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Abstract

In this paper, we study the various types of temporal constraints in
project scheduling problem (PSP), then modeling them by using some
concepts of line graphs. We apply a new technique for transforming an
AoN (Activity-On-Node) network and containing a significant number
of arcs with temporal constraints into an AoA (Activity-on-Arrow)
network or PERT (Program and Evaluation and Review Technique)
network which contains fewer real arcs. Finally, we propose a new
technique for constructing, for a given PSP, a PERT network having
the minimum number of dummy arcs. The polynomial algorithm re-
grouping all the techniques and dealing with the existence of transitive
arcs is given at the end with an illustrative example.

MSC: 90B35, 90B10, 68R10

keywords: Minimal AoA network, PERT graph, Project scheduling
problem, Temporal constraints.

*Accepted for publication on May 11, 2018

fmouhoub_n@yahoo . fr Address; Computer science department M’sila University Algeria
f Address;Mathematics department Setif university Algeria

$gasmi_a@yahoo.fr Address; Computer science department M’sila University Algeria

329



330 N.E. Mouhoub, A. Benhocine, A. Gasmi

1 Introduction

In PSP, the precedence constraints between the activities of a project can
be represented graphically in two different ways: by assigning the activities
either to the nodes or to (a subset of) the arcs of a network. In either case,
a directed acyclic network is defined. In AoN network, G = (V, E), the
nodes represent the project activities and the arcs represent the immediate
precedence relations between the activities. Thus, an AoN network is unique
[27]. In AoA networks, one has to often draw some dummy activities in order
to satisfy the precedence relationships.

Practitioners of PSP prefer to work with the AoA network because it
is easy to read; each activity is represented by an arc. They give number
of arguments to justify their choice. This is why according to Fink and
Fourier [15], it is more concise. Furthermore, Tsou [36] explain that it is
close to the famous Gantt diagram where it is used to represent, in time, the
various activities project. According to Cohen and Sadeh [4] the structure of
the PERT network is much more suitable for certain analytical techniques
and optimization formulations. However, the major disadvantage of this
method is in the existence of dummy arcs. Their number is likely to be
significantly high especially if the size of the network is too large. Kelley
[21] notes that it is advantageous to reduce the length of calculations to
build a PERT network having the minimum number of vertices and dummy
activities. Krishnamoorty and Deon [22] showed that finding the minimum
dummy arcs problem is NP-hard. We focus our objective to introducing
temporal constraints in PSP, modeling them by graphs, proposing a new
algorithm for generating, for a given PSP, a PERT network starting from
the AoN graph and constructing the minimal PERT graph with minimum
number of dummy activities using the concepts of line graphs of graphs.

2 Literature

Reasoning with temporal constraints has been a hot research topic for the
last fifteen years. According to Dechter [10], the problems involving tempo-
ral constraints arise in various areas of computer science such as scheduling,
program verification, and parallel computation. Research in common-sense
reasoning [15, 32], natural language understanding [1, 18], and planning [24],
has identified new types of temporal reasoning problems, specific to Artificial
Intelligence applications. Several formalisms for expressing and reasoning
about temporal knowledge have been proposed, most notably, Allen’s inter-
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val algebra [33], linear inequalities (Malik and Binford [23], Dean and Mc-
Dermott’s time map [5]. Each of these representation schemes is supported
by a specialized constraint-directed reasoning algorithm. At the same time,
extensive research has been carried out over the past years on problems
involving general constraints (Montanari [26], Gaschnig [12], Freuder [17],
Nebel and Buckert [30], Drakengren and Jonsson [7], Dechter and Pearl [6],
yet much of this work has not been extended problems involving temporal
constraints. Smith and Pyle [33] presented a new heuristic algorithm in
resource constrained project scheduling problem with time windows, Van-
houcke [37] presented a new approach for the treatment of temporal con-
straints in PSP.

3 Definitions and Notations

Let G = (V, E) be a network. I'" (G, ) denotes the successors of the vertex
i and '~ (G, 1) its predecessors in G. V(G) and E(G) are, respectively, the
sets of vertices and arcs of G. If P is a path of G, then I(G, P) and T'(G, P)
denote the initial vertex and the terminal vertex of P, respectively (P may
be an arc).

