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Abstract

Membership functions are a key concept in fuzzy set theory and
their correctness and precision are essential for the accuracy of ob-
tained results. This article discusses the use of Bezier curve to con-
struct a membership function. Based on the frequency distribution of
data by minimization, the coordinate formulas of the control points
that define the curve are derived. Use of the described membership
function is illustrated by an example. These formulas are applied to
bispectral index data sets in order to compare with other published
method.
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1 Introduction

The fuzzy set theory was first introduced by Lotfi Zadeh in the 1960s as
a way to capture uncertainty and vagueness often overlooked in complex
systems. It can be considered as a generalization of classical set theory.
Constructing fuzzy rules and building a proper membership function have
been challenges for several decades by now.

The fuzzy membership function is a key concept in designing fuzzy sys-
tems. Proper and precise use of the membership function is essential for the
accuracy of obtained results. Therefore, construction a membership function
and determining its parameters continues to be a current issue that many
researchers are focused on and have been proposing new approaches and
algorithms in recent years. For example, Wu and Chen in [16] created an
algorithm for developing membership functions based on α-cuts of equiva-
lence relations and induced the fuzzy rules from the numerical training data
set. Yang and Bose [17] introduced automatic fuzzy membership generation
with unsupervised learning where the proper cluster is generated and then
the fuzzy membership function is generated according to this cluster. Feng,
Li and Hu [3] suggested a training algorithm for Hierarchical Hybrid Fuzzy-
Neural Networks, based on Gaussian membership function. Viattchenin,
Tati and Damaratski [15] presented the problem of constructing Gaussian
membership functions derived from the data by using heuristing algorithm
of possibilistic clustering. Hasuike, Katagiri and Tsubaki [5] suggested that
an appropriate membership function algorithm integrate the fuzzy Shannon
entropy with a piecewise linear function into subjective intervals estimation
by heuristic method. Jain and Khare [8] presented a mechanism for gener-
ating membership functions that exploits the properties of Bezier curves.

For the construction of membership functions by numerical data set,
Nasibov and Ulutagay in [10] used Gaussian function. Later Nasibov and
Peker in [11] suggest using another exponential function as a better option
for solving the same task and prove its advantage. The idea of this study
was born by [11] and consists in constructing a membership function through
approximation of a frequency distribution by a Bezier curve.

The rest of the paper is organized as follows: Section 2 consists of two
parts. In 2.1, basic concepts of fuzzy sets theory are outlined briefly. In 2.2,
the approach and results of previous research related to the present study
are described. In Section 3, formulas for determining the coordinates of the
Bezier curve control points are derived. Section 4 presents an algorithm for
building a membership function via the Bezier curve base on the frequency
distribution points and specifies an analytical expression of the proposed
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membership function. The frequency distributions published in [11] are
used to illustrate the proposed method. In Section 5, the described function
is compared to the exponential function of Nasibov and Peker [11]. Some
summaries have been made and guidelines for future research have been
identified.

2 A brief preliminary

2.1 Some basic concepts of fuzzy sets theory

The concepts and principles of fuzzy sets theory can be found in [1, 7, 12, 18].
Definitions of the some basic notions used in the following presentation will
be briefly listed here.

Let X be a collection of objects and x ∈ X. A fuzzy set A in X is the
set of ordered pairs A = {(x, µA(x)) | x ∈ X}, where µA(x) : X → T ⊆ [0, 1]
is called a membership function for the fuzzy set A.

If sup µA(x) = 1, then A is called normal fuzzy set. If sup µA(x) < 1,
then A is subnormal.

The support of A is the subset of points of X at which µA(x) is positive,
i.e. support(A) = {x ∈ X | µA(x) > 0}.

For any α > 0, α ∈ T ⊆ [0, 1], an α-cut or α-level of the fuzzy set A in
X is the set Aα = {x | x ∈ X,µA(x) ≥ α}.

