ., where L

(k)
i is the lower triangular

part of the given matrix and U
(k)
i is the strictly upper triangular part. Then

X
(0)
i = 0, i = 1, 2, . . . s ,

For k = 0, 1, 2, . . . one computes :

Y
(k)
i L

(k)
i = (γiIn −Ai)X

(k)
i +X

(k)
i U

(k)
i +Bi +

∑
j 6=i eijX

(k)
j

(γiIn +Ai)X
(k+1)
i = Y

(k)
i (γiIn −Di + CiY

(k)
i ) +Bi +

∑
j 6=i eijY

(k)
j .

(5)

3 Convergence properties

Lemma 3 We construct the matrix sequences {Xi
(k), Yi

(k)}∞k=0 using (4)

with initial values X
(0)
i = 0. Then for any positive k , the following equalities

hold: :

(i) Ri(X1
(k), . . . , Xs

(k)) = (Y
(k)
i −X(k)

i )(γiIn +Di) , i = 1, . . . , , s

(ii) Ri(Y1
(k), . . . , Ys

(k)) = (γiIn −Ai +X
(k)
i Ci)(Y

(k)
i −X(k)

i )

+(Y
(k)
i −X(k)

i )CiY
(k)
i +

∑
j 6=i eij(Y

(k)
j −X(k)

j ) ,

i = 1, . . . , , s ,

(iii) Ri(Y1
(k), . . . , Ys

(k)) = (γiIn +Ai)(X
(k+1)
i − Y (k)

i ) , i = 1, . . . , s ,

(iv) Ri(X1
(k+1), . . . , Xs

(k+1)) = (X
(k+1)
i − Y (k)

i )(γiIn −D + CiY
(k)
i )

+X
(k+1)
i Ci (X

(k+1)
i − Y (k)

i ) +
∑

j 6=i eij(X
(k+1)
j −X(k)

j ) ,

i = 1, . . . , s .
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In addition, the following equalities are true for any nonnegative matrices
X̂1, . . . , X̂s:

(v)

Ri(X̂1, . . . , X̂s) = (Y
(k)
i − X̂i)(γiIn +Di) + (X̂i −X(k)

i )CiX
(k)
i

+(γiIn −Ai + X̂iCi)(X̂i −X(k)
i ) +

∑
j 6=i eij(X̂j −X(k)

j ) ,

i = 1, . . . , s ,

(vi)

Ri(X̂1, . . . , X̂s) = (γiIn +Ai)(X
(k+1)
i − X̂i) + X̂iCi(X̂i − Y (k)

i )

+(X̂i − Y (k)
i )(γiIn −Di + CiY

(k)
i )

+
∑

j 6=i eij(X̂j − Y (k)
j ) , i = 1, . . . , s .

Proof. The proof is completed by a direct calculation.

Theorem 1 Assume Ai, Di, i = 1, . . . , s are Z matrices. There are positive
numbers γi, such that (γi In+Ai) and (γi In+Di) are nonsingular M-matrices
i = 1, . . . , s. Matrices Bi, Ci, i = 1, . . . , s are nonnegative. Assume there
exist nonnegative matrices X̂1, . . . , X̂s, such that
Ri(X̂1, . . . , X̂s) ≤ 0 , i = 1, . . . , s .

The matrix sequences {X(k)
1 , . . . , X

(k)
s }∞k=0 defined by (4) satisfy the fol-

lowing properties:

(i) X̂i ≥ X(k+1)
i ≥ Y (k)

i ≥ X(k)
i for i = 1, . . . , s , k = 0, 1, . . .;

(ii)
Ri(X

(k)
1 , . . . , X

(k)
s ) ≥ 0 , Ri(Y

(k)
1 , . . . , Y

(k)
s ) ≥ 0 ,

Ri(X
(k+1)
1 , . . . , X

(k+1)
s ) ≥ 0 , i = 1, . . . , s , k = 0, 1, . . . .