Let 1,2,...,n denote the n real activities of a schedule table T" which is
represented by either a Gantt diagram or an AoN network (G) or an AoA
network (G 4). Each activity v is represented by a vertex v in Gy and we put
the arc (v,u) in Gy if activity v is an immediate predecessor of activity w.
There is no activity which succeeds itself, thus G and G 4 has no circuit. To
have one vertex without predecessors and another vertex without successors
in Gy and G 4, we add to the schedule table an activity «, with 0 duration,
called source, preceding all activities with no predecessors and an activity w
succeeding to all activities with no successors called sink (see [27]). If there
is one activity which does not have any predecessor (resp. successor), then
let a (resp. z) be this activity.

3.1 Line graph of graph

Let G = (V, E) be a simple or multiple digraph (|]X| > 1). According to
Gross and Yellen [13], a line graph L(G) (also called an adjoint, conjugate,
edge-to-vertex dual) of a simple graph G is obtained by associating a vertex
with each edge of the graph and connecting two vertices with an edge iff
the corresponding edges of G have a vertex in common (see figure 1). The
line graph of a directed graph G is the directed graph L(G) whose vertex
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set corresponds to the arc set of G and having an arc directed from an edge
e1 to an edge es if in GG, the head of e; meets the tail of es.

1, a2 a'\\’/P\..f

AN e W3 da

Figure 1: A graph (G) and his line graph L (G).

According to Hemminger et al. [14], if G is a digraph with n vertices
x1,22,...,zn and L(G) its associated line graph with n’ vertices and m’ arcs,
then: n/ =m, m' =37, d™(x;) - d¥ ().

Furthermore, the in-respectively out-degree of a vertex 2/ = (x4, zj) in
L(G) are: d=(z') = d (xi), d*(2') = d*(xi). The line graphs have been
very well studied but we only give, in this section, the outcomes of interest
found in [27, 2]:

(a) H is the line graph of a digraph if and only if H does not contain any
'Z' configuration.

(b) H is the line graph of a graph G if and only if arcs of H can be partitioned
in a complete bipartite B; = (X;,Y;),i = 1,...,m, such that X; (| X; = 0,
and Y;(Y; = ®Vi # j. The bipartite B; of H are then in a bijection with
the vertices also noted B; which are neither sources nor sinks, two vertices
B; and Bj of GG being connected by an arc from Bi towards B; if and only
if the complete bipartite B; and B; of H are such that Y; (N X; # 0, (see
figure 2).

Figure 2: A complete bipartite B of H and the star B of G

(c) H is the line graph of a graph without loops if and only if H does
not contain any configuration 'Z’ or A (see Section 4). Configuration 'Z’
appears when two nodes have common successors and no common successors
or by symmetry when two nodes have common predecessors and no common
predecessors (see figure 3).

(d) H is the line graph of a graph if and only if any pair of vertices
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Figure 3: The configuration ”7”, his forms and the configuration '\’
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having common successors has all their common successors.
(e) H is the line graph of a graph if and only if any pair of vertices having
common predecessors has all their common predecessors.

According to Shah et al. [31], H is not the line graph of any directed
acyclic graph if is only if there is a pair of nodes having common successors
and no common successors or common predecessors and no common pre-
decessors. So, we want to know how to transform H in order to get a new
graph which is a line graph of a graph.

4 Generating AoA network from a given AoN net-
work

4.1 AoN network without temporal constraints

We shall concentrate, in this section, on the study of the possibility of trans-
forming the AoN network which has a significant number of arcs to an AoA
network having a reduced number of arcs. How to convert the graph H
(which is an AoN network without temporal constraints) in order to get a
new graph which is the line graph (AoA network)? In a previous work [29],
we have shown that the difficulty that arises is to know whether H does
contain ” Z” configurations or not? If it does not, it is a line graph and the
transformation is immediate (as in Fig. 2): Let H be a network. Then G
is the line digraph of H, and we write G = L(H ), if and only if the vertices
of G are the arcs of H and (x,y) is an arc of G whenever = and y are arcs
of H with T'(z) = I(y). A digraph G is the line digraph of a digraph H, or
G = L(H), if and only if G has no configuration 'Z’, that is whenever (p, q),
(r,q), (r,s) are arcs of G then so is (p, s) and if G has no circuit, then G has
no configuration 'A’. The bare of 'Z’ is (r, ¢) and the base of A’ is (p, r) like
in figure 4. (r,q) € E(G) is not a bare of 'Z" if and only if: Vp € I'"(G, q),
Vs € I'"(G,r), (p,s) € E(G).