The fuzzy set A is convex if and only if for any x1, x2 ∈ X and any
λ ∈ [0, 1] is fulfilled:

µA(λx1 + (1− λ)x2) ≥ min{µA(x1), µA(x2)}. (1)

A fuzzy number A is a fuzzy set in the real line < with the member-
ship function µA(x) : < → [0, 1] that satisfies the conditions for normality,
convexity and piecewise continuity and support(A) is bounded.

Remark 1 For a fuzzy number, the convexity defined by (1) means that the
membership function is monotonic or that it is first monotonically increasing
and then monotonically decreasing.

2.2 Publications related to this research

The choice of membership function type is determined by the ability of the
shape of its graph to approximate with sufficient accuracy the shape of the
frequency distribution of x1, x2, . . . , xN data.
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Nasibov and Ulutagay [10] recorded bispectral index data during sleep
and analyzed it by using the Fuzzy c-Means and Fuzzy Neighborhood DB-
SCAN algorithms. As a result of these computational experiments, Nasibov
and Ulutagay concluded that FN-DBSCAN method gives more realistic re-
sults in recognizing stable duration intervals and bispectral index stages in
the measurement series.

Remark 2 Bispectral index scale is a continuous processed electroencephalo-
gram parameter that correlates to the level of brain activity. The numerical
value of bispectral index varies from 0 (no cerebral activity) to 100 (fully
awake patient) [10].
Sedation is the depression of the human’s awareness to environment and the
reduction of responsiveness to external stimulation.

Data from the formed sedation stages in [10] and used in [11] contain the
frequencies of the class intervals of a bispectral index. With some changes
to the parameter markings, the overall data type is presented in Table 1.

The total number of classes in Table 1 is l. The midpoints mi, i = 1, l of
the class intervals and the frequencies fi, i = 1, l are filled in the table. The

relative frequencies are pi = fi
N , i = 1, l, where N =

l∑
i=1

fi. The class interval

with a maximum frequency:

pM = max
i=1,l
{pi}

and its midpoint m = mM are determined. The normalized frequencies are
p̃i = pi

pM
, i = 1, l, such as p̃M = 1.

Class Midpoint Frequency Relative Normalized
interval mi fi frequency pi frequency p̃i

[x0, x1) m1 = x0+x1
2 f1 p1 = f1

N p̃1 = p1
pM

[x1, x2) m2 = x1+x2
2 f2 p2 = f2

N p̃2 = p2
pM

... ... ... ... ...

[xl−1, xl) ml =
xl−1+xl

2 fl pl = fl
N p̃l = pl

pM

Total N 1

Table 1: Frequency table
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Tables 4-8 of Appendix section are filled in with numerical values and
have the same appearance as Table 1. Each one corresponds to one of the
five stages of sedation.

For the bispectral index values at each stage, Nasibov and Ulutagay [10]
construct a Gaussian fuzzy membership function of the type:

µA(x) = e−
1
2
(x−m

σ
)2 (2)

where m (in the article the original symbol is α) is the mean value of the
data, and σ is their standard deviation.

Later, Nasibov and Peker [11], solving a classification problem, suggested
instead of (2) to use the following exponential membership function:

µA(x) =

{
e−(

x−m
σ

)SL, x ≤ m
e
−(x−m

β
)SR

, x > m
(3)

with unknown parameters sL, σ, sR, β. They output the formulas for the
unknown parameters by least squares minimization. Then they verified the
efficiency of the proposed exponential membership function with respect
to the bispectral index data. Based on 21 sets of bispectral data, each of
which containing 306 measurements, Nasibov and Peker [11] determined
the classification accuracies based on exponential membership functions (3)
and Gaussian membership functions (2). They calculated the classification
accuracy as the ratio of the number of correctly detected points in the data
set to the total number of points in the set. By the paired t-test (α = 0,10),
they come to the conclusion that the mean of classification accuracy, based
on exponential membership functions (3) is greater than the one based on
Gaussian membership functions (2).

