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Abstract

In this paper, we give estimates for the essential norm of a bounded
little Hankel operator defined on the Bergman space of the right half
plane. As an application of these estimates, we also give a necessary
and sufficient condition for the little Hankel operator to be compact.
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1 Introduction

Let C+ = {s = x + iy ∈ C : Res > 0} be the right half plane. Let
dµ(s) = dxdy be the area measure. Let L2(C+, dµ) be the space of complex-
valued, square-integrable, measurable functions on C+ with respect to the
area measure. Let L2

a(C+) be the closed subspace [1] of L2(C+, dµ) consist-
ing of those functions in L2(C+, dµ) that are analytic. The space L2

a(C+)
is referred to as the Bergman space of the right half plane. The functions

*accepted for publication in revised form on July 12, 2018
�jitendramath0507@gmail.com P. G. Dept. of Mathematics, Utkal University, Vani

Vihar, Bhubaneswar- 751004, Odisha, India
�namitadas440@yahoo.co.in P. G. Dept. of Mathematics, Utkal University, Vani Vi-

har, Bhubaneswar- 751004, Odisha, India

383



384 J.K. Behera, N. Das

H(s, w) = 1
(s+w)2

, s ∈ C+, w ∈ C+ is the reproducing kernel [2] for L2
a(C+).

Let L∞(C+) be the space of complex-valued, essentially bounded, Lebesgue
measurable functions on C+. For f ∈ L∞(C+), ||f ||∞ = ess sup

s∈C+

|f(s)| <∞.

The space L∞(C+) is a Banach space with respect to the essential supre-
mum norm. For φ ∈ L∞(C+), we define the multiplication operator Mφ

from L2(C+, dµ) into L2(C+, dµ) by (Mφf)(s) = φ(s)f(s) and the lit-

tle Hankel operator ~φ is a mapping from L2
a(C+) into L2

a(C+) defined
by ~φf = P+(φf), where P+ is the projection operator from L2(C+, dµ)

onto L2
a(C+) = {f : f ∈ L2

a(C+)}. There are also many equivalent ways
of defining little Hankel operators on L2

a(C+). Let Sφ be the mapping from
L2
a(C+) into L2

a(C+) defined by Sφf = P+(J (φf)), where P+ denote the
orthogonal projection from L2(C+, dµ) onto L2

a(C+) and J is the mapping
from L2(C+, dµ) into L2(C+, dµ) such that J f(s) = f(s). Notice that J
is unitary and JSφf = J (P+(J (φf))) = JP+J (φf) = P+(φf) = ~φf
for f ∈ L2

a(C+). Let Γφ be the mapping from L2
a(C+) into L2

a(C+) de-
fined by Γφf = P+MφJ f. Thus Γφf = P+MφJ f = P+(φ(s)f(s)) =
P+(J (φ(s)f(s))) = SJφf for all f ∈ L2

a(C+). Hence Γφf = SJφf. Thus
we obtain ~φ = JSφ and Γφ = SJφ. Since J is unitary, the three operators
~φ,Sφ and Γφ are referred to as little Hankel operators on L2

a(C+) and a
given result on little Hankel operators can be stated using the operators
~φ,Sφ and Γφ.

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex
plane C. Let L2(D, dA) be the space of complex- valued, square-integrable,
measurable functions on D with respect to the normalized area measure
dA(z) = 1

πdxdy. Let L2
a(D) be the space consisting of those functions of

L2(D, dA) that are analytic. The space L2
a(D) is a closed subspace of

L2(D, dA) and is called the Bergman space of the open unit disk D. Let
L∞(D) be the space of complex-valued, essentially bounded, Lebesgue mea-
surable functions on D with the essential supremum norm. For φ ∈ L∞(D),
the multiplication operator Mφ from L2(D, dA) into L2(D, dA) is defined
by Mφf = φf and the little Hankel operator hφ is a mapping from L2

a(D)

into L2
a(D) defined by hφf = P (φf), where P is the projection operator

from L2(D, dA) onto L2
a(D) = {f : f ∈ L2

a(D)}. Let Sφ be the mapping
from L2

a(D) into L2
a(D) defined by Sφf = P (J(φf)), where P is the or-

thogonal projection from L2(D, dA) onto L2
a(D) and J is the mapping from

L2(D, dA) into itself such that Jf(z) = f(z). Notice that J is unitary and
JSφf = J(P (J(φf))) = JPJ(φf) = P (φf) = hφf for all f ∈ L2

a(D). Let Γφ
be the mapping from L2

a(D) into L2
a(D) defined by Γφf = PMφJf, where Mφ
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is the mapping from L2(D, dA) into L2(D, dA) defined by Mφf = φf. Thus
Γφf = PMφJf = P (φ(z)f(z)) = P (J(φ(z)f(z))) = SJφf for all f ∈ L2

a(D).
Hence Γφ = SJφ. Since J is unitary, the three operators hφ, Sφ and Γφ are
referred to as little Hankel operators on L2

a(D). The sequence of functions
{en(z)}∞n=0 = {

√
n+ 1zn}∞n=0 form an orthonormal basis for L2

a(D). Since
point evaluation at z ∈ D is a bounded linear functional on the Hilbert space
L2
a(D), the Riesz representation theorem implies that there exists a unique

function Kz in L2
a(D) such that

f(z) =

∫
D
f(w)Kz(w)dA(w).

for all f in L2
a(D). Let K(z, w) be the function on D× D defined by

K(z, w) = Kz(w).