(iii) The matrix sequences {X(k)
1 , . . . , X

(k)
s }∞k=0 converge to the non-

negative minimal solution X̃1, . . . , X̃s to the set of Riccati equations
R1(X1, . . . Xs)) = 0 , . . . ,Rs(X1, . . . Xs) = 0 with X̃i ≤ X̂i , i = 1, . . . , s.

(iv) Moreover, if Ai−X̂iCi and Di−CiX̂i , i = 1, . . . , s are nonsingular
M-matrices, then Ai− X̃iCi and Di−CiX̃i , i = 1, . . . , s are nonsingular M-
matrices, i.e. matrices −Ai+X̃iCi and −Di+CiX̃i , i = 1, . . . , s are c-stable.

Proof. We begin with the facts that (γiIn + Ai)
−1 ≥ 0, and (γiIn +

Di)
−1 ≥ 0, i = 1, . . . , s. We construct the matrix sequences

{X1
(k), . . . , Xs

(k), Y1
(k), . . . , Ys

(k)}∞k=0 applying recursive equations (4) with

X
(0)
1 = . . . = X

(0)
s = 0 and γi, computed by (2). We confirm the facts

γiIn −Di ≥ 0 and γiIn −Ai ≥ 0 , i = 1, . . . , s.
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For k = 0 we obtain Y
(0)
i (γiIn + Di) = Bi ≥ 0 and thus Y

(0)
i =

Bi(γiIn + Di)
−1 ≥ 0 . And Y

(0)
i ≥ X

(0)
i = 0 , i = 1, . . . , s . In addition,

Ri(X1
(0), . . . , Xs

(0)) = Bi ≥ 0 , i = 1, . . . , s .
Applying Lemma 3 (ii), we get

Ri(Y1
(0), . . . , Ys

(0)) = (γiIn −Ai)Y
(0)
i + Y

(0)
i CiY

(0)
i +

∑
j 6=i eijY

(0)
j ≥ 0 .

To compute X
(1)
i we have

(γiIn +Ai)X
(1)
i = W

(0)
i ≥ 0 ,

where
W

(0)
i := Y

(0)
i (γiIn −Di + CiY

(0)
i ) +Bi +

∑
j 6=i

eijY
(0)
j .

We obtain X
(1)
i is nonnegative i = 1, . . . , s.

Applying Lemma 3 (iii), we get

(X
(1)
i − Y

(0)
i ) = (γiIn +Ai)

−1Ri(Y1
(k), . . . , Ys

(k)) ≥ 0 .

Further on, we compute X
(1)
1 , . . . , X

(1)
s applying the recursive equation

(4). According to Lemma 3 (iv) we induce

Ri(X1
(1), . . . , Xs

(1)) = (X
(1)
i − Y

(0)
i )(γiIn −D + CiY

(0)
i )

+X
(1)
i Ci(X

(1)
i − Y

(0)
i ) +

∑
j 6=i eij(X

(1)
j −X

(0)
j ) ≥ 0 ,

i = 1, . . . , s ,

because γi In −Di ≥ 0, X
(1)
i ≥ Y (0)

i ≥ X(0)
i , i = 1, . . . , s.

In order to prove X̂i ≥ X(1)
i we consider equality Lemma 3 (v)

Ri(X̂1, . . . , X̂s) = (Y
(0)
i − X̂i)(γiIn +Di)

+(γiIn −Ai + X̂iCi)X̂i +
∑

j 6=i eijX̂j ≥ 0 .