3 Approximation of a series of points by a Bezier
curve

The Bezier curve is a parametric curve that is determined by a set of control
points C0, C1, . . . , Ck. The number of control points determines the order of
the curve as at (k + 1) control points the curve is of order k. The curve is
defined:

B(t) = C0(1− t)2 + C12(1− t)t+ C2t
2, at k = 2 (4)

B(t) = C0(1− t)3 + C13(1− t)2t+ C23(1− t)t2 + C3t
3, at k = 3 (5)
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B(t) = C0(1− t)4 + C14 (1− t)3t+ C26 (1− t)2t2 +
+ C3(1− t)t3 + C4t

4 , at k = 4,
(6)

where t ∈ [0, 1]. The beginning and end of the curve are coincident with the
first and last control point, respectively, i.e. B(0) = C0 and B(1) = Ck.

Let in the plane be given (n + 1) consecutive points Pi(xi, yi), i = 0, n
(Figure 1). Let us denote with ri the length of the line between two adjacent
points Pi−1 and Pi, i.e.:

ri = |Pi−1Pi| =
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1, n (7)

and assume r0 = 0.

Figure 1: Series of (n + 1) points in the plane and the marks associated
with them

The total length of the broken line that is obtained from all segments is

dn =
n∑
i=0

ri. The length of the broken line between P0 and Pi is di =
i∑

j=0
rj .

At each point Pi(xi, yi), i = 0, n we match quantity:

ti =
di
dn
∈ [0, 1], i = 0, n (8)

If we treat ti as values of the parameter t ∈ [0, 1], then t = 0 corresponds
to the first point P0 of the series of points and t = 1 corresponds to the last
point Pn.

For n ≥ 4 we will produce the formulas for determining the coordinates
of the internal control points C1(C1x, C1y), C2(C2x, C2y), C3(C3x, C3y) of the
fourth-order Bezier curve, and set requirement C0(C0x, C0y) ≡ P0(x0, y0)
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and C4(C4x, C4y) ≡ Pn(xn, yn). For this purpose, we will minimize the
squares of the deviations of the curve from the abscisses and the ordinates
of the points P1, P2, . . . , Pn−1:

E(Cx) =

n−1∑
i=1

(xi −Bx(ti))
2 → min (9)

E(Cy) =
n−1∑
i=1

(yi −By(ti))2 → min (10)

where Bx(ti) and By(ti) are obtained from (6) using respectively the ab-
scisses C0x, C1x, C2x, C3x, C4x and the ordinates C0y, C1y, C2y, C3y, C4y of the
control points.

Theorem 1 For each set of points Pi(xi, yi), (n ≥ 4) in the plane, for
C0(C0x, C0y) ≡ P0(x0, y0) and C4(C4x, C4y) ≡ Pn(xn, yn), there exist sin-
gular internal control points C1(C1x, C1y), C2(C2x, C2y), C3(C3x, C3y) of the
fourth-order Bezier curve for which the sums E(Cx) and E(Cy) defined by
(9) and (10) assume their minimum values.

Proof: Let’s first look at only the abscisses of the points. From (9) and (6)
there is obtained:

∂E(Cx)

∂Cx
= 2

n−1∑
i=1

(xi −Bx(ti))
∂Bx(ti)

∂Cx
= 0

Let we denote:

Sp,q =
n−1∑
i=1

(1− ti)p tqi ; (11)

SXp,q =

n−1∑
i=1

xi (1− ti)p tqi ; (12)

SYp,q =
n−1∑
i=1

yi (1− ti)p tqi ; (13)