The function K(z, w) is analytic in z and co-analytic in w. Since

f(z) =

∫
D
f(w)K(z, w)dA(w), f ∈ L2

a(D),

the function K(z, w) = 1
(1−zw)2 , z, w ∈ D and is the reproducing kernel [7]

of L2
a(D). For a ∈ D, let ka(z) = K(z,a)√

K(a,a)
= (1−|a|2)

(1−az)2 . The function ka is called

the normalized reproducing kernel for L2
a(D). It is clear that ||ka||2 = 1. Let

Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of
D. We can define for each a ∈ D an automorphism φa in Aut(D) such that

(i) (φa ◦ φa)(z) = z;

(ii) φa(0) = a, φa(a) = 0;

(iii) φa has a unique fixed point in D.

In fact, φa(z) = a−z
1−az for all a and z in D. An easy calculation shows that

the derivative of φa at z is equal to −ka(z). It follows that the real Jacobian

determinant of φa at z is Jφa(z) = |ka(z)|2 = (1−|a|2)
|1−az|4 . Given a ∈ D and f

any measurable function on D, we define a function Uaf on D by Uaf(z) =
ka(z)f(φa(z)). Let L(H) be the set of all bounded linear operators from the
Hilbert space H into itself. Let LC(H) be the set of all compact operators
in L(H). The essential norm of an operator T ∈ L(H) is the distance of the
operator from the space of compact operators, that is

||T ||e = inf{||T −K|| : K is compact. }
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In particular, T is compact if and only if ||T ||e = 0. Essential norm estimates
for bounded operators on the Bergman space are studied in [4] and [6].
The layout of this paper is as follows. In §2, we introduce a class of unitary
operators defined on L2

a(C+) induced by the automorphisms ta(s) of C+.
In §3, we introduce the functions B(s, w), Bw(s) and bw(s), s, w ∈ C+ and
establish relations between them. We also show that the function B(s, w)
satisfy an inequality like the Bergman kernel (see [3]) K(z, w) defined for the
space L2

a(D) . In §4, we introduce the operators Q1 and V1 and show that
they are bounded on L2(C+, dµ). In §5, we establish that if φ ∈ L2(C+, dµ),
then the little Hankel operator ~φ is bounded if and only if V1φ is bounded
on C+. In §6, we give estimates for the essential norm of bounded little
Hankel operators on the Bergman space L2

a(C+, dµ) in terms of the function
V1φ and applications of the result are also obtained.

2 A class of unitary operators on L2
a(C+)

In this section, we introduce a class of unitary operators defined on L2
a(C+)

induced by the automorphisms ta(s) of C+.
Define M : C+ → D by Ms = 1−s

1+s . Then M is one-one, onto and

M−1 : D → C+ is given by M−1(z) = 1−z
1+z . Thus M is its self-inverse. Let

W : L2
a(D)→ L2

a(C+) be defined by Wg(s) = 2√
π
g(Ms) 1

(1+s)2
. The map W

is one-one and onto. Hence W−1 exists and W−1 : L2
a(C+)→ L2

a(D) is given
by W−1G(z) = 2

√
πG(Mz) 1

(1+z)2
, where Mz = 1−z

1+z .

Lemma 1. If a ∈ D and a = c+ id, c, d ∈ R, then the following hold:

(i) ta(s) = −ids+(1−c)
(1+c)s+id is an automorphism from C+ onto C+.

(ii) (ta ◦ ta)(s) = s.

(iii) t′a(s) = −la(s), where la(s) = 1−|a|2
((1+c)s+id)2

.

Proof. This can be verified by direct calculations.

For a ∈ D, define Va : L2
a(C+) → L2

a(C+) by (Vag)(s) = (g ◦ ta)(s)la(s).
In Proposition 1, we show that Va is a self-adjoint, unitary operator which
is also an involution.

Proposition 1. For a ∈ D,

(i) Vala = 1.
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(ii) V −1a = Va and Va is an involution, i.e. V 2
a = IL(L2

a(C+)), where IL(L2
a(C+))

is the identity operator from L2
a(C+) into itself.

(iii) Va is self-adjoint.

(iv) Va is unitary, ||Va|| = 1.

(v) VaP+ = P+Va.

