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RISK MODELS OF ORDER K∗

Krasimira Y. Kostadinova† Meglena Lazarova ‡

Abstract

In this paper we consider two compound processes of order k, one
that is a Poisson process of order k and another one, Pólya-Aeppli
process of order k. We define a Poisson of order k risk model and we
consider a Pólya-Aeppli of order k risk model. For these risk models
we define an exponential martingales. The corresponding martingale
approximations of the ruin probability for these processes are given. Fi-
nally, we compare these models in the case of exponentially distributed
claims.
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1 Introduction.

We consider the standard risk model {X(t), t ≥ 0}, defined on the complete
probability space (Ω,F , P ) and given by

X(t) = ct−
N(t)∑
i=1

Zi,

(
0∑
1

= 0

)
. (1)

Here c is a positive real constant representing the risk premium rate
and {N(t), t ≥ 0} is a counting process.
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In the classical risk model the process N(t) is a homogeneous Poisson
process, see Grandell (1991), [2] and Rolski et al. (1999), [18].

It is known that the Poisson process is one of the basic counting processes
in the risk theory. For a given insurance company, the process N(t) is
interpreted as the number of the claims that arrive to the company during
a time interval [0, t]. The sequence {Zi}∞i=1 of non-negative independent
and identically distributed random variables is independent of the counting

process {N(t), t ≥ 0}. The random sum

N(t)∑
i=1

Zi represents the aggregated

claim amount to the insurance company up to time t. The claim sizes
{Zi}∞i=1 are distributed as the random variable Z with common distribution
function F, F (0) = 0 and a mean value µ = EZ <∞.

For the Poisson process is known that its mean and variance are equal but
in the insurance and financial data the variance is always greater than the
mean. This fact makes the modeling with a Poisson process not so realistic
and leads to different types of generalizations of the classical risk model.
Many different generalizations of the Poisson process are derived in the
years. The most famous of them are concerned with the compound Poisson
process. Minkova (2004), see [12] defines a Pólya-Aeppli process which is a
compound Poisson process with geometric compounding distribution. This
process is characterized in detail by Chukova and Minkova (2013), see [5].
Other generalization of the Poisson process is the non-homogeneous Pólya-
Aeppli process, where the intensity parameter is a function of the time, see
Chukova and Minkova (2018), [7], Leonenko et al. (2017), [10] and Slimacek
and Lindqvist (2016), [19]. Of course there are some modified birth process
which are interesting and are given in Minkova (2001), [11].

The measure of the process’s dispersion variability is given by the Fisher
index of dispersion FI. It is a ratio of the variance to the mean, see Fisher
(1934), [8]. The Fisher index of dispersion is equal to one, i.e. FI(N(t)) = 1,
whenN(t) is a Poisson process. Such process is called equi-dispersed process.

The counting process N(t) is over-dispersed when the Fisher index of
dispersion is greater than one, i.e. FI(N(t)) > 1. The counting process N(t)
is under-dispersed when the Fisher index of dispersion is lower than one, i.e.
FI(N(t)) < 1, see Xekalaki (2006), [21] and Minkova and Balakrishnan
(2013), [14].

In the present paper we consider two cases. The first one is when the
compounding random variable Y is a discrete uniformly distributed over
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k > 1 points with probability mass function given by

P (Y = i) =
1

k
, i = 1, 2, . . . , k.

The second one is when the compounding random variable Y is truncated
geometric distributed with probability mass function

P (Y = i) =
1− ρ
1− ρk

ρi−1, i = 1, 2, . . . , k.

This article is organized as follows. In Section 2 we consider two com-
pound processes of order k, the first one is a Poisson process of order k, see
[9] and the second one is a Pólya-Aeppli process of order k, see [6].

In Section 3 we define a Poisson of order k risk model and we consider
a Pólya-Aeppli of order k risk model, see [6]. We also define exponential
martingales related to these risk models and obtain the corresponding mar-
tingale approximations. In Section 4 we compare these models in the case
of exponentially distributed claims. Some concluding remarks are given in
Section 5.

2 Counting processes of order k.

Let the counting process N(t) is a compound Poisson process with a discrete
compounding distribution, i.e.

