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ESSENTIAL NORM ESTIMATES FOR
LITTLE HANKEL OPERATORS ON
L3(Cy)”

Jitendra Kumar Behera! Namita Das?

Abstract

In this paper, we give estimates for the essential norm of a bounded
little Hankel operator defined on the Bergman space of the right half
plane. As an application of these estimates, we also give a necessary
and sufficient condition for the little Hankel operator to be compact.
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1 Introduction

Let Cy = {s = z+ iy € C : Res > 0} be the right half plane. Let
du(s) = dzdy be the area measure. Let L?(C,, du) be the space of complex-
valued, square-integrable, measurable functions on C with respect to the
area measure. Let L2(C,) be the closed subspace [1] of L?(C,du) consist-
ing of those functions in L?(C,,du) that are analytic. The space L2(C,)
is referred to as the Bergman space of the right half plane. The functions
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H(s,w) = ﬁ, s € C;,w € Cy is the reproducing kernel [2] for L2(C,).

Let L>°(C,.) be the space of complex-valued, essentially bounded, Lebesgue

measurable functions on Cy. For f € L>®(C4),||f||lcc = ess sup |f(s)| < oc.
seCy

The space L*°(C,) is a Banach space with respect to the essential supre-
mum norm. For ¢ € L*°(C,), we define the multiplication operator Mgy
from L?(C4,dp) into L2(Ci,du) by (Mgf)(s) = ¢(s)f(s) and the lit-
tle Hankel operator %4 is a mapping from L2(C;) into L2(C.) defined
by hef = P(¢f), where Py is the projection operator from L?(Cy,dpu)
onto L2(Cy) = {f : f € L2(C4)}. There are also many equivalent ways
of defining little Hankel operators on L2(C. ). Let Sy be the mapping from
L%(Cy) into L2(Cy) defined by Suf = Py (J(¢f)), where Py denote the
orthogonal projection from L?(Cy,du) onto L2(Cy) and J is the mapping
from L?(Cy,du) into L?(Cy,du) such that Jf(s) = f(3). Notice that J
is unitary and JS,f = J(P(J(0f) = TPrT(0f) = P(of) = hof
for f € L2(C4). Let T'y be the mapping from L2(Cy) into L2(Cy) de-
fined by Tyf = PrMyJf. Thus Tyf = PyMyJTf = Pi(d(s)f(3) =
P (T (9(3)f(s))) = Szsf for all f € L2(Cy). Hence T'yf = S74f. Thus
we obtain hgy = JS8y and I'y, = S74. Since J is unitary, the three operators
By, Sy and Ty are referred to as little Hankel operators on L2(C.) and a
given result on little Hankel operators can be stated using the operators
h¢, S¢ and F¢.

Let D = {z € C : |z|] < 1} be the open unit disk in the complex
plane C. Let L?(ID,dA) be the space of complex- valued, square-integrable,
measurable functions on D with respect to the normalized area measure
dA(z) = Ldzdy. Let LZ(D) be the space consisting of those functions of
L?*(D,dA) that are analytic. The space L2(D) is a closed subspace of
L?*(D,dA) and is called the Bergman space of the open unit disk D. Let
L*>°(D) be the space of complex-valued, essentially bounded, Lebesgue mea-
surable functions on D with the essential supremum norm. For ¢ € L>°(DD),
the multiplication operator My from L?(D,dA) into L?(D,dA) is defined
by Myf = ¢f and the little Hankel operator hy is a mapping from L2(D)
into L2(D) defined by hyf = P(¢f), where P is the projection operator
from L*(D,dA) onto LZ(D) = {f : f € LZ(D)}. Let S be the mapping
from L2(D) into L2(D) defined by Ssf = P(J(¢f)), where P is the or-
thogonal projection from L?(ID,dA) onto L2(ID) and J is the mapping from
L?*(D, dA) into itself such that Jf(z) = f(z). Notice that J is unitary and
ISyl = J(P(I(1) = IPI(6f) = P(6f) = hyf for all f € L2(D). Let T
be the mapping from L2(DD) into L2 (D) defined by I'y f = PMyJ f, where My
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is the mapping from L?(D,dA) into L*(DD,dA) defined by Myf = ¢f. Thus
Lyf = PMyJf = P(¢(2)f(7)) = P(J(¢(2)f(2))) = Sy f for all f € L3 (D).
Hence I'y = Sj4. Since J is unitary, the three operators hgy, Sy and I'y, are
referred to as little Hankel operators on L2(D). The sequence of functions
{en(2)}2 = {Vn+ 12"}2°, form an orthonormal basis for L2(D). Since
point evaluation at z € D is a bounded linear functional on the Hilbert space
L2(D), the Riesz representation theorem implies that there exists a unique
function K, in L2(D) such that

f(z) = /D f () K(w)dA(w).

for all f in L2(D). Let K(z,w) be the function on D x D defined by

K(z,w) = K,(w).