Proof. One can prove (i), (ii), (iii) and (iv) by direct calculations. Notice
that Va can also be defined from L2(C+) into itself. To prove (v), observe
that Va(L

2
a(C+)) ⊂ L2

a(C+) and Va(L
2
a(C+))⊥ ⊂ (L2

a(C+))⊥. Now let f ∈
L2(C+) and f = f1 + f2, where f1 ∈ L2

a(C+) and f2 ∈ (L2
a(C+))⊥. Hence,

P+Vaf = P+Va(f1 + f2) = P+(Vaf1 + Vaf2) = P+Vaf1 = Vaf1 = VaP+f.

3 The function B(s, w)

In this section, we introduce the functions B(s, w) and bw(s), s, w ∈ C+ and
establish relations between them. We also show that the function B(s, w)
satisfy an inequality like the Bergman kernel (see [3]) K(z, w) defined for
the space L2

a(D).

Suppose a ∈ D and w = 1−a
1+a = Ma ∈ C+. Define bw(s) = 1√

π
1+w
1+w

2Rew
(s+w)2

.

Let B(s, w) = Bw(s) = 1
π

(1+a)2

(1−aMs)2
1

(1+s)2
.

Lemma 2. Let s, w ∈ C+. The following hold:

(i) (bw(w))2 = B(w,w).

(ii) |bw(s)| ||Bw|| = |Bw(s)|.
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Proof. Let w ∈ C+ and w = Ma = 1−a
1+a . Since

bw(s) =
1√
π

1 + w

1 + w

2Rew

[s+ w]2
=

2√
π

Rew

(1 + w)(1 + w)

(1 + w)2

[s+ w]2

=
2√
π

4Rew

|1 + w|2
(1 + w)2

4

1

[s+ w]2
=

2√
π

|1+w|2−|1−w|2
|1+w|2[

2
(1+w)

]2 1

[s+ w]2

=
2√
π

1−
∣∣∣1−w1+w

∣∣∣2
(1 + 1−w

1+w )2
1

[s+ w]2
=

2√
π

1− |a|2

(1 + a)2
1

[s+ w]2
,where

1− a
1 + a

= w,

=
2√
π

1− |a|2

(1 + a)2
1[

s+ 1−a
1+a

]2 =
2√
π

1− |a|2

(1 + a)2
[
s+ 1−a

1+a

]2
=

2√
π

1− |a|2

[1− a+ s(1 + a)]2
=

2√
π

1− |a|2

[1 + s− a+ as]2

=
(−1)√
π

(1− |a|2)(1 + s)2

[1 + s− a+ as]2
(−2)

(1 + s)2
=

(−1)√
π

1− |a|2[
1− a1−s

1+s

]2 (−2)

(1 + s)2

=
2√
π

1− |a|2

[1− a(Ms)]2
1

(1 + s)2
,

we obtain

bw(w) =
2√
π

(1− |a|2)
(1− aMw)2

1

(1 + w)2
=

2√
π

(1− |a|2)
(1− |a|2)2

1(
1 + 1−a

1+a

)2
=

2√
π

1

(1− |a|2)
(1 + a)2

4
=

1

2
√
π

(1 + a)2

(1− |a|2)
.

Thus

bw(s)bw(w) =
2√
π

(1− |a|2)
(1− aMs)2

1

(1 + s)2
1

2
√
π

(1 + a)2

(1− |a|2)

=
1

π

1

(1− aMs)2
(1 + a)2

(1 + s)2
=

(−1)

2π

(1 + a)2

(1− aMs)2
(−2)

(1 + s)2

=
(−1)

2π

(1 + a)2

(1− aMs)2
M ′ = B(s, w).

Thus bw(s) = B(s,w)
bw(w) and (bw(w))2 = B(w,w). This proves (i). To prove (ii),
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notice that

||Bw||2 = 〈Bw, Bw〉 =

∫
C+

|Bw(s)|2dµ(s) =

∫
C+

|B(s, w)|2dµ(s)

=

∫
C+

|bw(w)|2|bw(s)|2dµ(s) = |bw(w)|2
∫
C+

|bw(s)|2dµ(s)

= |bw(w)|2||bw||22 = |bw(w)|2,

since ||bw||2 = 1. Thus ||Bw|| = |bw(w)| and hence |bw(s)| ||Bw|| = |Bw(s)|.

Lemma 3. Suppose −1
2 < q < p − 1. Then there exists a positive constant

C such that∫
C+

|B(s, w)|p |B(w,w)|−q dµ(w) ≤ C|B(s, s)|p−q−1

for all s ∈ C+.

