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Abstract

In this paper we present an edge swapping approach for incorpo-
rating line segments into triangulation. If the initial triangulation is
Delaunay, the algorithm tends to produce optimal Constrained Delau-
nay triangulation by improving the triangles’ aspect ratios from the
local area being constrained. There are two types of methods for con-
structing Constrained Delaunay Triangulation: straight-forward ones
which take both points and line segments as source data and produce
constrained triangulation from them at once; and post-processing ones
which take an already constructed triangulation and incorporate line
segments into it. While most of the existing post-processing approaches
clear the triangle’s edges intersected by the line segment being incor-
porated and fill the opened hole (cavity) by re-triangulating it, the
only processing that our algorithm does is to change the triangulation
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connectivity and to improve the triangles’ aspect ratios through edge
swapping. Hereof, it is less expensive in terms of both operating and
memory costs. The motivation behind our approach is that most of
the existing straight-forward triangulators are too slow and not stable
enough. The idea is to use pure Delaunay triangulator to produce an
initial Delaunay triangulation and later on to constrain it to the line
segments (in other words, to split the processing into two steps, each
of which is stable enough and the combination of them works much
faster). The algorithm also minimizes the number of the newly intro-
duced triangulation points - new points are added only if any of the line
segment’s endpoints does not match an existing triangulation point.
MSC: 32B25, 42A15, 94A08

keywords: Delaunay triangulation, constrained Delaunay triangula-
tion, edge swapping, triangle aspect ratio

1 Introduction

The Edge Swapping method [11, 12, 13, 14] (also known as Edge Flipping)
is a powerful approach which allows conversions between different triangu-
lations of the same set of points.

Some denotes: Let Pn = {p0, . . . , pn−1} is a set of distinguishable points
on the plane. A partition of the convex hull of Pn into a set of non-
overlapping triangles T = {t0, . . . , tm−1} (which fully cover the convex hull)
is called triangulation of Pn. The points from Pn are called vertices in
terms of the triangulation and the edges of the triangles are called edges of
the triangulation. An edge is swappable if it is contained in the boundary
Btitj = ti

⋃
tj formed by two adjacent triangles ti and tj of T which can

happen only if this boundary Btitj is a convex quadrilateral (see figure 1).
By edge swapping is meant the operation of replacing the existing edge (the
existing diagonal in Btitj ) by the other diagonal of Btitj (see figure 2).

Sleator et al. [14] proved that a transformation of different triangulations
of same convex polygon into each other by using edge swapping operations
is always possible. Their more important for us result is that if there is at
least one edge in a triangulation T1 which can be swapped (is swappable)
so that an edge of triangulation T2 is produced, then there is a sequence of
edge swapping operations that transforms T1 into T2. Cai and Hirsch [15]
extended this results for the triangulations of planar surfaces and showed
that the complexity of the edge swapping converting between two triangu-
lations of same set of N points is at most O(N2). Later on Hurtado et al.
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Figure 1: Convex quadrilateral condition for swappable edge.

[11] investigated the edge swapping in triangulations of point sets and they
proved that any triangulation of N points in the plane has at least (N−4)/2
swappable edges. Thus, every triangulation of at least six distinguishable
points has at least one swappable edge. Following the result of Sleator et al.
[14], it means that every triangulation of at least six points can be converted
to every other triangulation of the same points. This is a promising result
we take advantage of: Having a convex triangulation of a set of at least six
points, we can always constrain it to a segment specified by any two points
from the set.

The Delaunay triangulation [1, 4, 5] of set of positions on the plane
has the property that the circumcircle of any Delaunay triangle does not
contain any other Delaunay vertices in its interior. It is optimal in the sense
that it maximizes the minimum triangle’s angle. However, there are often
cases when beside positions it is desirable that the produced triangulation
also presents a set of predefined segments (connections between positions).
Obviously, when triangulating a mixed set of both positions and segments,
the resulting triangulation cannot be Delaunay any more. Still, the goal
stays the same - to maximize the minimum triangle angle (in other words,
to optimize the triangles aspect ratios). Thus we come to the definition of
Constrained Delaunay triangulation.

Definition 1. Visibility - two vertices p and q are visible to each other if
the line (pq) does not intersect any edge in the triangulation.

Definition 2. Constrained Delaunay triangulation (CDT) of a mixed set
of positions and segments on the plane is such that the circumcircle of any
triangle does not contain any other triangulation vertex in its interior which
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Figure 2: Edge swapping operation.

is visible from all the three triangle’s vertices.