S(4) =

 4S6,2 6S5,3 4S4,4
4S5,3 6S4,4 4S3,5
4S4,4 6S3,5 4S2,6

.
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Then the resulting system:
C1x 4S6,2 + C2x 6S5,3 + C3x 4S4,4 = SX3,1 − C0xS7,1 − C4xS3,5
C1x 4S5,3 + C2x 6S4,4 + C3x 4S3,5 = SX2,2 − C0xS6,2 − C4xS2,6
C1x 4S4,4 + C2x 6S3,5 + C3x 4S2,6 = SX1,3 − C0xS5,3 − C4xS1,7

has the solution: C1x

C2x

C3x

 = S−1(4)

 SX3,1 − C0xS7,1 − C4xS3,5
SX2,2 − C0xS6,2 − C4xS2,6
SX1,3 − C0xS5,3 − C4xS1,7

 . (14)

Similarly, from (10) and (6) for the ordinates of the three control points
we obtain:  C1y

C2y

C3y

 = S−1(4)

 SY3,1 − C0yS7,1 − C4yS3,5
SY2,2 − C0yS6,2 − C4yS2,6
SY1,3 − C0yS5,3 − C4yS1,7

 . (15)

The matrix S(4) is positive definite and therefore its determinant is pos-
itive [13]. This ensures the existence and the uniqueness of the solution.

Theorem 2 For each set of points Pi(xi, yi), (n ≥ 3) in the plane, for
C0(C0x, C0y) ≡ P0(x0, y0) and C3(C3x, C3y) ≡ Pn(xn, yn), there exist singu-
lar internal control points C1(C1x, C1y) and C2(C2x, C2y) of the third-order
Bezier curve for which the sums E(Cx) and E(Cy) defined by (9) and (10)
assume their minimum values.

Proof: For the coordinates of the internal control points C1(C1x, C1y) and
C2(C2x, C2y) of the third-order Bezier curve, similar to the proof of Theorem
1, we obtain: [

C1x

C2x

]
= S−1(3)

[
SX2,1 − C0xS5,1 − C3xS2,4
SX1,2 − C0xS4,2 − C3xS1,5

]
(16)

[
C1y

C2y

]
= S−1(3)

[
SY2,1 − C0yS5,1 − C3yS2,4
SY1,2 − C0yS4,2 − C3yS1,5

]
, (17)

where S(3) =

[
3S4,2 3S3,3
3S3,3 3S2,4

]
is a positive definite matrix. Therefore, its

determinant is positive, which guarantees the existence of the solution.
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Theorem 3 For each set of points Pi(xi, yi), (n ≥ 2) in the plane, for
C0(C0x, C0y) ≡ P0(x0, y0) and C2(C2x, C2y) ≡ Pn(xn, yn), there exist sin-
gular internal control point C1(C1x, C1y) of the second-order Bezier curve
for which the sums E(Cx) and E(Cy) defined by (9) and (10) assume their
minimum values.

Proof: For the coordinates of the internal control point C1(C1x, C1y) of the
second-order Bezier curve, analogously to the previous theorems, we obtain:

C1x =
SX1,1 − C0xS3,1 − C2xS1,3

2S2,2
(18)

C1y =
SY1,1 − C0yS3,1 − C2yS1,3

2S2,2
(19)

and with that S2,2 6= 0 according to (8) and (11).

Remark 3 Generally, for formulas (14)-(19) it is not required that the se-
quence of abscisses or ordinates of the points Pi(xi, yi), i = 0, n to be mono-
tone.

The plane curve B(t) is set parametrically and the correspondence be-
tween the abscisses and the ordinates of its points is implicit. Therefore, we
will take notice of defining the ordinate of a point of the curve by a given
abscissa.
Task 1. Let the curve B(t) be determined by the set of points Pi(xi, yi), i =
0, n, for which x0 < x1 < . . . < xn and Bx(t) is a strictly monotonic function
of t ∈ [0, 1]. Determine the ordinate yB at a point of the curve by the given
abscissa xB ∈ [x0, xn].
Solution: We first localize the numerical interval that contains xB. Sup-
pose that xB ∈ [xi−1, xi]. By linear interpolation according to the values
ti−1 and ti defined by (8), for tB (Figure 2) there is obtained:

tB = ti−1 +
x− xi−1
xi − xi−1

(ti − ti−1), tB ∈ [0, 1], (20)

where we calculate yB = By(tB).
Determining of a α-cut of the membership function proposed in the next

section is the reverse of Task 1:
Task 2. Let the curve B(t) be determined by set points Pi(xi, yi), i = 0, n
for which x0 < x1 < . . . < xn; By(t) ∈ [0, 1] and Bx(t), By(t) are strictly
monotonic functions of t ∈ [0, 1]. Determine the abscissa xB ∈ [x0, xn] at a
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Figure 2: Linear interpolation to determine the value of tB

point of the curve by the specified ordinate yB ∈ [0, 1].
Solution: Similarly to the solution of the previous task, we define:

tB = ti−1 +
y − yi−1
yi − yi−1

(ti − ti−1), tB ∈ [0, 1], (21)

where:

• yB ∈ [yi−1, yi] if By(t) is a monotonic increasing function of t;

• yB ∈ [yi, yi−1] if By(t) is a monotonic decreasing function of t

and xB = Bx(tB).

4 Constructing a membership function by approx-
imating a frequency distribution with a Bezier
curve

We will use the frequency distributions for the five stages of sedation, which
are published in [11] and are listed in Tables 4-8 of Appendix section.

From the corresponding table for each stage, a series of points are formed
which have evenly distributed abscissas. The points coordinates Pi(mi, p̃i), i =
1, l are input data for the following algorithm:

1. Points P0 (left) and Pl+1 (right) with zero ordinates added to the left
and right of the series of points, so that the even distribution of the
points abscissas is preserved (Figure 3).

2. We determine the midpoint (mM , p̃M ) of the class interval with a max-
imum frequency, i.e. p̃M = 1. Let us denote m = mM .

3. The series of points Pi(mi, p̃i), i = 0, l + 1 is divided into two groups:
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Figure 3: A histogram of the frequency distribution and used parameter
markers

• left Pi(mi, p̃i), i = 0,M , containing (M + 1) points, i.e. n = M ;

• right Pi(mi, p̃i), i = M, l + 1, containing (l −M + 2) points, i.e.
n = l −M + 1.

4. Using the formulas given in Section 3 for the left and right group of
points, we successively define left BL(t) and right BR(t) Bezier curve
under the following conditions:

(a) The number (k + 1) of control points of B(t) is determined by:

k =

{
n, n = 2; 3
4, n ≥ 4

.

(b) By formula (7) we define the lengths ri, i = 1, n of the segments
between each two adjacent points. We set zi = 1, i = 1, n.

(c) ri = ziri, i = 1, n.

(d) We calculate di and ti, i = 0, n. Then we find the coordinates of
the internal control points (Theorems 1-3) of curves B(t).

(e) We check the monotony ofBx(t) andBy(t) and the non-negativity
of By(t):

• If Bx(t) and By(t) are monotonic and By(t) ≥ 0, t ∈ [0, 1],
we move to step 5 of the algorithm;
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• For each interval [ti−1, ti] in which Bx(t) or By(t) is not a
monotonic function or By(t) < 0, the value of zi is reduced
by half:

zi =

{
zi, if Bx(t) and By(t) ≥ 0 are monotonic in [ti−1, ti]
1
2zi, otherwise.

We return to step 4 (c) of the algorithm.

5. We construct the membership function from the two parametrically
defined curves:

µA(x(t), y(t)) =


{
x = BL

x (t)
y = BL

y (t)
, t ∈ [0, 1], where x ≤ m{

x = BR
x (t)

y = BR
y (t)

, t ∈ [0, 1], where x > m

(22)

and build it.