Proof. Since B(s, w) = 1
π

(1+a)2

(1−aMs)2
1

(1+s)2
and Ma = w, we obtain∫

C+

|B(s, w)|p |B(w,w)|−q dµ(w)

=

∫
C+

∣∣∣∣ 1π (1 + a)2

(1− aMs)2
1

(1 + s)2

∣∣∣∣p ∣∣∣∣ 1

4π

(1 + a)4

(1− |a|2)2

∣∣∣∣−q dµ(Ma)

=

∫
D

∣∣∣∣ 1π (1 + a)2

(1− az)2
1

(1 +Mz)2

∣∣∣∣p ∣∣∣∣ 1

4π

(1 + a)4

(1− |a|2)2

∣∣∣∣−q ∣∣∣∣ (−2)

(1 + a)2

∣∣∣∣2 dA(a)

=

∫
D

∣∣∣∣∣∣∣
1

π

(1 + a)2

(1− az)2
1(

1 + 1−z
1+z

)2
∣∣∣∣∣∣∣
p ∣∣∣∣ 1

4π

(1 + a)4

(1− |a|2)2

∣∣∣∣−q ∣∣∣∣ (−2)

(1 + a)2

∣∣∣∣2 dA(a)

=

∫
D

∣∣∣∣ 1π (1 + a)2

(1− az)2
(1 + z)2

(1 + z + 1− z)2

∣∣∣∣p ∣∣∣∣ 1

4π

(1 + a)4

(1− |a|2)2

∣∣∣∣−q ∣∣∣∣ (−2)

(1 + a)2

∣∣∣∣2 dA(a)

=

∫
D

∣∣∣∣ 1

4π

(1 + a)2(1 + z)2

(1− az)2

∣∣∣∣p ∣∣∣∣ 1

4π

(1 + a)4

(1− |a|2)2

∣∣∣∣−q ∣∣∣∣ (−2)

(1 + a)2

∣∣∣∣2 dA(a)
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=
(

1
4π

)p−q
22 |1+z|2p

∫
D

∣∣∣∣ 1

(1− az)2

∣∣∣∣p ∣∣∣∣ 1

(1− |a|2)2

∣∣∣∣−q |1+a|−4q−4|1+a|2pdA(a)

=
(

1
4π

)p−q
22 |1 + z|2p

∫
D
|K(z, a)|p |K(a, a)|−q |1 + a|−4q−4|1 + a|2pdA(a)

≤ 4
(4π)p−q 22p 22p 2−4q−4

∫
D
|K(z, a)|p |K(a, a)|−qdA(a)

≤ 1
4

(
4
π

)p−q ∫
D
|K(z, a)|p |K(a, a)|−qdA(a).

From [3], we obtain∫
C+

|B(s, w)|p|B(w,w)|−qdµ(w) ≤ C 1

4

(
4

π

)p−q
K(z, z)p−q−1

for some constant C. Let C1 = C 1
4

(
4
π

)p−q
. Then∫

C+

|B(s, w)|p|B(w,w)|−qdµ(w) ≤ C1K(z, z)p−q−1 = C1Kz(z)
p−q−1

= C1〈Kz,Kz〉p−q−1 = C1||Kz||2(p−q−1)
〈

Kz

||Kz||
,
Kz

||Kz||

〉p−q−1
= C2〈kz, kz〉p−q−1 where C2 = C1||Kz||2(p−q−1).

Thus, if z = Ms, then

∫
C+

|B(s, w)|p|B(w,w)|−qdµ(w) ≤ C2

(
||Kz||2

||Bs||2
|B(s, s)|

)p−q−1
= C3|B(s, s)|p−q−1,

where C3 = C2
||Kz ||2(p−q−1)

||Bs||2(p−q−1) . This complete the proof.

Lemma 4. Let s, w ∈ C+, and w = Ma. Then |B(s, w)| = |B(w, s)|.

Proof. Let s, w ∈ C+ and w = Ma. Since B(s, w) = 1
π

1
(1−aMs)2

(1+a)2

(1+s)2
, we
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obtain

B(s, w) =
1

π

1

(1− aMs)2
(1 +Mw)2

(1 + s)2
=

1

π

(1+w+1−w)2
(1+w)2(

1− a1−s
1+s

)2 1

(1 + s)2

=
4

π

1

(1 + w)2
(1 + s)2

(1 + s− a+ as)2
1

(1 + s)2
=

4

π

1

(1 + w)2
1

(1− a+ s(1 + a))2

=
4

π

1

(1 + w)2
1

(1 + a)2
(
1−a
1+a + s

)2 =
4

π

1

(1 + w)2
1

(1 + a)2(s+ w)2

=
4

π

1

(1 + w)2
1

(1 +Mw)2(s+ w)2
=

4

π

(1 + w)2

4(1 + w)2
1

(s+ w)2

=
1

π

(
1 + w

1 + w

)2 1

(s+ w)2
.

Similarly,

B(w, s) =
4

π

1

(1 + s)2
1

(1 +Ms)2(s+ w)2
=

4

π

1

(1 + s)2
1

(s+ w)2
1(

1 + 1−s
1+s

)2
=

4

π

1

(1 + s)2
1

(s+ w)2
(1 + s)2

4
=

1

π

(1 + s)2

(1 + s)2
1

(s+ w)2
.

Thus |B(s, w)| = |B(w, s)| for all s, w ∈ C+.