The function K (z,w) is analytic in z and co-analytic in w. Since
f(z) = /Df(w)K(zjw)dA(w),f € L2(D),
1

the function K(z,w) = w2 5 W€ D and is the reproducing kernel [7]

of L2(D). For a € D), let k,(2) = \Zgz(aal) = gjiaz‘;) The function k, is called
the normalized reproducing kernel for L2(DD). It is clear that ||ks||2 = 1. Let
Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of
D. We can define for each a € D an automorphism ¢, in Aut(D) such that

(1) (dao¢a)(z) =2
(11) ¢a(0) = a, ¢a(a) =0;
(iii) ¢, has a unique fixed point in D.

In fact, ¢q(2) = {== for all @ and z in D. An easy calculation shows that

the derivative of ¢, at z is equal to —k,(z). It follows that the real Jacobian
determinant of ¢, at z is Jy, (2) = |ka(2)]? = (1-1al")  Given a € D and f

T [1-az]?
any measurable function on D, we define a funcltion ‘Ua fonD by U,f(z2) =
kao(2)f(da(2)). Let L(H) be the set of all bounded linear operators from the
Hilbert space H into itself. Let LC(H) be the set of all compact operators
in L(H). The essential norm of an operator T € L(H) is the distance of the

operator from the space of compact operators, that is

[|T||le = inf{||T — K|| : K is compact. }
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In particular, T is compact if and only if ||T'||c = 0. Essential norm estimates
for bounded operators on the Bergman space are studied in [4] and [6].
The layout of this paper is as follows. In §2, we introduce a class of unitary
operators defined on L2(C,) induced by the automorphisms t,(s) of C,.
In §3, we introduce the functions B(s,w), By(s) and bg(s),s,w € C4 and
establish relations between them. We also show that the function B(s,w)
satisfy an inequality like the Bergman kernel (see [3]) K (z, w) defined for the
space L2(D) . In §4, we introduce the operators Q1 and V; and show that
they are bounded on L?(C,du). In §5, we establish that if ¢ € L*(C., du),
then the little Hankel operator h$ is bounded if and only if V1 ¢ is bounded
on C,. In §6, we give estimates for the essential norm of bounded little
Hankel operators on the Bergman space L2(C,du) in terms of the function
V1¢ and applications of the result are also obtained.

2 A class of unitary operators on L2(C,)

In this section, we introduce a class of unitary operators defined on L2(C,)
induced by the automorphisms ¢,(s) of C.

Define M : C,L — D by Ms = %—jﬁi Then M is one-one, onto and
M~1:D — Cy is given by M~1(z) = }Ljé Thus M is its self-inverse. Let
W : L2(D) — L2(C,) be defined by Wg(s) = %g(Ms)ﬁ The map W
is one-one and onto. Hence W1 exists and W~!: L2(C) — L2(D) is given

by WTIG(2) = 2V/7G(Mz) i, where Mz = 132,

Lemma 1. Ifa €D and a = c+id, c,d € R, then the following hold:

(1) ta(s) = ﬁ%ﬁ:? is an automorphism from C, onto C,.

(ii) (to o ta)(s) = s.

eoe —la 2
(i) ,(s) = —la(s), where Lu(s) = (g etian-

Proof. This can be verified by direct calculations. O

For a € D, define V, : L2(C;) — L2(C4) by (Vag)(s) = (g o ta)(s)la(s).
In Proposition (I, we show that V, is a self-adjoint, unitary operator which
is also an involution.

Proposition 1. Fora € D,

(i) Vily = 1.
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(ii) V' =V, and Vg is an involution, i.e. V2 = Ip2(c, ), where Iz (c,))
is the identity operator from L2(C.) into itself.

(iii) V, is self-adjoint.
(iv) V, is unitary, ||Va|| = 1.

(V) Vap+ = P_;,_Va.