(p,7) € E(G) is not a base of 'A’ if and only if I' (G, q) T~ (G, r) = 0.
Consequently, this result is Gy € L(G4) if and only if G has neither
configuration 'Z’ nor configuration ‘A’ : constructing G4 is easy in this
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Figure 4: The configurations ” Z 7, 7 A 7, the introduction of dummy
activity f and the partition of completes bipartite in G

case since one can use the partition of E(Gy) into bipartite subgraphs [2].
The problem is to construct G4 when Gy has one of the configurations 7’
or '\, that is, how modifying Gy to have a new Gy, satisfying constraints
in the scheduling table T' and without configuration 'Z’ or '/A\’. The usual
way is to introduce also the dummy activities by subdividing the bare of 'Z’
or base of A’ in Gy like in figure 4. The introduction of the dummy arcs
aims to eliminate all the 'Z’ and 'A’ configurations from the AoN network
Gn, the constraints remain unchanged. We should recall that the dummy
arcs are not necessary in the AoN network G but are introduced only to
build an AoA network G 4. For more details on such transformation, the
reader can refer to [29].

4.2 AoN network with temporal constraints
4.2.1 Definition

The temporal constraint is a time allocation constraint. It comes from im-
perative management constraints such as the supply availability or time
delivery, etc. It specifies the time interval (or semi-interval) during which it
is possible to perform an activity. These constraints are often due to avail-
ability of stakeholders (human resources): for example a company which
produces frames can only intervene between June 15 and August 31 [30].

The temporal constraint affects the modeling of project scheduling and
changes. The problem therefore, is to find a way or a technique to normalize
the situation and bring it back to the modeling PSP by graphs. In the
following, we shall propose an original method that allows us to model the
temporal constraints and include them in PSP.

4.2.2 Classification

The class of quantitative temporal constraints has been studied originally
by Dechter et al. [7] using Allen’s interval algebra. The scope of our article
is restricted to those constraint-satisfaction problems that can be stated as
follows: modeling the temporal constraints by graphs not by intervals and
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include them in the search of the AoA graph from a given AoN graph.
The precedence relationships typically used in these charts are expressible
in terms of the before and meets relation, two of the relations defined in
Allen’s interval algebra.

The following base relations (Table 1) capture the possible relations be-
tween two intervals.

X before Y b bi

Xequal Y =

X meets Y m mi

X overlaps Y o oi

X during Y d di

X starts Y s si

X finishes Y f fi

< ( < r [
-
-

Table 1: Temporal Relations Between Activities

Using this calculus, given facts can be formalized and then used for auto-
matic reasoning. Relations between intervals are formalized as sets of base
relations. By graphs, we can classify the most important temporal con-
straints into eight types and add the latest which is that of the precedence:
(TC1) Activity A starts ¢ time units before the work begins.

(TC2) Activity A can only start ¢ time units after the beginning of the work.
(TC3) Activity B must start ¢ time units after the end of activity A.
(TC4) Activity B starts a fraction of time units a/b after the start of activ-
ity A (a < b).

(TC5) Activity B must start ¢ time units after the start of activity A
(t < tA).

(TC6) Activity A must start before time t.

(TC7) Activity A during activity B

(TC8) Activity A equal activity B

(TC9) Activity B must immediately follow activity A.

Figure 5 gives the representation of temporal constraints in an AoN net-
work, and Gantt chart. (f denotes a dummy activity with the duration ¢).
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Figure 5: Temporal constraints in G network and Gantt diagram

4.2.3 Modeling temporal constraints

In PSP, which is a particularly in an AoN network, incident arcs outside
a node (that is to say an activity) have the same value. The presence of
temporal constraints in the network AoN violates this property, which makes
solving the project scheduling impossible. Calculating dates and critical
path research... also become impossible. Modeling by using graphs can
solve this problem. We will present in the following a new technique that
allows handling such constraints. The following figure (figure 6) gives the
unique representation of these constraints in the network AoN. It is clear
that the values on the arcs incident out of the node A are different (see the
example in figure 8).