4 Integral operator

In this section, we introduce the operators Q1 and V1 and prove that these
operators are bounded on L2(C+, dµ). For φ ∈ L2(C+, dµ) and s ∈ C+, we
define

Q1φ(s) = 3

∫
C+

|B(s, w)|2

|B(w,w)|
φ(w)dµ(w)

and

V1φ(w) = 3

∫
C+

|B(s, w)|2

|B(w,w)|
φ(s)dµ(s).

Proposition 2. The operators Q1 and V1 are bounded on L2(C+, dµ).
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Proof. Notice that the boundedness of Q1 follows from the boundedness of
V1. Thus we only show that Q1 is a bounded operator on L2(C+, dµ). Take
t > 0 and let h(s) = |B(s, s)|t. Then by Lemma 3 and Lemma 4, we obtain∫

C+

|B(s, w)|2

|B(w,w)|
h(s)dµ(s) = |B(w,w)|−1

∫
C+

|B(s, w)|2 |B(s, s)|tdµ(s)

= |B(w,w)|−1
∫
C+

|B(w, s)|2 |B(s, s)|tdµ(s)

≤ |B(w,w)|−1 C|B(w,w)|2+t−1

= C|B(w,w)|t = Ch(w); (1)

and

∫
C+

|B(s, w)|2

|B(w,w)|
h(w)dµ(w) =

∫
C+

|B(s, w)|2|B(w,w)|t |B(w,w)|−1dµ(w)

=

∫
C+

|B(s, w)|2|B(w,w)|t−1 dµ(w)

≤ CB(s, s)2+t−1−1 = CB(s, s)t = Ch(s), (2)

for some constant C > 0. From Schur’s theorem [7], it follows that Q1 is
a bounded operator on L2(C+, dµ). Moreover (1) and (2) also yield the
boundedness of V1.

The boundedness of Q1 or V1 on L2(C+, dµ) enables us to use Fubini’s
theorem [5]. Let φ, g ∈ L2(C+, dµ). Then

〈V1φ, g〉 =

∫
C+

(
3

∫
C+

|B(s, w)|2

|B(w,w)|
φ(s)dµ(s)

)
g(w)dµ(w)

=

∫
C+

(
3

∫
C+

|B(w, s)|2

|B(w,w)|
g(w)dµ(w)

)
φ(s)dµ(s)

= 〈φ,Q1g〉, (3)

where the second equality of (3) follows from Fubini’s theorem because

3

∫
C+

∫
C+

∣∣∣∣B(w, s)2

B(w,w)
φ(s)g(w)

∣∣∣∣ dµ(s)dµ(w)

≤ ||Q1|| ||g|| ||φ|| <∞.

Therefore, the adjoint operator of V1 on L2(C+, dµ) is equal to Q1.
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Lemma 5. For φ ∈ L2(C+, dµ),∫
C+

f(w)φ(w)dµ(w) =

∫
C+

f(w)V1φ(w)dµ(w)

for all f ∈ L2
a(C+).

Proof. As Q1f = f for f ∈ L2
a(C+), we have∫

C+

f(w)φ(w)dµ(w) = 〈Q1f, φ〉 = 〈f,V1φ〉 =

∫
C+

f(w)V1φ(w)dµ(w).

5 Little Hankel operators

In this section, we establish that if φ ∈ L2(C+, dµ), then the little Han-
kel operator ~φ is bounded if and only if (V1φ)(w) is bounded in C+. Let
H∞(C+) be the space of bounded analytic functions on C+. It is not difficult
to verify that H∞(C+) = WH∞(D) and H∞(C+) is dense in L2

a(C+).

Proposition 3. If φ ∈ L2(C+, dµ), then ~φ = ~P+φ
in the sense that ~φg =

~P+φ
g for all g ∈ H∞(C+).

Proof. Let h ∈ L2
a(C+) and g ∈ H∞(C+). Then

〈~φg, h〉 = 〈P+(φg), h〉 = 〈φg, h〉 = 〈gh, φ〉

= 〈gh, P+φ〉 = 〈P+φg, h〉 = 〈P+φg, P+h〉
= 〈P+(P+φg), h〉 = 〈~P+φ

g, h〉.

Hence ~φg = ~P+φ
g for all g ∈ H∞(C+).

Lemma 6. Let G(s) ∈ L∞(C+). Then the little Hankel operator ΓG deter-
mined on L2

a(C+) by G is equivalent to the little Hankel operator Γφ deter-

mined on L2
a(D) by the function φ(z) =

(
1+z
1+z

)2
G(Mz).

Proof. Notice that the sequence of vectors
{√

n+ 1zn
}∞
n=0

forms an or-
thonormal basis for L2

a(D). Then

ΓG(W (
√
n+ 1zn)) = P+

(
GJ

(
2√
π

(
1− s
1 + s

)n 1

(1 + s)2
√
n+ 1

))
= WPW−1

(
G(s)

2√
π

(
1− s
1 + s

)n 1

(1 + s)2
√
n+ 1

)
= WΓ

( 1+z
1+z )

2
G(Mz)

(√
n+ 1zn

)
for all n ≥ 0.
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Thus ΓG is unitarily equivalent to Γφ where φ(z) =
(
1+z
1+z

)2
G(Mz). The

result follows.