Proof. One can prove (i), (ii), (iii) and (iv) by direct calculations. Notice
that V, can also be defined from L?(C, ) into itself. To prove (v), observe
that V,(L2(Cy)) C L2(C4) and V,(L2(C4))t C (L2(Cy))t. Now let f €
L*(Cy) and f = f1 + fa, where f; € L2(C,) and f2 € (L2(C4))* . Hence,

P.Vof = PiVa(fi + f2) = Pr(Vafi + Vafo) = PiVofi = Vo fi = Vo Py f.

O]

3 The function B(s,w)

In this section, we introduce the functions B(s,w) and bg(s), s, w € C4 and
establish relations between them. We also show that the function B(s,w)
satisfy an inequality like the Bergman kernel (see [3]) K (z,w) defined for
the space L2(DD).

Suppose a € D and w = ﬂ—g = Ma € C,. Define bg(s) = ﬁi—% (iffuu)JT

a 2
Let B(s,w) = By(s) = 05 L.

Lemma 2. Let s,w € C. The following hold:
(i) (bw(w))* = B(w, w).

(i) [bw(s)| [|Bwl| = [Bw(s)]-
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Proof. Let w e C4 and w = Ma = Since

1+7

F(S)_Ll—i—w 2Rew 2 Rew (1 + w)?

N Urldws+w? Jr(l+w)(l+w) [s+ w]?
1+w|?2—|1—w]?

2 dRew (1+w)® 1 2 "hmp 1

S VAl tw? 4 [stwP {2 ]2 [s + w]?

(1+w)

’1+w 1 2 1—|al? 1 . 1-a
Coplstw?  Va(tallstwl o lva
‘QP 1 :l 1—‘@’2
(1+ ) [5_}_%}2 ﬁ(1+a)2 [8—{—%}2
1—|af” 2 1 |af?
Tl—a+s(1+a))? a[l+s—a+as]?
) (1 —|al?)(1+5)? (=2) (~1) 1—|af? (—2)
[T —adaP U4 aP = Vr [ g (5P

1-—
(1+
1-—

%\N%\w

Hﬂ\w

_ =

S

1—|a|? 1
m[L—a(Ms)]? (1+5)*

4

we obtain

A—laf) 1 2 (A-]a]’) 1

2
VRO =T TP~ VR =1l (1) e’

1+4a

b (w) =

2 1 (+4ae?® 1 (1+4a)?
CVr(=laP) 4 2ym(1—af?)’

Thus

2 (1-laP) 1 1 (1+a)
VT (1 —aMs)? (1+5)22/m (1—|a|?)
1 (1+a)? (-1) (1+4+a)? (-2)

1
7(l—aMs)2(1+s)2 21 (1—aMs)?(1+s)2

b (s)bw(w) =

= M' = B(s,w).

Thus bz (s) = % and (bz(W))? = B(w,w). This proves (i). To prove (ii),



Essential norm estimates

notice that

| Ball? = (B B) = /

Cy
/<C+

= |ba(@)*[bw| 3 = |bw(w)|%,

|B(s) [Pdu(s) = /

[bar(@) b () [P dpa(s) =

389

| B(s,w)[*dpu(s)
Cy

() 2 / () 2l (s)

C+

since ||bg||2 = 1. Thus ||Bg]|| = |bw(@)| and hence |by(s)| ||Bs|| = |Bu(s)|-

O]

Lemma 3. Suppose —% < q < p—1. Then there exists a positive constant

C such that

Cq
for all s € C,..

(1+a)? 1

Al ()2
/@ B, |B@,w)| ™ du(®w)
+

Proof. Since B(s,w)

/ BE)P |B@,w)| ™ du(w) < C|B(s, )P

and Ma = w, we obtain

:/(C+ 71r<1(1:z74)z)2 (1423)2 p 417r(f1—+15\)24)2 ()
= /D 71r((11—+ 2)22 § +$\4z)2 p 417r(1(1_+|;|)2§2 : (1(;23)2 4w
o 8 PR 5
:/D i((ll——i—acl))Q (1+1ﬁz)2 4177(1(1313)2)2 (1(12(3)2 dA(a)
- /D 71r((11—+ ;2)22 a +(iii)i 2 p 4177(1(1—75)2; : (1(1263)2 a4t
- [T ] o]
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1 p

(1 —az)?

1
(1 —laf?)?