N(t) = Y1 + Y2 + . . .+ YN1(t), (2)

where Yi, i = 1, 2, . . . are independent and identically distributed as Y
random variables independent of the process N1(t). The counting process
N1(t) is a Poisson process with intensity λ > 0. We denote N1(t) ∼ Po(λt).

Let Y is the compounding random variable with probability generating
function given by ψY (s) = E(sY ), s ∈ (0, 1).

The probability mass function and the probability generating function
of the process N1(t) are as follows

P (N1(t) = i) =
(λt)ie−λt

i!
, i = 0, 1, . . . (3)

and

ψN1(t)(s) = e−λt(1−s). (4)
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The probability generating function of the process N(t) in (2) is given
by

ψN(t)(s) = e−λt[1−ψY (s)]. (5)

Definition 1. If the compounding random variable Y is a discrete dis-
tributed, truncated at 0 and from the right away from k+1, then the random
variable N has a distribution of order k, see [4].

The discrete distributions of order k were introduced in the early eighties
by Philippou et al. (1983), [16] and Philippou and Makri (1986), [17]. It
is proved that the discrete distributions of order k can be represented as a
Compound Generalized Powers Series Distributions, where the compounding
distribution is a discrete distribution over k ≥ 1 points, see Aki et al. (1984),
[1] and Charalambides (1986), [4]. A good reference for these distributions
is the book of Balakrishnan and Koutras (2002), [3].

Analogously if the compounding random variable Y has a distribution
over k ≥ 1 points, then the counting process N(t) is called a compound
process of order k.

2.1 Poisson process of order k.

The Poisson process of order k is defined by Philippou (1983), [15] and Char-
alambides (1986), [4] as a compound Poisson process. It is also a compound
birth process, see Kostadinova and Minkova (2013), [9].

Let the compounding random variable Y in (2) be a discrete uniformly
distributed over k > 1 points with probability mass function

P (Y = i) =
1

k
, i = 1, 2, . . . , k. (6)

The probability generating function of Y , ψY (s) = E(sY ), s ∈ (0, 1) is given
by

ψY (s) =
s

k

1− sk

1− s
. (7)

Definition 2. The stochastic process, defined by the probability generating
function (5) and compounding distribution, defined by (7) is called a Poisson
process of order k with parameter λ. We use the notation N(t) ∼ Pok(λt).

Remark 1. If k = 1, the discrete uniform distribution in (6) degenerates
at point 1 and the process N(t) is a homogeneous Poisson process.



Risk models of order k 263

Remark 2. The mean and the variance of the Poisson process of order k
are given by

E(N(t)) =
k + 1

2
kλt and V ar(N(t)) =

(k + 1)(2k + 1)

6
kλt.

For the Fisher index of dispersion we get

FI(N(t)) =
V ar(N(t))

E(N(t))
= 1 +

2

3
(k − 1) > 1,

i.e. the Poisson process of order k is over-dispersed related to the Poisson
process.

This makes the Poisson process of order k suitable for financial data.

2.2 Pólya-Aeppli process of order k.

The Pólya-Aeppli distribution of order k is introduced by Minkova (2010),
[13]. It is a compound Poisson distribution with truncated geometric com-
pounding distribution and probability generating function given by (5).
Chukova and Minkova (2015) defined the corresponding process as a pure
birth process and give an application to risk theory, see [6].

Suppose that the compounding random variable Y given in (2) has a
truncated geometric distributed with success probability 1− ρ.

The probability mass function and the probability generating function
of the compounding variable are given by

P (Y = i) =
1− ρ
1− ρk

ρi−1, i = 1, 2, . . . , k (8)

and

ψY (s) =
(1− ρ)s

1− ρk
1− ρksk

1− ρs
, (9)

where k ≥ 1 is a fixed integer number.

Definition 3. The stochastic process, defined by the probability generating
function (5) and compounding distribution, defined by (8) and (9) is called
a Pólya-Aeppli process of order k with parameters λ > 0 and ρ ∈ [0, 1). We
use the notation N(t) ∼ PAk(λt, ρ).