Proposition 4. If φ ∈ L∞(C+), then ~φW = Whφ◦M .

Proof. For φ ∈ L∞(C+), notice that ~φ = JSφ and Γφ = SJφ, where J
is the mapping from L2(C+, dµ) into itself defined by J f(s) = f(s). Then
from Lemma (6), we obtain

W−1J ~JφW = Jh
J
(
( 1+z
1+z )

2
(φ◦M)(z)

).
Hence

(W−1JW )(W−1~JφW ) = Jh
J
(
( 1+z
1+z )

2
(φ◦M)(z)

).
Thus

J [J(W−1~JφW )] = J

(
Jh

J
(
( 1+z
1+z )

2
(φ◦M)

)
(z)

)
.

Therefore

W−1~JφW = h
J
(
( 1+z
1+z )

2
(φ◦M)(z)

).
Hence

~JφW = WhJ(u(φ◦M)), (4)

where u(z) =
(
1+z
1+z

)2
= J(M ′ ◦M)(z)M ′(z). Now from (4), it follows that

~φW = WhJ(u(Jφ◦M)). (5)

Now
Ju = J(J(M ′ ◦M)M ′) = (M ′ ◦M)JM ′.

Hence

(Ju ◦M) = (M ′ ◦M ◦M)(JM ′ ◦M) = M ′(J(M ′ ◦M)).

Thus

(Ju)(Ju ◦M) = (M ′ ◦M)(JM ′)M ′(J(M ′ ◦M))

= (M ′ ◦M)M ′J [(M ′ ◦M)M ′] = 1. (6)

Further notice that

W−1φ = (−1)
√
π(φ ◦M)M ′.
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Hence
J(W−1φ) = (−1)

√
π(Jφ ◦M)(JM ′).

This implies

WJW−1φ = (−1)
√
π

(−1)√
π

(Jφ)(JM ′ ◦M)M ′ = (Jφ)(J(M ′ ◦M))M ′.

Thus
J φ = WJW−1φ = u(Jφ).

Hence
(J φ) ◦M = (u ◦M)(Jφ ◦M) = (u ◦M)J(φ ◦M).

Therefore

J((J φ) ◦M) = (J(u ◦M))(JJ(φ ◦M))

= (J(u ◦M))(φ ◦M)

= ((Ju) ◦M)(φ ◦M).

Form (5), we obtain

~φW = WhJ(u(Jφ◦M)) = Wh(Ju)(J(Jφ◦M))

= WhJu[(Ju◦M)(φ◦M)] = Wh[(Ju)(Ju◦M)](φ◦M).

From (6), it follows that ~φW = Whφ◦M .

For φ ∈ L2(C+, dµ), it is not difficult to show that (V1φ)(w) = 3〈bw, ~φbw〉.
For z ∈ D, f ∈ L2(D, dA), define

(V f)(z) = 3(1− |z|2)2
∫
D

f(w)

(1− zw)4
dA(w).

Proposition 5. Let φ ∈ L2(C+, dµ), then (V1φ)(w) = V (φ ◦M)(a), for all
a ∈ D.

Proof. Let φ ∈ L2(C+, dµ) and w = Ma, a ∈ D, w ∈ C+. Then

V1φ(w) = 3〈bw, ~φbw〉 = 3〈Wka, ~φWka〉 = 3〈Wka, ~φWka〉

= 3〈ka,W−1~φWka〉 = 3〈ka, hφ◦Mka〉 = 3〈ka, hφ◦Mka〉
= V (φ ◦M)(a),

for all a ∈ D.
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Proposition 6. For φ ∈ L2(C+, dµ),

(i) V1P+ = V1.

(ii) P+V1 = P+.

(iii) V21 = V1.

Proof. From Proposition 3, we obtain

V1P+φ = 3〈bw, ~P+φ
bw〉 = 3〈bw, ~φbw〉 = V1φ,

for φ ∈ L2(C+, dµ). This proves (i). To prove (ii), let φ, g ∈ L2(C+, dµ) and
g = g1 + g2 where g1 ∈ L2

a(C+) and g2 ∈ (L2
a(C+))⊥. Then

〈P+V1φ, g〉 = 〈V1φ, P+g〉 = 〈V1φ, g1〉 =

∫
C+

(V1φ)(w)g1(w) dµ(w)

= π

∫
D

[(V1φ) ◦M ](z)(g1 ◦M)(z)|M ′(z)|2 dA(z)

= π

∫
D

[V (φ ◦M)](z)(g1 ◦M)(z)|M ′(z)|2 dA(z).