Figure 6: Main temporal constraints in G

The representation in G4 (figure 7(a)), consists in gathering several
dummy arcs succeeding the real activity A and which have the same value in
a single dummy activity. For constraints of type (TC4), (TC5) and (TC9),
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Figure 7: (a) The representation of (TC2), (TC3), (TC7) and (TC8) con-
straints in AoA network(G4), (b) Representation of (TC4) (TC5) and TC(9)
constraints in G4, (c) Every type of constraints in G4, (d) Modification in
Gn, (e) In G 4, activity A is subdivided as (A1,t1) in G4. Arcs of the same
initial node have the same value

we notice that both start after the beginning of activity A. Representation
in AoA network(G 4) implies the segmentation of A (or B if TC(9)) into sev-
eral tasks, in the general case (A = A1+ As+...4+Ayq1) or (B = B1+DBy+ B3
if (TC9)). We note that the representation of Fig. 7(b) solves this type of
constraints.

Finally, we can combine figure 7(a) and figure 7(b) keeping in mind the
idea of minimizing dummy arcs. Indeed, to arrive at figure 7(c) we must
modify, in G, the arcs incident out of a node and which do not have the
same value, by introduction of dummy arcs of 0 duration in order to be able
to partition it into complete bipartite sub-graphs. The rest of the temporal
constraints are also included in the new modeling technique as well as the
other types in Table 1.

All these combinations lead us to the changes made in the two networks
G4 and Gy respectively (figure 7(d) and figure 7(e)). Correspondence be-
tween the representations of temporal constraints in G and in G4 is our
goal; we modify figure 6. in figure 7(d) and figure 7(c) in figure 7(e).

The introduction of activities g1, go, , gr of times units to — 1, ..., tx — t1,
respectively, has the advantage of giving the same value to the arcs of the
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same initial node in G . There is no difficulty to verify that the arcs of the
graph (figure 7(d)) are partitioned into a complete bipartite subgraphs and
that is the line graph of the graph in figure 7(e).

Let remember that introducing dummy activities f; in AoA networks,
with zero duration, gives the possibility to solve certain situations and raise
ambiguities. They do not take in consideration any material or financial
mean [27]. For more details, the reader can refer to [4-29]. The dummy
activities gi in AoNN network is not of zero durations. It is introduced to
solve, in GG, the problem of the presence of temporal constraints in PSP.

In conclusion, the modeling of temporal constraints is to establish a com-
bination involving different types of constraints in G in order to find the
temporal constraint which is the minimum value of duration and partition
each of the other activities in two, the first with the minimum duration and
the second with the rest. This partition requires the creation of dummy
activities gi for each of the activities. Hence, the transformation to G 4, now
becomes easier by applying results of section 3.

To explain these results, consider the following example:
let A be an activity of duration 5 time units. Suppose that:
A precedes B, By and By cannot start 2 time units after the start of activity
A, Bs and By begin only 3 time units after the start of A, Bs cannot start
until A is 3/4 finished, Bg and B7 begin only 8 time units after the end of
A.
In AoN and AoA networks, let us draw the arcs leaving the node A (figure
8):

Figure 8: To the left, representation of temporal constraints. Between,
subdivision of activity Aas (A1, ¢;) in Gy which the arcs of the same initial
node have the same value. To the right, the correspondence in G4).
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4.3 Constructing and generating PERT network

Now, combining the results obtained in previous section with those in Sec-
tion 4, we can construct an AoA network G4 from the AoN network Gy
containing or not temporal constraints as follows:

e Dispose of all, temporal constraints modeled in Fig.7(a).

e Remove the 'Z’ bares, the '/\’ bases and make the transformation
according to results of Sections 3 and 4.

e Create a new schedule table 7" from the initial one T by adding all
activities f; and gi with their predecessors that are created in Gy.

These ideas will be explained in detail in the algorithm(section 6).

Lemma 1. The number of dummy activities f; with 0 durations in G4 is
equal to the number of 'Z’ bares and’'/\" bases in Gy.

Lemma 2. If (i,j) € E(Gy) is neither a temporal constraint, nor a bare of
'Z" nor a base of ', then T(G a,1) =T (Ga,j).