—q
|1+a| 1974 14-a|**dA(a)

= @) 2 |

= ()" " 221 +Z|2p/ |K(z,0)[" |K(a,a)|~ [1+a| %1 + @|*PdA(a)
D

IN

o 22020 270 [ RGP [K(a,0)] dAG)
D

IN

e z,a)lP a,a)|"?dA(a).
HO [ K Gl 1K (a,0)] dAl)

From [3], we obtain

/c+ |B(s,w)P|B(w, w)|~du(w) < c& <4>p_q K (s, 2)p-i-1

™

for some constant C. Let C; = C’% (%)piq. Then

/ |B(3,@)P|B(w, w)|™dp(w) < C1E (2, 2)P 7171 = C1K ()P0
Ct

K, K, \"¢!
= C1{K,, Kz>7’—‘1‘1 - ClHKzHQ(p_q_l) < >

[ ]
= Cy(ks, k. )P~97" where Cy = C4||K.||2P—a= D),

Thus, if z = M3, then

R L A
[ 13w i) < o (1561

= C5|B(3, s)[P 471,

[ |P—o—)

where C3 = C’QW. This complete the proof.

O
Lemma 4. Let s,w € C4, and w = Ma. Then |B(5,w)| = |B(w,s)].
Proof. Let s,w € C4 and w = Ma. Since B(s,w) = %m%, we
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obtain
w —’LU2
B(s 7)_5 1 (1+Mw)* 1 (H(Ji,)z) 1
T T A = aME)? (1+39)2 _7r<1_a;>2( 1 35)?
1+s
4 1 (1+3)? 14 1 1
T(l4+w)?2(1+5—a+a3)?(1+3)?2 7(1+w)?(l—a+35(1+a))?
_ 41 1 4 1 1
p 2 = 2 2(z 1 )2
7T(1+’U}) (1+CL) <1+Z+§) 7T(1+w) (1+a) (S+w)
41 1 4 (+w)? 1
Cr(l+w)?2(1+Mw)2GE+w)?2 741+ w)? (3+w)2
S l/14+w\* 1
S \l+w) G+w)?
Similarly,
B(W?)—é 1 1 41 1 1
(482 (1+ M2 +w)?2 w(1+s)2(5+w)? 1-5)2
(1+1—+§)
41 1 (1+%* 1(1+s* 1
T(1+s)2G+w)?2 4  7w(1+s)2G+w0)?

Thus |B(5,w)| = |B(w, s)| for all s,w € Cy.

4 Integral operator

In this section, we introduce the operators )1 and V; and prove that these
operators are bounded on L%(C,,du). For ¢ € L?(C,,du) and s € C,, we
define

Q16(s) = 3/C+ Wfb(w}dﬂ(w)
and

w

Vo) =3 [ T ooyl

Proposition 2. The operators Q1 and Vi are bounded on L?(C.y,dy).
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Proof. Notice that the boundedness of @) follows from the boundedness of
V1. Thus we only show that Q1 is a bounded operator on L?(C,du). Take
t > 0 and let h(s) = |B(3, s)|". Then by Lemma [3| and Lemma |4 we obtain

IBEDE, 0 gu(s) = 1B, w)] 5,w)% |B(3, )| du(s
/(C+ Bz h(s)du(s) = | B(w.w) /C+|B(, 2 1B.9) [ du(s)

= IB(w,w)ll/(C |B(w,s)” |B(5, 5)|'du(s)

< [B@,w)|"" C|B(w, w)[>""
— C|B@, w)|' = Ch(w); (1)

5w))%
/ W’)h(w)du(w) = [ BEwPIB@wW B duw)
Cy

- /C BE)PB@,w)| du(w)
< CB(3,5)*T 171 = CB(5,5)! = Ch(s), (2)

for some constant C' > 0. From Schur’s theorem [7], it follows that Q; is
a bounded operator on L?(C,,du). Moreover and also yield the
boundedness of V. O

The boundedness of @ or V; on L?(C,,du) enables us to use Fubini’s
theorem [5]. Let ¢, g € L*(C4,du). Then

(s, w

o) - [ + (3 /(c s
-/ + (3 / + ‘Bi Fa(w)du >) H(5)du(s)

= (¢, Q19), (3)

where the second equality of follows from Fubini’s theorem because

B(w,3)?
Cy JC B(w,w)
< [l@ul llgll [[¢l] < oo
Therefore, the adjoint operator of V; on L?(Cy,du) is equal to Q.