The motivation behind the CDT methods is their applications in CAD
modeling, geographic information systems (GIS), digital terrain modeling
(DTM) and others where already exist predefined features coming from the
presentation of specific objects (for example, rivers, elevation contours, prop-
erty lines, roadways, etc.). In general, CDT is appropriate for the cases that
require incorporating non-convex boundary, holes and feature lines in the
triangulation.

The existing algorithms for constructing CDT could be grouped in differ-
ent ways. With the ”Divide-and-Conquer” CDTs [6] the input set is usually
subdivided into smaller sub-sets. Having a small enough sub-set, its tri-
angulation is trivial, but the merging of the triangulated sub-sets into an
overall triangulation of the data is complex and resource-consuming. The
Sweep-Line CDT algorithms [7, 8] divide the processed area into two sub-
areas. The triangulated sub-area gradually grows by integrating elements
from the non-triangulated sub-area while keeping the triangulation conforms
the Constrained Delaunay requirements. Being simpler to implement, the
Incremental CDT methods [3, 2, 9, 10] are the most popular ones. The tri-
angulation is built gradually by inserting new vertices and segments while
again keeps the triangulation be conforming the CDT rules. As far as we
know, when incorporating a segment all known incremental CDTs proceed
as follows: first, they find all the edges (respectively, triangles) intersected
by the segment, next, the intersected edges are removed from the triangu-
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lation, and finally, the opened hole is re-triangulated and merged into the
overall triangulation.

Another grouping of the CDT methods depends on whether the trian-
gulation is constructed by simultaneous use of both the positions and the
segments (straight-forward CDT methods), or the process is divided into
two steps, where during the first step is constructed a pure Delaunay tri-
angulation of all positions (including the positions of the segments’ ends)
and during the second step the triangulation is being ”constrained” by in-
cremental integration all of the segments one by one in it (post-processing
CDT methods). Actually, most of the incremental CDT methods can be
implemented as post-processing CDTs. For example, Shewchuk and Brown
[16] presented an algorithm for inserting a segment in CDT in time linear in
the number of structural changes (i.e. the number of the edges that the seg-
ment intersects). Again, their approach first removes the intersected edges
and next re-triangulates the opened hole. They analyze the complexity of
the operations like: segment location (that precedes the integration of the
segment), collecting and removal of the intersected edges and cavity (hole)
re-triangulation. Other post-processing approaches are presented by Agar-
wal et al. [17] and by Domiter [10], both are similarly removing the edges
intersected by the segment and re-triangulate the cavity.

Unlike the described approaches, our algorithm does not remove the
intersected edges. What it does is to locally modify the triangulation, only
by swapping its edges, until the segment is presented by a single edge in it.
A simultaneous process improves the aspect ratios of the affected triangles
which is again based on edge swapping. There is also another group of
triangulation methods which introduce additional regularizing vertices into
the triangulation besides the integrated source points and segments. It
comes to the so called mesh refinement methods. The additional vertices
are integrated so they provide certain triangulation properties. Usually the
goal is to produce optimal number of triangles while ensuring they have
good (reasonable) aspect ratios. In particular, we are interested in the mesh
refinement methods which produce Delaunay triangulation called Delaunay
refinement methods.

In the pioneer work on the Delaunay refinement Ruppert [18] proposed
an algorithm for triangulating a set of both points and segments in the
plane which produces Delaunay triangulation where all triangles’ angles are
between and -2 where can be chosen between 0 and 20 degrees. The algo-
rithm’s idea is to maintain good triangulation by making local improvements
in order to remove the skinny triangles. Each improvement involves adding
a new vertex and re-triangulating. The edges sharing a common end-vertex
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are split at the same distance from the end-vertex which is a simple solution
giving good upper and lower bounds on the output triangles’ angles. How-
ever, it is not naturally adoptable to curved input (set of curves instead of
segments). Pav and Walkington [19] analyze the second splitting approach
proposed by Ruppert [18] for the cases of curved input. Their algorithm
resembles 2.5D corner lopping, which places a protective ball around the
acute corners in the input. An implementation of the Ruppert’s Delaunay
refinement is proposed by Miller et al. [20]. It gradually adds the source
points one-by-one, ”opens” the affected triangulation area by removing all
the triangles (edges) and re-triangulates the opened cavity.

The idea of the refinement approaches is to improve and regularize the
triangulation by introducing additional vertices and edges. In contrast, the
goal of our approach is not to improve the triangulation but to ensure that
the desired segments are presented in it without introducing any new tri-
angulation elements (whenever it is possible) while keeping the triangles’
aspect ratios as good as possible.