Proof. By applying the theorem of Shah [31], Gy can be partitioned into
mutually arc-disjoint complete bipartite subgraphs Li, Gy = G4 then
T(Ga,i) =T(Ga,j) and G4 satisfies schedule table T'. O

Lemma 3. If (i,j) € E(Gn) is a temporal constraint then T(Ga,i) #
T(GAa])

Proof. Tt’s clear that I'" (G, j;)l = 1,2,...k in T” table is the same in table
T (see figure 9)

Figure 9: Temporal constraint in Gy, activity A is subdivided as (A4, ¢g1) in
Gy and correspondence in G4

The problem is when g; appears in Gy and G 4. We know that, I'" (G 4, j) =
I (Gn,j) 97, T7(Ga,g5) = A, s0 '™ (Ga,j) CT7(Gn,j) then the activ-
ity j satisfies schedule table T O
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Lemma 4. If (i,j) € E(GN) is a bare of 'Z' or a base of '\, then T(G, i) #
T(G,j) in G4 and satisfies schedule table T

Proof. If T(G,i) = I(G,j) in G4 with schedule table, then

-Vp eI (Gn,j), Vg € TT(Gp, 1), (p,q) € E(GN), so (i,7) € E(Gn) is
neither a bare of 'Z" nor a base of '\, a contradiction. - (i,j) € E(Gy) is
a bare of 'Z’ or a base of ‘A’ (see Fig. 4.), then

in T: T~ (G, j) = a1,

inT": T~ (Gn,j) =a,f,

f is the unique predecessor of j in Gy, then I'"(j) = f,but '~ (f) =
i,then (i) € I'"(Gn,J). By applying the theorem of Shah et al. [31], Gy
can be partitioned into complete bipartites, and since G4 = Gy, then G4
satisfies schedule table T". O

Corollary 1. Corollary The AoA network (G 4) constructed from the AoN
network (Gy) containing temporal constraints satisfies the initial schedule
tables T" and T .

5 Constructing the minimal PERT Network

Due to their importance, PERT networks have been drawing many re-
search trials to generate AoA networks with minimal number of dummy
arcs: Hayes [19] gave a set of approaches to construct an PERT network but
does not produce the minimal AoA network. He observed that the num-
ber of dummy arcs and nodes in the AoA network cannot be minimised
simultaneously. Dimsdale [9] gave an algorithm for generating a minimal
AoA network. Fisher et al. [16] proved that Dimsdale’s algorithm is false
and gave a novel and exact one but with no proof. Cantor and Dimsdale
[3] gave, with proofs, an exact algorithm which minimizes the number of
vertices in a polynomial time. According to Sterboul and Wertheimer [34],
this algorithm seeks rather to minimize the number of vertices and leads to
unnecessary long calculations. Krishnamoorty and Deon [22] explained that
searching the PERT network with the minimum number of dummy arcs is
NP-hard. [20,15], [8,25] proposed PERT network-generating methods but
they did not consider the redundancy and other problems brought up by
dummy arcs, and therefore, are considerably impaired. Elmaghraby and
Herroelen [11] developed a complexity index as a measurement tool for the
complexity in activity networks. Kamburowski et al. [19,20] proposed a
method that generates minimal complexity-index PERT networks. [4, 28]
proposed algorithms of passage from the AoN network to an AoA network
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regardless the minimisation of the number of dummy arcs. In previous work
[28], we presented an algorithm that builds the minimal PERT graph in
terms of dummy activities but two steps are not accurate (the rules 3 and
4 precisely). In this paper we present a new algorithm with the necessary
corrections.

5.1 Actions

Let G4 the PERT network obtained in section 4 without temporal con-
straints. f1, f2,, fp denote the p dummy activities in G 4. It is necessary to
represent each real activity ¢ by a black arc, i = 0,...,n+ 1 (with activities
a, wand g;,i = 1,2,...,k) and each dummy activity by a red arc, this
first PERT network G 4 satisfies the precedence constraints. The following
actions allow us to construct from G4, a new G4 which is the PERT net-
work having the minimum number of dummy activities and satisfying the
schedule table by a decreasing number of arcs and vertices.

1. In G4, contract the terminals of the real activities (black arcs) having
the same successors into one vertex (see figure 10).

Figure 10: The real arcs having the same successors contracted in a single
vertex in G4

2. In G4, contract the initials of the real activities (black arcs) having
the same predecessors into one vertex (see Fig. 11).

Al

e e B e i | - ; —

—p . ; IS 1- = ‘
Figure 11: The real arcs having the same predecessors contracted in a single
vertex in G4

3. In G4, contract the initial vertex (I(f;)) and the terminal vertex
(T(f;)) into one vertex if d~(T'(f;)) = +1, with: there is no real arc incident
into T(fj)) and there is no real arc incident out of I(f;) (see figure 12).
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Figure 12: The dummy arc f; with d=(7(f;)) = +1, contraction of the
vertices I(f;) and T'(f;) into one vertex in G4

4. In G4, contract the initial vertex (I(f;)) and the terminal vertex
(I(f;)) into one vertex if d*(I(f;)) = +1, with: there is no real arc incident
into T'(f;) and there is no real arc incident out of I(f;) (see figure 13).
Remove the resulting red loop and repeat this contraction as many times as
possible.