® \

I

e u(8)> gCw)dpu(w)

S\

Y

,5)

,w

gl | &l

°
w)
°
)

E

$)g(w) | o))



Essential norm estimates 393

Lemma 5. For ¢ € L*(C,,dpu),

g fw)p(w)du(w) = g fw)Vrg(w)dp(w)
for all f € L2(Cy).

Proof. As Qf = f for f € L2(C,), we have

Fw)g(w)du(w) = (Q1f,¢) = (f. V1¢) = : flwWrg(w)dp(w).

O

Cy

5 Little Hankel operators

In this section, we establish that if ¢ € L?(C,,du), then the little Han-
kel operator hj is bounded if and only if (V1¢)(w) is bounded in C,. Let
H®°(C.) be the space of bounded analytic functions on C. It is not difficult
to verify that H°°(C;) = WH>(D) and H>(C, ) is dense in L2(C,).

Proposition 3. If ¢ € L?>(C,du), then hg = hp g in the sense that hyg =
hmg for all g € H>®(C,).

Proof. Let h € L2(C,) and g € H*®(C,). Then
(159, T = (P4(39), T = (39, 7) = {gh, &)

= (gh, Py¢) = (Py¢g, h) = (Py¢g, P+ h)

= (P(P+9g), h) = (g 59, h).-
Hence hag = hmg for all g € H>*(C,). O
Lemma 6. Let G(s) € L>(CL). Then the little Hankel operator I'c; deter-
mined on LZ(C) by G is equivalent to the little Hankel operator T, deter-
mined on L2(D) by the function ¢(z) = (Hg)z G(Mz).

1+z

Proof. Notice that the sequence of vectors {\/n—i— 1z”}zo:0 forms an or-
thonormal basis for L2(DD). Then

To(W(Vn+1:2") = Py <GJ <2 (1 _ S>n ( ! 2\/m>)

Vi\l+s/) (1+5s)
=wew (6072 (153) )

= WF(H?)ZG(Mz) (\/n + 1z”) for all n > 0.

1+=z
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N2
Thus I'¢ is unitarily equivalent to I'y where ¢(z) = (iig) G(M=z). The

result follows. O
Proposition 4. If ¢ € L>(C.), then hyW = Whg, ).

Proof. For ¢ € L*>(Cy), notice that hy = JSy and I'y = Sz4, where J
is the mapping from L?(C,du) into itself defined by J f(s) = f(3). Then
from Lemma @, we obtain

71 _ — _ -
w th¢W JhJ((}ij)Q(de)(z))'
Hence
—1 -1
(VLTI hggW) = T )
Thus
_1 — = — —
J[J(W hj¢W)] J (‘]hj<(}1§)2(¢oM)>(z)> )
Therefore
-1 — = - —
w hﬂ)W hJ((iii)Q(@M)(Z))'
Hence
hjaw = WhJ(u(aoM))’ (4)
N2
where u(z) = (i;) = J(M' o M)(z)M'(z). Now from (4)), it follows that
hgW = Wh (y(730m))- (5)
Now
Ju=J(J(M o M)M") = (M"o M)JM'.
Hence

(JuoM)=(M"oMoM)(JM oM)= M (J(M oM)).
Thus

(Ju)(Juo M) = (Mo M)(JM' \M'(J(M' o M))
=M oM)M' J|(M' o M)M'] = 1. (6)

Further notice that
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Hence B B
JW19) = (=1)vr(Jpo M)(JM').
This implies

WIW g = (—1)y/a \/ (JB)IM' o MYM = (JG)(J(M’ o M)A,
Thus
Tb=WIWLp=u(Jo).
Hence

(Tp)oM = (uoM)(Jpo M) = (uo M)J(¢poM).
Therefore
J(T¢)o M) = (J(uo M))(JJ(¢o M))
= (J(uo M))(¢po M)
= ((Ju) o M)(¢p o M).

Form , we obtain

hgW = Wh(uggorry) = Whisu(3(730m))
- WhJu[(Jqu)(qSoM)] Wh’[(Ju)(Jqu)](d)oM)
From @, it follows that th = V[/haO M- O

For ¢ € L*(C,dp), it is not difficult to show that (V1¢)(w) = 3(bg, hzby).
For z € D, f € L?(D,dA), define

VI =30~ PP [ (f”dA< ).