Following the algorithm, for each of the five sedation stages the coor-
dinates of the control points of Bezier’s curves are calculated (Table 9 in
the Appendix section) and the membership functions are built (Figures 4-8,
in black). The convexity of the constructed fuzzy numbers is guaranteed
in step 4 (e) of the algorithm by the requirement for monotonicity of the
obtained Bezier curves. Adding points P0 and Pl+1 with zero ordinates in
step 1 of the algorithm provides support(A) to be bounded.

5 Comparing the results and conclusion

Nasibov and Peker [11] compared the classification accuracy based on expo-
nential membership functions (3) and Gaussian membership functions (2).

Figure 4: A histogram and membership functions of first sedation stage
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They conclude that the average degree of classification accuracy of (3) is
higher than that of (2). Since we do not have the necessary data to compare
the classification accuracy of the proposed functions (22) and the functions
(3), we will only compare them by the sum of the squares of the deviations
from the points.

The curves that we will compare are shown on Figures 4-8, where:

• The functions in black correspond to (22) and are built according to
the algorithm in Section 4. The control points are listed in Table 9 in
the Appendix section.

• The functions in red (or gray in the gray scale) correspond to (3) and
are constructed according to the analytical type and the parameter
values specified in [11]. The parameter values are listed in Table 10 in
the Appendix section.

Figure 5: A histogram and membership functions of second sedation stage

Figure 6: A histogram and membership functions of third sedation stage
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Figure 7: A histogram and membership functions of fourth sedation stage

Figure 8: A histogram and membership functions of fifth sedation stage

Functions (22) are defined parametrically, but functions (3) are clearly
defined. This determines the difference in the measurement of the deviations
of the curves from the frequency distribution points. The deviations of
curves (22) must be reported on both coordinate axes, while the deviations
of the curves (3) are defined as deviations only on the ordinate axis. The
formulas for sum of squares deviations on which the values of Table 2 are
calculated are:

• for (22): E(22)(p̃i, µA) =
l+1∑
i=0

[(mi −Bx(ti))
2 + (p̃i −By(ti))2];

• for (3): E(3)(p̃i, µA) =
l+1∑
i=0

(p̃i − µA(mi))
2.

The result of comparing the mean values of E(p̃i, µA) for both methods
with a level of significance α = 0, 05 are shown in Table 3. The tStat value
falls into the critical area (−2, 82849 < −2, 13185) of the null hypotheses
H0 : E(22) ≥ E(3) against its alternative H1 : E(22) < E(3), which means
that the E(22) values are significantly smaller than those of E(3).
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Stages of sedation E(22)(p̃i, µA) E(3)(p̃i, µA)

1 0,0013931 0,0121480

2 0,0063041 0,0903728

3 0,0163010 0,1154965

4 0,0102372 0,0880298

5 0,0024799 0,2297327

Table 2: Sum of squares deviations

E(22) E(3)

Mean 0,00734306 0,10715596
Variance 3,71881E-05 0,006192155

Observations 5 5
df 4

t Stat -2,828491142
P(T ≤ t) one-tail 0,023708788
t Critical one-tail 2,131846782
P(T ≤ t) two-tail 0,047417576
t Critical two-tail 2,776445105

Table 3: t-Test: Paired Two Sample for Means

By the t-criterion we have established that the membership functions
(22) are closer to the frequency distribution points compared to the mem-
bership functions (3). This gives us a reason to consider (22) a good alter-
native to (3) and with that each of these two methods has advantages and
disadvantages. In some cases, a disadvantage of the proposed membership
function (22) may be its ”sensitivity” to fluctuations in frequency distribu-
tion. The key to overcoming this ”sensitivity” is step 4 (e) of the algorithm.
Refining the values that are assigned to zi would improve the algorithm and
may be subject to future research.