Remark 3. In the case of k → ∞, the Pólya-Aeppli process of order k
approaches to the Pólya-Aeppli process, defined by Minkova (2004), [12]. If
ρ = 0 it is a homogeneous Poisson process, see [13].
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Remark 4. The mean and the variance of the Pólya-Aeppli process of order
k are given by

E(N(t)) =
1 + ρ+ . . .+ ρk−2 + ρk−1 − kρk

1− ρk
λt

and

V ar(N(t)) = 1+3ρ+5ρ2+7ρ3+...+(2k−3)ρk−2+(2k−1)ρk−1−k2ρk
1−ρk λt.

For the Fisher index of dispersion we get

FI(N(t)) =
V ar(N(t))

E(N(t))

= 1 +
2ρ+ . . .+ 2(k − 2)ρk−2 + 2(k − 1)ρk−1 + kρk(1− k)

1 + ρ+ . . .+ ρk−2 + ρk−1 − kρk
> 1,

i.e. the Pólya-Aeppli process of order k is over-dispersed related to the Poi-
sson process.

This makes the Pólya-Aeppli process of order k suitable for financial
data also.

3 Risk models of order k.

3.1 Poisson of order k risk model.

Let the counting process N(t) in the risk model (1) is a Poisson process of
order k. We call this model a Poisson of order k risk model. The inter-
pretation of the counting process is the following. If the insurance policies
are separated into independent groups then the number of the groups has
a Poisson distribution. We suppose that the groups are homogeneous and
identically distributed. The number of the policies in each group has a
discrete uniform distribution over k points.

For this risk model the relative safety loading θ is given by

θ =
EX(t)

E(Z1 + Z2 + . . .+ ZN(t))
=

2c

λµ(k + 1)
− 1.

Let τ = inf{t : X(t) < −u} with the convention of inf ∅ = ∞ be the
time to ruin of an insurance company having initial capital u ≥ 0. We denote
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by Ψ(u) = P (τ < ∞) the ruin probability. We assume that θ > 0. When
θ < 0, Ψ(u) = 0. In the case of positive safety loading θ > 0, the premium
income per unit time c should satisfy the following inequality

c >
λµ(k + 1)

2
. (10)

The condition given in (10) is called a net profit condition.

Remark 5. If k=1, the net profit condition given in (10) coincides with the
net profit condition of the Poisson process.

3.2 Pólya-Aeppli of order k risk model.

Let the counting process N(t) in the risk model (1) is a Pólya-Aeppli process
of order k. Chukova and Minkova (2015) called this model a Pólya-Aeppli of
order k risk model, see [6]. The interpretation of the counting process is the
following. If the insurance policies are separated into independent groups,
then the number of the groups has a Poisson distribution. We suppose that
the groups are homogeneous and identically distributed. The number of the
policies in each of the groups has a truncated geometric distribution.

For this risk model, see [6]. The relative safety loading θ is given by

θ =
EX(t)

E(Z1 + Z2 + . . .+ ZN(t))
=

c(1− ρk)
λµ(1 + ρ+ ρ2 + . . .+ ρk−1 − kρk)

− 1.

In the case of positive safety loading θ > 0, the premium income per
unit time c should satisfy the following inequality

c >
λµ(1 + ρ+ ρ2 + . . .+ ρk−1 − kρk)

1− ρk
. (11)

4 Martingale approximation.

4.1 Martingales for the risk models of order k.

Let us denote by (FXt ) the natural filtration generated by any stochastic
process X(t). (FXt ) is the smallest complete filtration to which the process
X(t) is adapted. As the ruin times are first entrance times to some interval
we need a complete filtration in order to assure that the ruin times are
stopping times.
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We denote by LSZ(r) =
∞∫
0

e−rxdFZ(x) the Laplace-Stieltjes transform

(LS − transform) of any random variable Z with distribution function
FZ(x).

From the martingale theory [20] we get the following lemmas:

Lemma 1. For the risk model of order k we have the equality

Ee−rX(t) = eg(r)t,

where

g(r) = −cr − λ[1− ψY (LSZ(−r))]. (12)

Proof. Let S(t) =

N(t)∑
i=1

Zi be the sum of the aggregated claims up

to time t, where N(t) is a compound process of order k, independent of
Zi, i = 1, 2, . . .