1—zw)?

Proposition 5. Let ¢ € L2(C,du), then (V16)(w) = V(¢ o M)(a), for all
acD.

Proof. Let ¢ € L?>(C,du) and w = Ma,a € D,w € C,. Then
Vig(w) = 30w, igba) = 3(Wha, igWka) = 3(Wha, hsTWky)
3(ka, W hgWha) = 3(ka, g prka) = 3(kas hysprka)
- V(¢ © M)(a’)7
for all a € D. O
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Proposition 6. For ¢ € L?(C,,dpu),
(i) Vi Py = V1.
(it) PLVy = Py.
(iii) VI = V).

Proof. From Proposition [3] we obtain

ViPyo = 3(bay, hpgba) = 3(bw, higbw) = V14,

for ¢ € L?(C,du). This proves (i). To prove (ii), let ¢,g € L*(C4,du) and
g = g1+ go where g1 € L2(C,) and g3 € (L2(C))*. Then

(PVid.g) = V16, Prg) = Vi, gn) = /C (Vi) (w)g1(w) dps(aw)

— / (V1) o M](2)(g1 0 M)(2)| M (=) dA(2)
o /D V(¢ 0 M))(2)(g1 0 M)()|M'()[? dA(2).

Under the complex integral pairing with respect to dA, we have V' = Py

1— 2\2
where Pyh(z) = 3/ ((1’u|))4h(u)dA(u) is a projection from L'(D,dA)
D — ZU

onto L!(D). From Fubini’s theorem [5] and the fact that both P and P,
reproduce analytic functions it follows that PV = P, where P is the Bergman
projection from L?(ID,dA) onto L2(D). Thus for ¢, g € L?(C,du),

(P16, 9) = F/D[V(cﬁoM)](Z)(gl o M)(2) |M'(2)[* dA(2)

= [ Vi MM(:)gr e D) dA(:)

B D
=/DV[(—l)\/?(qboM)M’](Z)(—l)ﬁ(gloM)(Z)M’(Z) dA(z)

= [VOr o) dAc)

= (VW o, W g) = (VW o, W' Prgi) = (VIW 6, PW ')
= (PVW o, W lg)) = (PW g, W lg1) = (WPW ™19, g1)

= (Py¢,q1) = (P{¢,g1) = (Py¢, Prgi)

= (P19, Prg) = (Pi¢,9) = (P19, 9).
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Thus P Vi¢ = P, ¢ for all ¢ € L?(C,dp) and therefore P,V; = P,. This
proves (ii). To prove (iii), notice that

(Vig)(w) = Vi(V1¢)(w) = 3(bw, hys5bw) = 3{bw, hp s gbw)
— 3(b, Fipgb) = (b Figbe) = (Vi) ()
for all w € Cy and ¢ € L?(C,du). Hence V? = V). O
Proposition 7. Leta € D, f € L2(D) and f = W 'g,g € L2(Cy). Then
1 (@) = callig, Bo),
for all g € L2(C,) and for some constant c,.

Proof. Let a € D, f € L2(D) and f = W~ lg,g € L2(C,). Then by Lemma
2] there exists a constant «, |a| = 1 such that

5f(a) = (h5f, Ka) = (F, hgKa) = (W f, Wh3Kq)
= ||l [(WF, Whha) = || Kal (g, WhgW ™~ bis) = || Ka| (G, hzopsbu)
_ _ By al| K| _
= ||K, 7, bw) = o||K, <h* g, >: Wt g, Bg
= [1Kall (0,8 bw) = el Kal [ Pors¥ 751 1Bo|| \gor® B

= Ca<h*oM§7 )a

K
where ¢, = 0“”36“””. Thus,

e\ F(@) = calhsg, Ba).
L]

Theorem 1. Suppose ¢ € L?>(C,du). Then hg is bounded if and only
if V1i¢)(w) is bounded in Ci and there is a constant C > 0 such that
CHWigllo < gl < ClV16 o

Proof. Notice that by € L*(Cy,du) and ||bgl|l2 = 1. Hence |(V1¢)(w)| =
3|(bw, higbw)| < 3l|bwll2 15| [1bwll2 = 3|[bwll3 [|h5]] = 3||5]|. Further, hiz =
hprg = hmv 5 = hyrg- Thus V¢ € L=(C4) 1mphes that h is bounded with

[175]] < [V1¢|oc- The result follows since hy = hy;5 for all ¢ € L*(Cy, dué.]