2 Constraining Triangulation to Line Segments

The motive for our research is to overcome the inconsistencies of the existing
CDT implementations and their unsatisfactory work. Most of the existing
approaches are quite complex to implement and that is why the developed
solutions often fail to deal with specific cases. The specific area of applica-
tion where we faced problems with some of the existing implementations is
the digital terrains modeling. The data from the terrain measurements are
usually ordered sets of 3D positions. Also, very often are supplied sets of
terrain contours (2D curves or polygons with assigned elevations) extracted
directly from digitized maps.

The idea is to avoid using complex 3D Constrained Delaunay tetrahe-
dralization [21] and instead to produce a 2D CDT mesh of the projections
of the terrain data (both elevated positions and curves). By elevating the
mesh vertices after the terrain elevations is simulated a 3D surface (while
in fact it is not). Such surface representation is called 2.5D surface or
height field.

In order to be optimal, the triangulation of the terrain data has to be
Delaunay (for the case of 3D positions only) or Constrained Delaunay (for
the case of elevated contours). There might be cases when beside contours
and/or 3D positions are also provided 2.5D polygons (usually used as terrain
surface modifiers). The CDT would be the optimal triangulation of the
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source data in each of these cases. The presented approach consists of three
steps:

A. Producing pure Delaunay triangulation from all 3D posi-
tions, including the ones that are ends of segments.

During this step the segments are not only passed to the triangulator
but we keep the correspondence between the segments and the positions
of their ends in the triangulation. Thus, during the next step, when the
segments are being incorporated into the triangulation (the constrain-to-
segments step), we do not have to additionally locate the segment position on
the triangulation as we already have vertices in the Delaunay triangulation
for every segment ending point and pointers to them. This highly speeds up
the overall processing.

For producing the pure Delaunay triangulation we use the Shewchuk’s
algorithm [22] for triangulating of positions only.

B. Constraining the triangulation to the segments.

Having every segment defined by two pointers to already existing vertices
in the triangulation reduces the constraining task to changing the topology
of the existing triangulation. In other words, no new triangulation elements
will be introduced (neither vertices not edges). The only processing to do is
changing the triangulation topology (the connectivity between its vertices)
while, of course, keeping it manifold. This can be fully achieved by perform-
ing only edge swapping operations. This is a consequence of the following
two propositions: 1) every triangulation of at least six distinguishable points
has at least one swappable edge (proved by Hurtado et al. [11]) and 2) if
there is at least one edge in a triangulation T1 which is swappable so that
an edge of triangulation T2 is produced, then there is a sequence of edge
swapping operations that transforms T1 into T2 (proved by Sleator et al.
[14]). Hence, what remains to consider is when the triangulation has less
than six distinguishable points. The good news is that the pure Delaunay
triangulation is always covering the convex hull of the positions. Sleator
et al. [14] already showed that for different triangulations of same convex
polygon (no matter how many vertices it has) there always exists sequences
of edge swapping operations to transform them into each other. This leads
to the following lemma:

Lemma 1. Having a convex triangulation, for every two vertices from it
there exists a sequence of edge swapping operations transforming it to a
triangulation where an edge connecting the two vertices is presented (which
is a direct consequence of the above two propositions, first one proved by
Hurtado et al. [11] and the second one - by Sleator et al. [14]).
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C. Constrain-to-Segment algorithm.

Step 1: Find all triangulation edges intersected by the segment.

In order to perform this step fast we need the triangulation data struc-
ture to store some additional information - for every triangle we store its
three adjacent triangles. This way, once we find that the segment intersects
a triangle edge, we already know its adjacent triangle along the intersected
edge to go on with. In the adjacent triangle, besides the already intersected
edge there are two more edges to be checked for intersection. Actually, this
way we always have the direction for searching for the rest of the intersec-
tions and what is more, at the end we have the set of the found intersections
ordered by the sequence in which the triangulation edges are intersected
(means that any two successive intersections from the set are always on two
edges of same triangle). Both the fact that we already know the adjacencies
between the triangles and that we always know the search direction make
this approach very fast with logarithmic complexity (see the work of Dev-
illers et al. [23] for more information about the walking-on-triangulation
approaches). Another circumstance that reduces the complexity even fur-
ther is that our algorithm only needs to know which the edges intersected
by the segment are, and doesn’t care about the exact intersection positions.

Figure 3: Set of ordered intersections between segment and triangulation
edges.

Step 2: Edge swapping approach.