Note that γiIn −Ai ≥ 0 . We have

(Y
(0)
i − X̂i) = H

(0)
i (γiIn +Di)

−1 ≤ 0 ,

because

H
(0)
i := Ri(X̂1, . . . , X̂s)−(γiIn−Ai+X̂iCi)X̂i−

∑
j 6=i

eijX̂j ≤ 0 , i = 1, . . . , s .
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Thus X̂i ≥ Y
(0)
i i = 1, . . . , s . Moreover, applying equality Lemma 3 (vi) we

obtain

(γiIn +Ai)(X
(1)
i − X̂i) = Ri(X̂1, . . . , X̂s)− (X̂i − Y (0)

i )(γiIn −Di + CiY
(k)
i )

−X̂iCi(X̂i − Y (0)
i )−

∑
j 6=i eij(X̂j − Y (0)

j ) , i = 1, . . . , s .

We infer X̂i ≥ X(1)
i , i = 1, . . . , s .

So, we have proved inequalities (i) - (ii) for k = 0.

We assume that the inequalities (i) - (ii) hold for k = 0, 1, . . . , r. We

know matrices X
(r+1)
i , i = 1, . . . , s satisfy the properties:

X̂i ≥ X(r+1)
i ≥ Y (r)

i ≥ X(r)
i , ı = 1, . . . , s ,

and

Ri(X
(r)
1 , . . . , X

(r)
s ) ≥ 0 , Ri(Y

(r)
1 , . . . , Y

(r)
s ) ≥ 0 ,

Ri(X
(r+1)
1 , . . . , X

(r+1)
s ) ≥ 0 , i = i = 1, . . . , s .

We will prove the inequalities (i) - (ii) for k = r + 1.

We compute Y
(r+1)
i , i = 1, . . . , s via (4), i.e.

Y
(r+1)
i = [(γiIn−Ai+X

(r+1)
i Ci)X

(r+1)
i +Bi+

∑
j 6=i

eijX
(r+1)
j ] (γiIn+Di)

−1 ≥ 0 .

According to Lemma 3 (i) we extract

Y
(r+1)
i −X(r+1)

i = Ri(X1
(r+1), . . . , Xs

(r+1))(γiIn +Di)
−1 ≥ 0 , i = 1, . . . , s .

From Lemma 3 (ii), we conclude

Ri(Y1
(r+1), . . . , Ys

(r+1)) = (γiIn −Ai +X
(r+1)
i Ci)(Y

(r+1)
i −X(r+1)

i )

+(Y
(r+1)
i −X(r+1)

i )CiY
(r+1)
i +

∑
j 6=i eij(Y

(r+1)
j −X(r+1)

j ) ≥ 0 ,

i = 1, . . . , , s .

We compute X
(r+2)
i , i = 1, . . . , s via the second equation of (4). Consider

the equality (iii) of Lemma 3 for k = r + 1. We write down:

X
(r+2)
i − Y (r+1)

i = (γiIn +Ai)
−1Ri(Y1

(r+1), . . . , Ys
(r+1)) ≥ 0 , i = 1, . . . , s .
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Next, we apply of Lemma 3 (iv) for

Ri(X1
(r+2), . . . , Xs

(r+2)) = (X
(r+2)
i − Y (r+1)

i )(γiIn −Di + CiY
(r+1)
i )

X
(r+2)
i Ci(X

(r+2)
i − Y (r+1)

i ) +
∑

j 6=i eij(X
(r+2)
j −X(r+1)

j ) ≥ 0 ,

i = 1, . . . , s .

Thus Ri(X1
(r+2), . . . , Xs

(r+2)) ≥ 0 , i = 1, . . . , s .

In order to prove X̂i ≥ X(r+2)
i we consider equality Lemma 3 (v)

Ri(X̂1, . . . , X̂s) = (Y
(r+1)
i − X̂i)(γiIn +Di)

+(γiIn −Ai + X̂iCi)(X̂i −X(r+1)
i )− (X̂i −X(r+1)

i )CiX
(r+1)
i

+
∑

j 6=i eij(X̂j −X(r+1)
j ) , i = 1, . . . , s .