Theorem 2. Suppose ¢ € L*(Cy,du) such that hg is bounded. Then

1
o <
3ngnosup Vig(w)| < [|Ag]]e.
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Proof. Consider a compact operator T from L2(C.,du) to L2(C,,du) ar-
bitarily. Since by — 0 weakly in L2(C,) as Rew — 0, we obtain ||Tbg|| —
0 as Rew — 0. Hence,

I =Tl > tim sup (s~ Thbw| > lim _supllhgball. (7

Since holds for every compact operator T, it follows that,

gl > tim _sup [fgbl] ®)
On the other hand,

|(Vi9)(w)| = 3[(bw, hgbw)| < 3||hgbw|. (9)
From and @, the theorem follows. O

6 Main Result

In this section, we give estimates for the essential norm of bounded little
Hankel operators on the Bergman space L2(C,du) in terms of the function
V1¢ and applications of the result are also derived. Assume that Ay is
bounded operator from L2(C,du) to L2(C,du). The following holds:

Theorem 3. Suppose ¢ € L*(C,,du) and hg is bounded. Then

Iiglle < € timsupVig(w),

Proof. For f € L2(D) and 0 < r < 1, define

810 = [ ([ mp i oA ) S)Aw)

Then PF, is a compact operator from L2(D) to L2(D) because

2

! dA(2)dA(v)

(1—zuw)? (1 —vu)

1 1
<[Vl /D/D/D T T s dAE)aARA)

5V (u)dA(u)
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1
= |[Voll% /D md/l(u) < o0

and the result follows from Theorem 3.5 in [7]. Thus, we have
lhglle = 11B51]e = |15 — PE |l < |05 — PF|
Moreover, Phg = }% yields,

PR f — PE. |
e - PRI = sw
el BTyl
s - Rl
sup —————
ez NIl
Define . )
K. (z,v) = — —V dA(u),
@)= [ TP T A
and K, (z,v) = |K,(z,v)|. Let G, (respectively G;") be the integral operator
on L?(D,dA) with kernel K, (respectively K;"). Then G, f = f%f — F,. f for

any f € L2(D). For details see [7]. Thus
1hglle < 11G1.

Using Schur’s theorem, we will obtain the operator norm of G, on L?(ID, dA).
Take t > 0 and h(z) = W Then we have,

/K*zv v)dA(v)

1 1
-/ /D/TD 0z (1 vm?W“)dA(“)

< (s o) [ [

Since
1
A(u)dA
/ /D/m (=07 0=y <1—W>2td (u)dA)

//\1—vu]2 I—M )Qtll—zu|2 A(v)dA(u)

< Ch(z

1
(1= [of?)*

dA(v)

1— 2u)? (1—vu) (1—|v|) dA(u)dA(v).
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we obtain from [3] that,

/D K} (2, 0)h(0)dA(v) < c( sup |v¢<u>\> h(2).

r<lul<1
Thus using Schur’s theorem [7], we have

IGH < C sup [Vo(u)l.

r<jul<1

Thus
|hglle <C sup [Vo(u)l,

¢ r<|u|<1

for any 0 < r < 1. Letting » — 1, we obtain
lhglle < € tim sup Vo(u)].
Hence
||7glle = inf{||hg — T'|| : T is compact}

= inf{HWﬁli’LgW —~W™ITW]|| : T is compact}

= {llhgonsW — LI| : L is compact in L(L2(D))}

= [1hgonslle

< C lim sup|V(¢oM)(a)|=C lim sup|(Vi¢)(w)].

a—0oD Rew—0
O

Corollary 1. Let ¢ € L*(C.,du). Then hg is a compact operator from
L3(Cy,du) to L2(Cy,dp) if and only if Vid(w) — 0 as Rew — 0.

Proof. Suppose A is compact. Since fiz is bounded and ||Ag|[e = 0. It thus
follows from Theorem that lim sup [V1¢(w)| = 0. That is, Vi¢(w) — 0

Rew—0
as Rew — 0. On the other hand, V1 ¢(w) — 0 and since V;¢ is a continuous

functions, we obtain that V;¢ is bounded. Therefore, hg is bounded. Hence,
from Theorem [3| we obtain ||ig]|c = 0. Thus A7 is compact. O
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