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Abstract

We study a numerical algorithm for solving the coupled stochastic
algebraic Riccati equations arising in the infinite time horizon nonzero-
sum linear quadratic (LQ) differential games of stochastic systems. We
construct a matrix sequence, which converges to the solution of the
considered coupled stochastic algebraic Riccati equations and defines
the Nash equilibrium point, which solves a stochastic control problem
with state, control and external disturbance-dependent noise. Com-
puter realizations of the introduced methods are numerically compared
via Python.
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1 Introduction

Linear quadratic games based on the Riccati equations and their applica-
tions have been widely investigated in literatures [1, 2, 4, 3]. Some spe-
cial kinds of stochastic differential games for Itô systems with state and
control-dependent noise are investigated in [9, 10, 11]. The system with the
state and control-dependent noise, where using the stochastic Nash game
approach to solve stochastic H2/H∞ control with state, control and exter-
nal disturbance-dependent noise is analysed in [10]. The existence of the
Nash equilibrium for infinite time horizon nonzero-sum LQ stochastic dif-
ferential games is equivalent to the solvability of four coupled stochastic
Riccati algebraic equations [10].

The goal of the paper is to present a numerical algorithm for computing
the Nash equilibrium point for a two-player game. We study numerical algo-
rithms for solving the coupled stochastic algebraic Riccati equations arising
in the infinite time horizon nonzero-sum linear quadratic (LQ) differential
games of stochastic systems. We construct a matrix sequence, which con-
verges to a solution of the considered coupled stochastic algebraic Riccati
equations. This solution defines the Nash equilibrium point [10, Theorem 2].
Computer realizations of the introduced methods are numerically compared
via Python. In our investigation we adapt ideas and algorithms derived by
Ivanov in [6, 7].

A Nash equilibrium exists if and only if there exist real symmetric n×n
solutions (X̃1, X̃2, F̃1, F̃2) to the following four coupled stochastic algebraic
Riccati equations:

R1(X1, X2) = X1Ā0 + ĀT
0 X1 + ĀT

1 X1Ā1 + Q̄1

−(X1B1 + ĀT
1 X1C1)(R11 + CT

1 X1C1)
−1

×(BT
1 X1 + CT

1 X1PĀ1) = 0

F1 = −(R11 + CT
1 X1C1)

−1 (BT
1 X1 + CT

1 X1Ā1)

R11 + CT
1 X1C1 > 0 ,

R2(X1, X2) = X2Ã0 + ÃT
0 X2 + ÃT

1 X2Ã1 + Q̄2

−(X2B2 + ÃT
1 X2C2)(R22 + CT

2 X2C2)
−1

×(BT
2 X2 + CT

2 X2Ã1) = 0

F2 = −(R22 + CT
2 X2C2)

−1 (BT
2 X2 + CT

2 X2Ã1)

R22 + CT
2 X2C2 > 0 ,

(1)
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where 
Ā0 = A0 + B2F2 , Ā1 = A1 + C2F2 ,

Ã0 = A0 + B1F1 , Ã1 = A1 + C1F1 ,

Q̄1 = Q1 + F T
2 R12F2 , Q̄2 = Q2 + F T

1 R21F1 .

The notations are : A0, A1 are real n×n matrices, Q1, Q2 are real symmetric
n × n matrices, B1, C1 are real n × m1 matrices, B2, C2 are real n × m2

matrices, R11, R21 are real m1×m1 matrices, and R12, R22 are real m2×m2

matrices.

A matrix A is said to be stable if the all eigenvalues of A lie in the open
left half plane. We write X ≥ Y or X ≥ Y if X − Y is positive definite or
X − Y is positive semidefinite.

2 An algorithm

We rewrite the set of Riccati equations R1(X1, X2) = 0 and R2(X1, X2) = 0
as a common Riccati equation with block matrix coefficients:

AT
0 X + XA0 + Π1(X) + Q− S(X)R(X)−1S(X)T = 0 (2)

where

R(X) = R+ CTXC ,

= diag [R11 + CT
1 X1C1, R22 + CT

2 X2C2]

S(X) = XB +AT
1 XC

= diag [X1B1 + ĀT
1 X1C1, X2B2 + ÃT

1 X2C2]

Π1(X) = AT
1 XA1 = diag [ĀT

1 X1Ā1, Ã
T
1 X2Ã1],

A0 = diag [Ā0, Ã0] , A1 = diag [Ā1, Ã1] ,

B = diag [B1, B2] , C = diag [C1, C2] ,

R = diag [R11, R22] , Q = diag [Q̄1, Q̄2] .