Under the complex integral pairing with respect to dA, we have V = P ∗2

where P2h(z) = 3

∫
D

(1− |u|2)2

(1− zu)4
h(u)dA(u) is a projection from L1(D, dA)

onto L1
a(D). From Fubini’s theorem [5] and the fact that both P and P2

reproduce analytic functions it follows that PV = P, where P is the Bergman
projection from L2(D, dA) onto L2

a(D). Thus for φ, g ∈ L2(C+, dµ),

〈P+V1φ, g〉 = π

∫
D

[V (φ ◦M)](z)(g1 ◦M)(z) |M ′(z)|2 dA(z)

= π

∫
D
V [(φ ◦M)M ′](z)(g1 ◦M)(z)M ′(z) dA(z)

=

∫
D
V [(−1)

√
π(φ ◦M)M ′](z)(−1)

√
π(g1 ◦M)(z)M ′(z) dA(z)

=

∫
D
V (W−1φ)(z)(W−1g1)(z) dA(z)

= 〈VW−1φ,W−1g1〉 = 〈VW−1φ,W−1P+g1〉 = 〈VW−1φ, PW−1g1〉
= 〈PVW−1φ,W−1g1〉 = 〈PW−1φ,W−1g1〉 = 〈WPW−1φ, g1〉
= 〈P+φ, g1〉 = 〈P 2

+φ, g1〉 = 〈P+φ, P+g1〉
= 〈P+φ, P+g〉 = 〈P 2

+φ, g〉 = 〈P+φ, g〉.
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Thus P+V1φ = P+φ for all φ ∈ L2(C+, dµ) and therefore P+V1 = P+. This
proves (ii). To prove (iii), notice that

(V21φ)(w) = V1(V1φ)(w) = 3〈bw, ~V1φbw〉 = 3〈bw, ~P+V1φbw〉

= 3〈bw, ~P+φ
bw〉 = 3〈bw, ~φbw〉 = (V1φ)(w)

for all w ∈ C+ and φ ∈ L2(C+, dµ). Hence V21 = V1.

Proposition 7. Let a ∈ D, f ∈ L2
a(D) and f = W−1g, g ∈ L2

a(C+). Then

h∗
φ◦Mf(a) = ca〈~∗φg,Bw〉,

for all g ∈ L2
a(C+) and for some constant ca.

Proof. Let a ∈ D, f ∈ L2
a(D) and f = W−1g, g ∈ L2

a(C+). Then by Lemma
2, there exists a constant α, |α| = 1 such that

h∗
φ
f(a) = 〈h∗

φ
f,Ka〉 = 〈f, hφKa〉 = 〈Wf,WhφKa〉

= ||Ka||〈Wf,Whφka〉 = ||Ka||〈g,WhφW
−1bw〉 = ||Ka||〈g, ~φ◦Mbw〉

= ||Ka||〈~∗φ◦Mg, bw〉 = α||Ka||
〈
~∗
φ◦Mg,

Bw
||Bw||

〉
=
α||Ka||
||Bw||

〈~∗
φ◦Mg,Bw〉

= ca〈~∗φ◦Mg,Bw〉,

where ca = α||Ka||
||Bw|| . Thus,

~∗
φ◦Mf(a) = ca〈~∗φg,Bw〉.

Theorem 1. Suppose φ ∈ L2(C+, dµ). Then ~φ is bounded if and only
if (V1φ)(w) is bounded in C+ and there is a constant C > 0 such that
C−1||V1φ||∞ ≤ ||~φ|| ≤ C||V1φ||∞.

Proof. Notice that bw ∈ L2(C+, dµ) and ||bw||2 = 1. Hence |(V1φ)(w)| =
3|〈bw, ~φbw〉| ≤ 3||bw||2 ||~φ|| ||bw||2 = 3||bw||22 ||~φ|| = 3||~φ||. Further, ~φ =
~P+φ

= ~P+V1φ = ~V1φ. Thus V1φ ∈ L∞(C+) implies that ~φ is bounded with

||~φ|| ≤ ||V1φ||∞. The result follows since ~φ = ~V1φ for all φ ∈ L2(C+, dµ).

Theorem 2. Suppose φ ∈ L2(C+, dµ) such that ~φ is bounded. Then

1

3
lim

Rew→0
sup |V1φ(w)| ≤ ||~φ||e.
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Proof. Consider a compact operator T from L2
a(C+, dµ) to L2

a(C+, dµ) ar-
bitarily. Since bw → 0 weakly in L2

a(C+) as Rew → 0, we obtain ||Tbw|| −→
0 as Rew → 0. Hence,

||~φ − T || ≥ lim
Rew→0

sup ||(~φ − T )bw|| ≥ lim
Rew→0

sup ||~φbw||. (7)

Since (7) holds for every compact operator T, it follows that,

||~φ||e ≥ lim
Rew→0

sup ||~φbw||. (8)

On the other hand,

|(V1φ)(w)| = 3|〈bw, ~φbw〉| ≤ 3||~φbw||. (9)

From (8) and (9), the theorem follows.