The LS-transform of the sum S(t) is given by

LSS(t)(r) = E[e−rS(t)] = E[e−r(Z1+...+ZN(t))]

=

∞∑
m=0

E(e−r(Z1+...+ZN(t))|N(t) = m)P (N(t) = m)

=
∞∑
m=0

E(e−r(Z1+...+Zm))P (N(t) = m)

=

∞∑
m=0

P (N(t) = m)(LSZ(r))m

= ψN(t)(LSZ(r)) = e−λt[1−ψY (LSZ(r))].

Analogously the Laplace-Stieltjes transform of the process X(t) is given
by

LSX(t)(r) = E[e−rX(t)] = E[e−r[ct−S(t)]] = e−rctEerS(t)

= e−rctψN(t)(LSZ(−r))

= e−rcte−λt[1−ψY (LSZ(−r))] = eg(r)t,
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where g(r) is given by (12). As the counting process N(t) is a compound
process of order k, its corresponding probability generating function is given
by ψN(t)(s) = e−λt(1−ψY (s)).

Lemma 2. For all r ∈ R the process

M(t) = e−rX(t)−g(r)t, t ≥ 0 (13)

is an FXt -martingale, provided that LSZ(−r) <∞.

Proof. From Lemma 1 for 0 ≤ v ≤ t we have

E(M(t)|FXv ) = E
[
e−rX(t)−g(r)t|FXv

]
= E[e−rX(v)−g(r)ve−r(X(t)−X(v))−g(r)(t−v)|FXv ]

= M(v)E[e−r(X(t)−X(v))e−g(r)(t−v)]

= M(v)eg(r)(t−v)e−g(r)(t−v) = M(v)

and then (13).

4.2 Martingale approach to the risk models of order k.

Using the martingale properties of the process M(t), given in Lemma 2, we
give some useful inequalities for the ruin probability. For the martingale
approach in the classical case see Schmidli (1996), [20].

Proposition 1. Let r > 0. For the ruin probabilities of the risk model of
order k we have the following results
(i) Ψ(u, t) ≤ e−ru sup

0≤s≤t
eg(r)s for 0 ≤ t <∞

(ii) Ψ(u) ≤ e−ru sup
s≥0

eg(r)s

(iii) If the Lundberg’s exponent R exist, then R is the largest positive real
solution of the equation

cr + λ[1− ψY (LSZ(−r))] = 0 (14)

and

Ψ(u) ≤ e−Ru. (15)
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Proof. Let the process M(t) be a martingale relative the σ - algebras
FX , generated by the process X(t) and τ = inf{t ≥ 0 : X(t) < 0} be the
time to ruin for an insurance company.

Applying the martingale stopping time theorem on the martingale M(t)
we obtain that

1 = M(0) = EM(t0 ∧ τ) = E[M(t0 ∧ τ), τ ≤ t0] + E[M(t0 ∧ τ), τ > t0]

≥ E[M(t0 ∧ τ), τ ≤ t0] = E[e−rX(τ)−g(r)τ |τ ≤ t0]P (τ ≤ t0)

≥ eruE[e−g(r)τ |τ ≤ t0]P (τ ≤ t0).

The process X(τ) ≤ 0 for τ < ∞. Then the inequality e−ru ≥ 1 holds.
Since t0 in the above calculations was arbitrary selected, then for every t we
have

P (τ ≤ t) ≤ e−ru

E[e−g(r)τ |τ ≤ t]
≤ e−ru. (16)

The statement (i) of the proposition follows from the above relation. By
letting t→∞ in statement (i) we obtain statement (ii).

According to the interpretation of the Lundberg exponent, see Rolski
et al. (1999), [18] the constant R is such that the process E(e−RX(t)) is a
martingale. Following Lemma 1 we see that the constant R is a positive
root of the equation g(r) = 0, where g(r) is given in (12).

Taking the condition (14) we obtain the inequality (15) from (16).

Remark 6. The condition (14) is known as Cramér condition and (15) as
Lundberg inequality.