The introduced Riccati equation (1) is a Riccati type equation investi-
gated in [7]. We can modify Lyapunov iteration (8) from [7]. We derive
the following iteration suitable for the set of Riccati equations (1). We take
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X(0) = diag [X
(0)
1 , X

(0)
2 ] and compute

F
(0)
1 = −(R11 + CT

1 X
(0)
1 C1)

−1 (BT
1 X

(0)
1 + CT

1 X
(0)
1 A1) ,

Ã1 = A1 + C1 F
(0)
1 ,

F
(0)
2 = −(R22 + CT

2 X
(0)
2 C2)

−1(BT
2 X

(0)
2 + CT

2 X
(0)
2 Ã1) ,

Ā1 = A1 + C2 F
(0)
2 ,

F
(0)
1 = −(R11 + CT

1 X
(0)
1 C1)

−1 (BT
1 X

(0)
1 + CT

1 X
(0)
1 Ā1) .

(3)

We construct the matrix sequence {X(k)}∞k=0 as follow. Assume we know
X(k). We compute :

Ã1 = A1 + C1F
(k−1)
1 , Ā1 = A1 + C2 F

(k−1)
2 ,

A1 = diag [Ā1, Ã1] ,

S(X(k)) = X(k)B +AT
1 X

(k)C ,

FX(k) = −(R(X(k)))−1 S(X(k))T

= diag[F1(X
(k)), F2(X

(k))] = diag[F
(k)
1 , F

(k)
2 ] ,

Ã0 = A0 + B1F
(k)
1 , Ā0 = A0 + C2 F

(k)
2 ,

A0 = diag [Ā0, Ã0] ,

Q̄1 = Q1 + (F
(k)
2 )TR12F

(k)
2 , Q̄2 = Q2 + (F

(k)
1 )TR21F

(k)
1 ,

Q = diag [Q̄1, Q̄2] .

(4)

We ready to apply the iteration

(A0 + BFX(k))TX(k+1) + X(k+1)(A0 + BFX(k))

+TX(k) + ΠX(k)(X(k)) = 0 ,
(5)

where

TZ =

(
I
FX(k)

)T (
Q 0

0 R

) (
I
FX(k)

)
,

and

ΠX(k)(X(k)) =

(
I
FX(k)

)T (
AT

1 X
(k)A1 AT

1 X
(k)C

CTX(k)A1 CTX(k)C

) (
I
FX(k)

)
.
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Under the assumptions that the A0,A1,Q are given constant matrices
the convergence properties of iteration (5) are derived in the following the-
orem:

Theorem 1 [7, Theorem 2.10] Assume there exist Hermitian matrices X̂
and X0 such that R(X̂) ≥ 0 and X0 > X̂ ,R(X0) < 0 and A0 + BFX(0) is
stable, where FX(0) = −(R(X(0)))−1 S(X(0))T . Then for the matrix sequence
{X(s)} defined by (5) are satisfied

(i) X(s) > X(s+1) ,X(s) > X̂ ,R(X(s)) < 0 , s = 0, 1, 2, . . .;

(ii) A0 + BFX(s) is stable for s = 0, 1, 2, . . .;

(iii) lims→∞ X(s) = X̃ is a solution of R(X) = 0 with X̃ > X̂. Moreover,
if X(0) > X for all solutions X of R(X) = 0, then X̃ is the maximal
solution;

(iv) the eigenvalues of A0 + BFX̃ lie in the closed left half plane. In addi-

tion, if R(X̂) > 0, then all eigenvalues of A0 + BFX̃ lie in the open
left half plane.

Remark 1 The introduced approach can be applied for the infinite time
horizon stochastic H2/H∞ control problem to find the Nash equilibrium point
[8, 10]. Theorem 3 [10] confirms that the existence the Nash equilibrium
point is obtained via the solution of the special four coupled stochastic alge-
braic Riccati equations derived in [10]. The solution can be found applying
through formulas (3)-(5).

3 Numerical examples

We carry out some numerical experiments for computing the stabilizing so-
lution to block Riccati equation (1). We apply the algorithm described by
(3)-(5). We use Python in an easy-to-use Anaconda environment where
problems and solutions are expressed in most effective way. Python is a
programming language that lets you work more quickly and integrate your
systems more effectively. The Python programming language is freely avail-
able and makes solving a computer problem almost as easy as writing out the
problems. Python can be used for processing text, numbers, and scientific
data and applications.

We rewrite (1) in the form

AT
0 X + XA0 +Q+AT

1 XA1 − (XB +AT
1 XC)

× (R+ CTXC)−1(XB +AT
1 XC)T = 0 .

(6)
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We represent iteration (5) in the form suitable for the computations:

(A0 + BFX(k))TX(k+1) + X(k+1)(A0 + BFX(k)) +Q
+FT

X(k) RFX(k) + (A1 + CFX(k))TX(k)(A1 + CFX(k)) = 0 ,
(7)

i.e. we call it the block Lyapunov iteration.

The numerical experiments are constructed following the approach de-
rived in [5] and the block Lyapunov iteration (7) is applied instead of (5).

We consider a two-player game and two numerical examples. The matrix
coefficients A,Bi, Qi and Rij for i, j = 1, 2 are defined using the Python
description.