6 Main Result

In this section, we give estimates for the essential norm of bounded little
Hankel operators on the Bergman space L2

a(C+, dµ) in terms of the function
V1φ and applications of the result are also derived. Assume that ~φ is

bounded operator from L2
a(C+, dµ) to L2

a(C+, dµ). The following holds:

Theorem 3. Suppose φ ∈ L2(C+, dµ) and ~φ is bounded. Then

||~φ||e ≤ C lim
Rew→0

sup |V1φ(w)|.

Proof. For f ∈ L2
a(D) and 0 < r < 1, define

Frf(z) =

∫
D

(∫
rD

1

(1− zu)2
1

(1− vu)2
V φ(u)dA(u)

)
f(v)dA(v).

Then PFr is a compact operator from L2
a(D) to L2

a(D) because∫
D

∫
D

∣∣∣∣∫
rD

1

(1− zu)2
1

(1− vu)2
V φ(u)dA(u)

∣∣∣∣2 dA(z)dA(v)

≤ ||V φ||2∞
∫
rD

∫
D

∫
D

1

|1− zu|4
1

|1− vu|4
dA(z)dA(v)dA(u)
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= ||V φ||2∞
∫
rD

1

(1− |u|2)2
dA(u) <∞

and the result follows from Theorem 3.5 in [7]. Thus, we have

||hφ||e = ||h∗
φ
||e = ||h∗

φ
− PFr||e ≤ ||h∗φ − PFr||.

Moreover, Ph∗
φ

= h∗
φ

yields,

||h∗
φ
− PFr|| = sup

f∈L2
a(D)

||Ph∗
φ
f − PFrf ||
||f ||

≤ sup
f∈L2

a(D)

||h∗
φ
f − Frf ||
||f ||

.

Define

Kr(z, v) =

∫
D/rD

1

(1− zu)2
1

(1− vu)2
V φ(u)dA(u),

and K+
r (z, v) = |Kr(z, v)|. Let Gr(respectively G+

r ) be the integral operator
on L2(D, dA) with kernel Kr(respectively K+

r ). Then Grf = h∗
φ
f −Frf for

any f ∈ L2
a(D). For details see [7]. Thus

||hφ||e ≤ ||G
+
r ||.

Using Schur’s theorem, we will obtain the operator norm ofG+
r on L2(D, dA).

Take t > 0 and h(z) = 1
(1−|z|2)2t . Then we have,∫

D
K+
r (z, v)h(v)dA(v)

=

∫
D

∣∣∣∣∣
∫
D/rD

1

(1− zu)2
1

(1− vu)2
V φ(u)dA(u)

∣∣∣∣∣ 1

(1− |v|2)2t
dA(v)

≤

(
sup

r<|u|<1
|V φ(u)|

)∫
D

∫
D/rD

∣∣∣∣ 1

(1− zu)2
1

(1− vu)2

∣∣∣∣ 1

(1− |v|2)2t
dA(u)dA(v).

Since ∫
D

∫
D/rD

∣∣∣∣ 1

(1− zu)2
1

(1− vu)2

∣∣∣∣ 1

(1− |v|2)2t
dA(u)dA(v)

≤
∫
D

∫
D

1

|1− vu|2
1

(1− |v|2)2t
1

|1− zu|2
dA(v)dA(u)

≤ Ch(z),
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we obtain from [3] that,∫
D
K+
r (z, v)h(v)dA(v) ≤ C

(
sup

r<|u|<1
|V φ(u)|

)
h(z).

Thus using Schur’s theorem [7], we have

||G+
r || ≤ C sup

r<|u|<1
|V φ(u)|.

Thus
||hφ||e ≤ C sup

r<|u|<1
|V φ(u)|,

for any 0 < r < 1. Letting r → 1, we obtain

||hφ||e ≤ C lim
u→∂D

sup |V φ(u)|.

Hence

||~φ||e = inf{||~φ − T || : T is compact}

= inf{||W−1~φW −W
−1TW || : T is compact}

= {||hφ◦MW − L|| : L is compact in L(L2
a(D))}

= ||hφ◦M ||e
≤ C lim

a→∂D
sup |V (φ ◦M)(a)| = C lim

Rew→0
sup |(V1φ)(w)|.

Corollary 1. Let φ ∈ L2(C+, dµ). Then ~φ is a compact operator from

L2
a(C+, dµ) to L2

a(C+, dµ) if and only if V1φ(w)→ 0 as Rew → 0.

Proof. Suppose ~φ is compact. Since ~φ is bounded and ||~φ||e = 0. It thus
follows from Theorem 2, that lim sup

Rew→0
|V1φ(w)| = 0. That is, V1φ(w)→ 0

as Rew → 0. On the other hand, V1φ(w)→ 0 and since V1φ is a continuous
functions, we obtain that V1φ is bounded. Therefore, ~φ is bounded. Hence,
from Theorem 3, we obtain ||~φ||e = 0. Thus ~φ is compact.
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