Studies based on the values of the bispectral index are used in vari-
ous sociological and marketing studies [4, 14]. The derived formulas for
defining Bezier curves, which best describe a series of points, could be used
as an analogue of exponential smoothing, and the proposed algorithm for
designing membership functions can be used to solve a wide range of prob-
lems, including financial, marketing, macro- and microeconomic problems
[6, 2, 8, 9], etc.
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A Appendix

Class Midpoint Frequency Relative Normalized
interval mi fi frequency pi frequency p̃i

[0, 15; 0, 2) 0,175 8 0,00960384 0,02484472
[0, 2; 0, 25) 0,225 65 0,07803121 0,201863354
[0, 25; 0, 3) 0,275 322 0,38655462 1
[0, 3; 0, 35) 0,325 266 0,31932773 0,826086957
[0, 35; 0, 4) 0,375 130 0,15606242 0,403726708
[0, 4; 0, 45) 0,425 28 0,03361345 0,086956522
[0, 45; 0, 5) 0,475 7 0,00840336 0,02173913
[0, 5; 0, 5)5 0,525 3 0,00360144 0,00931677
[0, 55; 0, 6) 0,575 3 0,00360144 0,00931677
[0, 6; 0, 65) 0,625 1 0,00120048 0,00310559

Table 4: Frequency table of first sedation stage

Class Midpoint Frequency Relative Normalized
interval mi fi frequency pi frequency p̃i

[0, 2; 0, 25) 0,225 4 0,00229621 0,011267606
[0, 25; 0, 3) 0,275 33 0,01894374 0,092957746
[0, 3; 0, 35) 0,325 124 0,07118255 0,349295775
[0, 35; 0, 4) 0,375 280 0,16073479 0,788732394
[0, 4; 0, 45) 0,425 355 0,20378875 1
[0, 45; 0, 5) 0,475 216 0,12399541 0,608450704
[0, 5; 0, 55) 0,525 199 0,11423651 0,56056338
[0, 55; 0, 6) 0,575 143 0,08208955 0,402816901
[0, 6; 0, 65) 0,625 157 0,09012629 0,442253521
[0, 65; 0, 7) 0,675 117 0,06716418 0,329577465
[0, 7; 0, 75) 0,725 67 0,03846154 0,188732394
[0, 75; 0, 8) 0,775 38 0,02181401 0,107042254
[0, 8; 0, 85) 0,825 6 0,00344432 0,016901408
[0, 85; 0, 9) 0,875 1 0,00057405 0,002816901
[0, 9; 0, 95) 0,925 2 0,00114811 0,005633803

Table 5: Frequency table of second sedation stage
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Class Midpoint Frequency Relative Normalized
interval mi fi frequency pi frequency p̃i

[0, 25; 0, 3) 0,275 1 0,0003712 0,002004008
[0, 3; 0, 35) 0,325 3 0,00111359 0,006012024
[0, 35; 0, 4) 0,375 25 0,00927988 0,0501002
[0, 4; 0, 45) 0,425 119 0,04417223 0,238476954
[0, 45; 0, 5) 0,475 112 0,04157387 0,224448898
[0, 5; 0, 55) 0,525 199 0,07386785 0,398797595
[0, 55; 0, 6) 0,575 189 0,0701559 0,378757515
[0, 6; 0, 65) 0,625 344 0,12769117 0,689378758
[0, 65; 0, 7) 0,675 304 0,11284336 0,609218437
[0, 7; 0, 75) 0,725 347 0,12880475 0,695390782
[0, 75; 0, 8) 0,775 379 0,140683 0,759519038
[0, 8; 0, 85) 0,825 499 0,18522643 1
[0, 85; 0, 9) 0,875 129 0,04788419 0,258517034
[0, 9; 0, 95) 0,925 30 0,01113586 0,06012024
[0, 95; 1) 0,975 14 0,00519673 0,028056112

Table 6: Frequency table of third sedation stage

Class Midpoint Frequency Relative Normalized
interval mi fi frequency pi frequency p̃i