Then
Y

(r+1)
i − X̂i = H

(r+1)
i (γiIn +Di)

−1 ≤ 0 ,

because H
(r+1)
i ≤ 0, and

H
(r+1)
i := Ri(X̂1, . . . , X̂s)− (γiIn −Ai + X̂iCi)(X̂i −X(r+1)

i )

−(X̂i −X(r+1)
i )CiX

(r+1)
i −

∑
j 6=i eij(X̂j −X(r+1)

j ) , i = 1, . . . , s .

Thus X̂i ≥ Y (r+1)
i i = 1, . . . , s .

Further on, taking into account Lemma 3 (vi) we obtain

X
(r+2)
i − X̂i = (γiIn +Ai)

−1 T
(r+1)
i ≤ 0 ,

because T
(r+1)
i ≤ 0, and

T
(r+1)
i := Ri(X̂1, . . . , X̂s)− (X̂i − Y (r+1)

i )(γiIn −Di + CiY
(r+1)
i )

−X̂iCi(X̂i − Y (r+1)
i )−

∑
j 6=i eij(X̂j − Y (r+1)

j ) , i = 1, . . . , s .

We infer X̂i ≥ X(r+2)
i , i = 1, . . . , s .

Hence, the induction process has been completed. Thus the matrix se-

quences {X(k)
1 , . . . , X

(k)
s }∞k=0 are nonnegative, monotonically increasing and

bounded from above by (X̂1, . . . , X̂s) (in the elementwise ordering). We de-

note limk→∞(X
(k)
1 , . . . , X

(k)
s ) = (X̃1, . . . , X̃s). By taking the limits in (4) it

follows that (X̃1, . . . , X̃s) is a solution of Ri(X1, . . . , Xs) = 0, i = 1, . . . , s
with the property X̃i ≤ X̂i, i = 1, . . . , s.
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Assume there is another solution (Z̃1, . . . , Z̃s) with Z̃i ≤ X̃i. There exists

sufficiently large index r such that X
(r+1)
i ≥ Z̃i ≥ Y (r)

i ≥ X(r)
i , i = 1, . . . , s.

Applying Lemma 3 (vi) for X̂i = Z̃i , i = 1, . . . , s, we get

0 = (γiIn +Ai)(X
(r+1)
i − Z̃i) + (Z̃i − Y (r)

i )(γiIn −Di + CiY
(r)
i )

+Z̃iCi(Z̃i − Y (r)
i ) +

∑
j 6=i eij(Z̃j − Y (r)

j ) , i = 1, . . . , s .

We rewrite
(γiIn +Ai)(X

(r+1)
i − Z̃i) = Q

(r)
i .

The matrix Q
(r)
i is nonpositive because Z̃i ≥ Y

(r)
i , i = 1, . . . , s. Thus

X
(r+1)
i − Z̃i is nonpositive, which is a contradiction with the assumption

X
(r+1)
i ≥ Z̃i, i = 1, . . . , s. We infer the solution (X̃1, . . . , X̃s) is the minimal

one.

We know X̃i ≤ X̂i , i = 1, . . . , s and thus Ai − X̂iCi ≤ Ai − X̃iCi , i =
1, . . . , s. In addition Ai−X̂iCi is a nonsingular M-matrix and Ai−X̃iCi is a
Z-matrix. Applying Lemma 2 , we conclude that Ai− X̃iCi is a nonsingular
M-matrix for i = 1, . . . , s and moreover −Ai + X̃iCi, i = 1, . . . , s is c-stable.
In similar way we refer that Di − CiX̃i , i = 1, . . . , s are nonsingular M-
matrices.

The theorem is proved.