5 Exponentially distributed claims.

Let us suppose that the claim sizes {Zi}∞i=1 are exponentially distributed,

i.e. Z ∼ exp(µ) with distribution function FZ(x) = 1− e−
x
µ , x ≥ 0, µ > 0

and mean value EZ = µ <∞.
Then for the LS-transform of the exponentially distributed claims we

have the following expression

LSZ(−r) = E(erZ) =

∞∫
0

erxdFZ(x) =

∞∫
0

erxd(1− e−
x
µ ) =

1

1− µr
,

where r < 1
µ .
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It is known that MZ(r) = 1
1−µr is the moment generating function of the

exponential distribution.

Our main goal in this section is to compare the Poisson of order k risk
model and Pólya-Aeppli of order k risk model. For the purpose we take
arbitrary values of the parameters k, λ, µ and ρ. The value of the premium
income per unit time c is chosen so that the safety loading θ is positive.

5.1 Model 1: Poisson of order k risk model.

Let the counting process N(t) in the Poisson of order k risk model has an
intensity λ. Then from the equation g(r) = 0 for this risk model we obtain
the following equation

cr + λ

[
1− 1− (1− µr)k

kµr(1− µr)k

]
= 0. (17)

The above equation’s solution is called Crámer-Lundberg’s exponent.
Our interest is in finding the maximum positive real root R of the equation
(17).

5.2 Model 2: Pólya-Aeppli of order k risk model.

Let the counting process N(t) in the Pólya-Aeppli of order k risk model has
an intensity λ and parameter ρ. Then from the equation g(r) = 0 for this
risk model we obtain the following equation

cr + λ

[
1− (1− ρ)((1− µr)k − ρk)

(1− ρk)(1− µr)k(1− µr − ρ)

]
= 0. (18)

Since the value of the Lundberg’s exponent R is a measure of the dange-
rousness of the risk business, we search the maximum positive real root R
of the equation (18).

5.3 Model’s Risk business comparison.

Example 1: Let k = 3, λ = 2, µ = 1. For the Pólya-Aeppli of order k risk
model we have an intensity λ and a parameter ρ ∈ [0, 1). We give five values
for the parameter ρ, i.e. ρ = 0.1, 0.3, 0.5, 0.7 and ρ = 0.9. We take c = 4
under the conditions (10) and (11).

For these values of the parameters we compare the Poisson of order k
risk model and the Pólya-Aeppli of order k risk model. For the insurance
company the model with the greater R is preferred. Taking this values of
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the parameter we obtain that the greater root R of the equation (17) has
the form

R =
2c− λµ+

√
λµ(2c+ λµ)

2cµ
(19)

For the Poisson of order k risk model the root R has value 0.123.

The following table shows the results for the Lundberg’s exponent of the
Pólya-Aeppli of order k risk model

ρ = 0.1 R = 0.505

ρ = 0.3 R = 0.361

ρ = 0.5 R = 0.262

ρ = 0.7 R = 0.193

ρ = 0.9 R = 0.143

For this case the obtained data above show that the Pólya-Aeppli of order
k risk model is better than the Poisson of order k risk model.

Example 2: Let k = 5, λ = 2, µ = 1. Again we give five values for the
parameter ρ, i.e. ρ = 0.1, 0.3, 0.5, 0.7 and ρ = 0.9. We take c = 7 under
the conditions (10) and (11).

In this case for the largest positive real root R of the equation (17) we
obtain R = 0.063.

The following table shows the results for the Lundberg’s exponent of the
Pólya-Aeppli of order k risk model

ρ = 0.1 R = 0.9

ρ = 0.3 R = 0.432

ρ = 0.5 R = 0.284

ρ = 0.7 R = 0.3

ρ = 0.9 R = 0.1

For this case the obtained data above show that the Pólya-Aeppli of order
k risk model is better than the Poisson of order k risk model.

6 Concluding remarks.

In this paper we have introduced two risk models of order k. The first one
is a Poisson of order k risk model and the second one is a Pólya-Aeppli of
order k risk model. For these two models we obtained a martingale approach
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and defined exponential martingales. For different values of the parameters
we made some calculations for the Lundberg’s exponent as a measure of
the business risk. Finally in the case of exponentially distributed claims, we
consider two examples: for k = 3 and k = 5. For these examples we compared
the introduced models and gave some conclusions. Another conclusions can
be done for arbitrary k.
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