Figure 13: To the left, representation of temporal constraints. Between,
subdivision of activity Aas (A1, g;) in G which the arcs of the same initial
node have the same value. To the right, the correspondence in G4).

5. In G4, if the vertices of which all their successors are included in
the set of successors of another vertex, then add to G4 a red arc (T(G a,1),
T(Ga,7)) and remove transitive red arcs with initial vertex T'(G 4, 7). Now,
apply this rule to vertices in I'" (G4, T(G4,7)) as many times as possible.

6. In G4, if the vertices of which all their predecessors are included
in the set of predecessors of another vertex, then add in G4 a red arc
(I(Ga,j),I(Ga,i)) and remove transitive red arcs with terminal vertex
(G a,1). Now, apply this rule to vertices in I'" (G4, I(G 4, j)) as many times
as possible.

7. Now apply again, in G4, if possible, the actions 3 and 4 as many
times as possible to obtain a PERT network G4 with minimum number of
dummy arcs. 8. If (A, B) is a maximal red bipartite partial subgraph of G 4
with |A| = 2, |B] = 2 and |A| + |B| = 6, then delete all its arcs and add a
red vertex sf and the red star (A, sf, B). For more details of the actions 5,
6 and 7, the reader can refer to [28].

6 Algorithm

The four steps are applied in a sequential order and the backtracking is
unauthorized except if it is mentioned in the step.
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BEGIN
STEP 1:
For every node v;(i =1,2,...,n) do
if G contains 2 vertices vj, vy € I'+ (v;) and t(vj, v;) # t(v;, vg) then

One pose tmin = min[t(v;)](i = 1,2,...,n)
For every vertex v; € I' 4+ (v;) do
if t(’l)j, Sj) > tmin then
- create dummy node g; in Gy
- replace the bare (vj,v;) in Gy by (vj,g;) and (g;,v;)
with t(gj, Uj) = t(vj, ’Ui) — tmin and t(vj,gj) = tmin
STEP 2:

if G contains 'Z’ configurations then
Identify the Z; (i = 1, 2, , m)

For every bipartite containing one or more bares of 'Z’ do
- Create dummy nodes corresponding to the number of bipartites.

- Regroup the bars having the same initial or the same terminal
extremity to the same complete bipartite
- Replace the bare (b;, ¢;) of Z; in Gy by (b, f;) and (f;, ¢;)
- Create a new schedule table T” from the initial one T by adding
all activities f; and g; with their predecessors that are created in G .
STEP 3

- Identify again the bipartite in G

- Represent every bipartite B; in G by a node B; in G4.

- Represent every arc such that: an arc is drawn between two nodes B;
and Bj in G 4 iff the two bipartite B; and B; in Gy are such that and
Y:(Y; = 0.

STEP 4

1. Contract the terminals of the real activities (black arcs) having the
same successors into one vertex. Remove multiple red arcs and repeat
this contraction as many times as possible.

2. Contract the initials of the real activities (black arcs) having the same
predecessors into one vertex. Remove multiple red arcs and repeat
this contraction as many times as possible.

3. Contract the initial vertex (I(f;)) and the terminal vertex (T'(f;))
into one vertex if d~(T'(f;)) = +1, with: there is no real arc incident
into T'(f;)) and there is no real arc incident out of I(f;). Remove
the resulting red loop and repeat this contraction as many times as
possible.
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contract the initial vertex (I(f;)) and the terminal vertex (7'(f;)) into
one vertex if d*(I(f;)) = +1, with: there is no real arc incident into
T'(f;)) and there is no real arc incident out of I(f;). Remove the re-
sulting red loop and repeat this contraction as many times as possible.

If i, jeV(Gy) with I'"(Gy,j) C T'T(Gn,1),then add to G4 a red arc
(T(Ga,1),T(Ga,7)) and remove transitive red arcs with initial vertex
T(Ga,i). Apply this action to vertices in I'" (G4, T(G4,J)) as many
times as possible.

If 4, jeV(Gy) with ' (Gy,j) € I'"(Gn,1i), then add in G4 a red
arc (I(Ga,i),I(Ga,j)) and remove transitive red arcs with terminal
vertex T (G 4,1). Apply this action to vertices in I'" (G4, T(G4,j)) as
many times as possible.