4 Numerical Examples

We apply the proposed new iterations (4) and (5) and ALI method for com-
puting the minimal nonnegative solution to (1). We will show the effective-
ness of the proposed new iterations. We compare the numerical behaviour
of the new iterations with the ALI iteration method (ALI) in [17]. Two hun-
dred runs are executed for each example for a fixed value of n (the size on
matrix coefficients). All iterative methods are executed in MATLAB (ver-
sion R2014a) on a personal computer. The iterations stop when the current
iterative step satisfies RESi ≤ 1.0e− 12, where RESi is defined as [17]:

RESi :=
‖Ri(X1

(k), . . . , Xs
(k))‖

‖Ri(X1
(0), . . . , Xs

(0))‖
,

i = 1, . . . , s.
In the experiments, we choose the parameters γi as defined in (2). We

take X
(0)
1 = . . . = X

(0)
s = 0 for all examples and all iterative methods. Thus

Ri(X1
(0), . . . , Xs

(0)) = Bi.
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Example 1. We introduce an example with the matrix coefficients
with different values of n: B1 = 0.75 In, B2 = B1 , B3 = B1, C1 =
0.92 In, C2 = C1, C3 = C1 , where In is an identity matrix order n. The
matrices Ai, Di, i = 1, 2, 3 are given in Matlab terminology as follows:

A1=eye(n,n);
for i=1:n-1, A1(i,i+1)=-1; A1(i+1,i)=-0.1; end
for i=1:n-2, A1(i,i+2)=-0.2; A1(i+2,i)=-0.25; end
A2=A1; A3=A1;
D1=A1/5; D2=4A2/3; D3=3A3/2;
for i=1:n, A1(i,i)=4; A2(i,i)=3; A3(i,i)=2; end
for i=1:n, D1(i,i)=2; D2(i,i)=4; D3(i,i)=6; end

We take X
(0)
1 = X

(0)
2 = X

(0)
3 = 0 and thus R(X

(0)
1 , X

(0)
2 , X

(0)
3 ) = Bi ≥ 0,

(i.e. the matrix is nonnegative). We take an s× s matrix (s = 3)

E = (eij) =

 0.0661 0.4512 0.8887

0.4965 0.3156 0.8780

0.6542 0.8914 0.1947

 .

Table 1.

(3) (4) (5)

n It CPU It CPU It CPU

12 33 1.6s 34 1.4s 36 1.4s
18 35 2.8s 37 2.0s 39 2.5s
36 39 10.4s 43 7.8s 44 9.3s
48 40 17.2s 43 13.5s 46 15.4s
55 41 23.4s 43 17.4s 46 21.0s

Example 2. We introduce an example with the matrix coefficients
with different values of n: B1 = 0.75 In, B2 = B1 , B3 = B1, C1 =
0.92 In, C2 = C1, C3 = C1 , where In is an identity matrix order n. The
matrices Ai, Di, i = 1, 2, 3 are given in Matlab terminology as follows:

A1=eye(n,n);
for i=1:n-1, A1(i,i+1)=-0.5; A1(i+1,i)=-0.03; end
for i=1:n-2, A1(i,i+2)=-0.25; A1(i+2,i)=-0.9; end
A1(1,n) = -0.05; A1(n,1) = -0.4;
A2=A1; A2(1,n) = -0.8; A2(n,1) = -0.06;
A3=A1; A3(1,n) = -0.7; A3(n,1) = -0.09;
D1=A1/5; D2=4*A2/3; D3=3*A3/2;
for i=1:n, A1(i,i)=4; A2(i,i)=3; A3(i,i)=2; end
for i=1:n, D1(i,i)=2; D2(i,i)=4; D3(i,i)=6; end
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Table .2.

(3) (4) (5)

n It CPU It CPU It CPU

12 41 1.9s 44 1.5s 39 1.0s
18 45 3.7s 48 2.6s 51 3.2s
36 50 13.2s 54 10.0s 56 11.7s
48 52 22.0s 55 18.0s 58 28.1s
55 52 31.6s 56 23.1s 58 26.9s

5 Conclusion

We have made numerical experiments for computing the minimal nonnega-
tive solution to a set of nonsymmetric Riccati equations (1). The numerical
results are compared. These results confirm the effectiveness of the pro-
posed new modifications of the decoupled iterations. In addition, the new
proposed decoupled iterations have inside possibilities for improving their
implementation.
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