Example 1 The matrix coefficients are:

n=3; m1=2; m2=3;

A0 = np.matrix([[-1.5, 0.17,-0.049],[0.07, -1.42, -0.027],[0.04, -0.11,-
1.47]])

A1 = np.matrix([[0.7, 0.19,-0.04],[0.24, 0.9,0.9],[0.3, 0.1,0.15]])

Q1=0.3*np.matlib.identity(n)

Q2=0.025*np.matlib.identity(n)

B1 = np.matrix([[0.0, 0.],[0.05, 0.1],[0.04, 0.15]]);

C1 = np.matrix([[0., 0.1],[1.1, 0],[0., 0.02]]);

B2 = np.matrix([[0.1, 0.5 , 0.4],[0., 0, 0.08],[0., 0., 2.2]])

C2 = np.matrix([[0.1, 0. , 0.],[0., 1.5, 0.0],[0.1, 0.05, 0.0]])

R11 = np.matlib.identity(m1); R11[0,0]=4.0; R11[m1-1,m1-1]=5.0;

R21 = np.matlib.identity(m1)/2.; R21[1,1]=10.;

R22 = np.matlib.identity(m2); R22[0,0]=2.; R22[m2-1,m2-1]=8.;

R12 = np.matlib.identity(m2)/2.; R12[1,1]=2.; R12[m2-1,m2-1]=3.;

We execute Example 1 for n = 3 and tol = 1.0e − 8. We take X
(0)
1 =

diag[6, 6, 6], and X
(0)
2 = diag[9, 9, 9]. Thus, we obtain R1(X

(0)
1 , X

(0)
2 ) < 0 ,

andR2(X
(0)
1 , X

(0)
2 ) < 0. We take X̂

(0)
1 = X̂

(0)
2 = diag[0.0002, 0.0002, 0.0002],

and R1(X̂1, X̂2) > 0 , and R2(X̂1, X̂2) > 0. In addition, the matrix A0 +
BFX(0) is stable. Thus the conditions of Theorem 1 are satisfied. We ex-

ecute iteration (7) with the initial matrices X
(0)
1 and X

(0)
2 . We obtain the

solution X̃1, X̃2 after 25 iteration steps. The matrix A0 + BFX̃ is stable.
We have

X̃1 =

 0.13952043 0.04144027 0.02188102
0.04144027 0.15624824 0.03732627
0.02188102 0.03732627 0.14154421


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and

X̃2 =

 0.0120035 0.003909 0.00222309
0.003909 0.01359531 0.0036183

0.00222309 0.0036183 0.01226303

 .

The pair (F1(X̃), F2(X̃)) defines the Nash equilibrium point with

F1(X̃) =

(
−0.02010912 −0.04090623 −0.0385815
−0.00398803 −0.00569488 −0.00583653

)
and

F1(X̃) =

 −0.00138726 −0.00071184 −0.00050222
−0.01597642 −0.02063644 −0.01883039
−0.00125061 −0.00132644 −0.00351967

 .

We execute additional example for different values of n.

Example 2 The matrix coefficients are:

m1=2; m2=3;

A0 = np.random.randn(n,n)/100 -1.5*np.matlib.identity(n);

A1 = abs(np.random.randn(n,n))/10

B1 = np.matrix([[0.0, 0.],[0.05, 0.1],[0.04, 0.15]]);

C1 = np.matrix([[0., 0.1],[1.1, 0],[0., 0.02]]);

for i in range (0,n-3):

h=np.matrix([uniform(-0.5, 0.5),uniform(-0.5, 0.5)])

B1=np.concatenate((B1,h/10))

h=np.matrix([uniform(-0.5, 0.5),uniform(-0.5, 0.5)])

C1=np.concatenate((C1,h/10))

B2 = np.matrix([[0.1, 0.5 , 0.4],[0., 0, 0.08],[0., 0., 2.2]])

C2 = np.matrix([[0.1, 0. , 0.],[0., 1.5, 0.0],[0.1, 0.05, 0.0]])

for i in range (0,n-3):

h=np.matrix([uniform(-0.5, 0.5),uniform(-0.5, 0.5),uniform(-0.5, 0.5)])

B2=np.concatenate((B2,h/10))

h=np.matrix([uniform(-0.5, 0.5),uniform(-0.5, 0.5),uniform(-1.5, 0.5)])

C2=np.concatenate((C2,h/10))

Matrices Q1, Q2, R11, R21, R22, R12 are the same as in Example 1. We
execute 100 runs for each value of n.

Table 1 presents the computational results for different values of n.
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Table 1. Example 2. Numerical results for different values of n.

Iteration (7)
n maxIt avIt

5 12 10.15
10 20 14.6
15 35 26.9
25 287 122.6

4 Conclusion

We have made numerical experiments for computing the stabilizing solution
to to block Riccati equation (1). The numerical experiments confirm the
effectiveness of the block Lyapunov iteration.
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