Apply again, in G4, if possible, the actions 3 and 4 as many times as
possible.

If (A, B) is a maximal red bipartite partial subgraph of G4 with |A| >
2, |B| > 2 and |A| + |B| > 6, then delete all its arcs and add a red
vertex sf and the red star (A, sf, B)

Example

Activity Description Duration Predecessor Activity

Beginning of project 0 —

Excavate 12

Lay the foundation 10

Put up the rough wall 9

O Q| »=|e

Llie|e|e

Put up the roof 6
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E Install the exterior plumbing 5 A

F Install the interior plumbing 4 A B,C
G Put up the exterior siding 3 B,C, D
H Do the exterior painting 6 AE
1 Do the electrical work 8 EF

J Put up the wallboard 2 EF G
K Install the flooring 7 G

L Install windows 7 H

M Install the doors 12 H, I
N Do the interior painting 9 J, K
O Install the exterior fixtures 11 L, M
P Install the interior fixtures 13 M, N
w End of project 0 o,P

Table: Activity list for the Reliable Construction Co. project.

To illustrate what we taking into account temporal constraints, we con-
sider the following example [35]: The manager of a project will need to
arrange for a number of crews to perform the various construction activi-
ties at different times. Table 2 shows his list of the various activities. The
third column provides important additional information for coordinating the
scheduling of the crews.

Temporal constraints are: A starts 2 time units after the beginning of
D. C can only start 7 time units after the beginning of the work. D can
only start 3 time units after the beginning of the work. E starts 2 time units
after the end of A and H starts 5 time units after the end of E. O begins
when M is executed to 3/4 and P starts 4 time units after the end of N. K
starts 3 time units after the end of G.

Constructing AoN network (G) from its schedule table (where all the
immediate predecessors of each activity are listed) is a trivial task (see figure
14). The following figures ( Figure 15, Figure 16 et Figure 17) represent the
successive reductions of dummy arcs in the PERT graph.

6.2 Discussion

The algorithm finishes since the loop is carried out only when there is ' Z’
configuration and the number of 'Z’ in G is known in advance and fi-
nite. The rest of the algorithm is a succession of simple instructions. The
complexity of the algorithm is therefore polynomial.
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Figure 14: To the left, G graph from the schedule table (Table 2.). Edges in
bold represent temporal constraints. To the right, Gy network whose edges
have the same initial vertex have the same value. The dummy activities
from temporal constraints g;: activities a, A, G, H, M, N are divided in
two activities. ”Z” bares and '/’ base are in bold.
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4 fuo 0 2 EA'.
* P
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Figure 15: G network without ”Z” configuration and whose vertices are
reorganized into levels. We can verify that the edges can be partitioned into
complete bipartite.

Figure 16: To the left, G 4 network of Table 1. The 15 dummy activities f;
have zero duration. To the right G 4 network with 13 dummy activities by
applying action 1 and 2.
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Figure 17: To the left, G4 network with 12 dummy activities by applying
action 3 and 4. To the right, G4 network with 11 dummy activities by
applying action 5

e

N

Figure 18: G 4 network with 10 dummy activities by applying action 3 and
4. the constructed PERT graph satisfies the constraints of the table 2. The
durations of the activities are not mentioned

7 Conclusion

This paper presents a new approaches for constructing PERT networks with
temporal constraints and having the minimum number of dummy arcs. In-
deed, by applying the four steps in sequential order, the algorithm models
temporal constraints by graphs and introduces them in PSP. We have ap-
plied this model to a very useful problem for practitioners of project man-
agement. That is the shift of the AoN network (easy to draw but difficult
in operation), to the AoA network (difficult to draw but widely used among
practitioners) while including temporal constraints and using some results of
line graphs of graphs. Our work is crowned by a polynomial complexity. the
resolution of PSP becomes easier thus the calculation of earliest start and
finish times, latest start and finish times, the critical path, free margins, etc.
Our new approach is very simple to be applied. It gives a minimal PERT
graph by applying eight actions with the total respect of the constraints in
schedule table in a very short time. The techniques used in the rules of
the algorithm can be exploited in other fields as in the project scheduling
with resources constraints (RCPSP) and for solving Temporal Constraint
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Satisfaction Problem (T'C'SP) in real time and in a dynamic environment.
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