This step is the essence of the presented approach. It does not introduce
any new triangulation elements (neither vertices nor edges). The only edit-
ing operation allowed here is edge swapping which does not add new edges
but only changes the connectivity of the old ones. Let the ordered set of
intersected by the segment edges be Ek = {e0, e1, . . . , ek}. The algorithm
works as follows:
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1. Find the next swappable edge in the set (figure 4., (2)) and swap it.

2. If all prior intersected edges are marked as ’done’ (which means that
they are already swapped), mark the lastly swapped again as ’done’
(figure 4., (2)). Otherwise, keep the last swapped be ’not done’ as it
is still intersected by the edge (figure 4., (3) and (4)).

3. If not all prior intersected edges are already swapped (marked as
’done’), then collect the ”outer” edges affected by the last swap.

In other words, if the swapped edge is not intersected by the segment
(after the swap), then it affects exactly two ”outer” edges (figure 5).
These are the two edges that form a triangle with the swapped edge on
the opposite side to the segment (they are not visible from the segment
and are separated from it by the swapped edge).

4. Also, if not all prior intersected edges are swapped (marked as ’done’),
go backwards and swap all of them (figure 4., (5) and (6)).

The prior non-swappable intersected edges (marked still as ’not done’)
form a consecutive subset right before the last swapped edge. This
subset is processed backwards. The first processed not swapped edge
now becomes swappable. Swapping it makes the next processed be
swappable as well and so on until all subset edges are passed. This
way all the edges from the subset will be swapped so they are not
intersected by the segment anymore and will be marked as ’done’.

5. Repeat 1 to 4 until the triangulation is constrained to the segment (all
intersected edges are swapped) (figure 4., (7), (8), (9) and (10)).

Step 3: Improve the local triangles aspect ratios.

Having collected all affected by the constraining ”outer” edges (figure
6) we examine the triangles they share and improve the covered area again
only through edge swapping. As a result, the local triangulation affected by
the constraining is improved (only by improving the triangles aspect ratios).

To be able to perform this step we need a criteria whether the swapping
of an edge will improve the aspect ratios of the paired triangles that share
it after the swap. Having it, we iterate the edges. Every processed edge
is checked whether swapping it (if it is swappable) will improve the aspect
ratios of the shared triangles, and if so, the edge is swapped. Iterative
process stops when there are no edges can be swapped any more so the
triangles aspect ratios become better.
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Figure 4: Illustration of the Constrain-to-Segment algorithm based on edge
swapping operations only.

D. Improving triangles aspect ratio of a pair of adjacent trian-
gles.

In order to improve the local triangulation of the area affected by con-
straining-to-segment, first of all we have to be able to estimate the aspect
ratio of a triangle. The estimation that we use is the ratio between the
diameter of the circumcircle around the triangle and the diameter of the
inscribed circle in the triangle (figure 7).

Let denote the aspect ratio of a triangle T with R(T ). Considering a pair
of adjacent triangles P = {T0, T1}, first we check whether the common edge
they share is swappable (figure 1) and if so, then there exists a derivative pair
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Figure 5: Collecting the ”outer” edges affected by the constraining to seg-
ment.

of triangles P
′

= {T ′0, T
′
1} for the same quadrilateral. The swap improves

the aspect rations of the paired triangles if:

Max(R(T0, R(T1))) > Max(R(T
′
0, R(T

′
1))) (1)

Lemma 2. Having a subset of edges from a triangulation and provided that
the local triangulation covered by the triangles sharing the edges from the
subset has at least six distinguishable points, the local triangulation can be
improved (i.e. its triangles aspect ratios can be improved) by a finite sequence
of edge swapping operations.
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Figure 6: Collected ”outer” edges affected by the constraining to segment.

Figure 7: Triangle aspect ratio estimation.

It is again a direct consequence from the work of Hurtado et al. [11] -
they proved that every triangulation of at least six distinguishable points
has at least one swappable edge and from the work of Sleator et al. [14]
who proved that if there is at least one edge in a triangulation T1 which
is swappable so that an edge of triangulation T2 is produced, then there
is a sequence of edge swapping operations that transforms T1 into T2. In
our case: if we have at least one swappable edge witch improves the local
triangulation, then there is a sequence of edge swapping operations that
optimize it. Otherwise, the local triangulation is already optimal.
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3 Conclusion

A method for constructing a Constrained Delaunay triangulation of a mixed
set of both 3D position and 3D polygons is presented. A segment is incor-
porated into triangulation in expected O(m) time at worst, where m is the
number of the intersected edges by the segment. Further, we present an
approach for improving the local triangulation affected by the constraining-
to-segment.
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