[0, 4; 0, 45) 0,425 1 0,00135685 0,00456621
[0, 45; 0, 5) 0,475 4 0,00542741 0,01826484
[0, 5; 0, 55) 0,525 8 0,01085482 0,03652968
[0, 55; 0, 6) 0,575 8 0,01085482 0,03652968
[0, 6; 0, 65) 0,625 10 0,01356852 0,0456621
[0, 65; 0, 7) 0,675 23 0,0312076 0,105022831
[0, 7; 0, 75) 0,725 65 0,08819539 0,296803653
[0, 75; 0, 8) 0,775 51 0,06919946 0,232876712
[0, 8; 0, 85) 0,825 219 0,29715061 1
[0, 85; 0, 9) 0,875 215 0,2917232 0,98173516
[0, 9; 0, 95) 0,925 92 0,12483039 0,420091324
[0, 95; 1) 0,975 41 0,05563094 0,187214612

Table 7: Frequency table of fourth sedation stage
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Class Midpoint Frequency Relative Normalized
interval mi fi frequency pi frequency p̃i

[0, 35; 0, 4) 0,375 3 0,00413223 0,009493671
[0, 4; 0, 45) 0,425 4 0,00550964 0,012658228
[0, 45; 0, 5) 0,475 3 0,00413223 0,009493671
[0, 5; 0, 55) 0,525 11 0,01515152 0,034810127
[0, 55; 0, 6) 0,575 2 0,00275482 0,006329114
[0, 6; 0, 65) 0,625 4 0,00550964 0,012658228
[0, 65; 0, 7) 0,675 2 0,00275482 0,006329114
[0, 7; 0, 75) 0,725 4 0,00550964 0,012658228
[0, 75; 0, 8) 0,775 7 0,00964187 0,022151899
[0, 8; 0, 85) 0,825 46 0,06336088 0,14556962
[0, 85; 0, 9) 0,875 260 0,35812672 0,82278481
[0, 9; 0, 95) 0,925 316 0,43526171 1
[0, 95; 1) 0,975 64 0,08815427 0,202531646

Table 8: Frequency table of fifth sedation stage

Left Right

Stages σ SL β SR

1 0,03366153 1,19058453 0,10954908 1,75612535

2 0,098304385 2,12921635 0,140004284 0,97277506

3 0,23903161 1,16559615 0,03494202 0,91429043

4 0,04244326 0,67457267 0,12082079 4,33694334

5 0,08407821 1,03766617 0,075 0,55743699

Table 10: Parameters of the membership functions (3) used as a benchmark
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Left Right

Stages Ci x y x y

1 C0 0,125 0 0,275 1

C1 0,247991904 -0,021264839 0,385177558 0,698654314

C2 0,242565841 0,430096798 0,401145303 0,52556588

C3 0,275 1 0,243719602 -0,07293049

C4 0,675 0

2 C0 0,175 0 0,425 1

C1 0,446856004 0,081682191 0,432350881 0,162518

C2 0,228966718 0,606975012 0,782069858 0,768679

C3 0,378416281 0,700014982 0,585874127 -0,02454

C4 0,425 1 0,975 0

3 C0 0,225 0 0,825 1

C1 0,624874518 -0,002210513 0,919899079 0,681197

C2 0,4019694 0,85309558 0,793213422 -0,11791

C3 0,784104357 0,444195245 0,945898462 0,087821

C4 0,825 1 1,025 0

4 C0 0,375 0 0,825 1

C1 0,543533011 -0,006419047 1,000155204 1,038217807

C2 0,709677477 0,133690305 0,816868712 0,414115227

C3 0,797493323 0,004591904 0,966205507 0,293372071

C4 0,825 1 1,025 0

5 C0 0,325 0 0,925 1

C1 0,548083099 0,217777331 0,940176064 0,188264274

C2 1,080709167 -0,688340048 1,025 0

C3 0,768476768 1,035569291

C4 0,925 1

Table 9: Coordinates of control points


