
Annals of the Academy of Romanian Scientists

Series on Science and Technology of Information

ISSN 2066-8562 Volume 9, Number 1/2016 13

REAL-TIME IMAGE PROCESSING

WITH SOFTWARE PARALLELIZATION

Radu DOBRESCU
1
, Stefan MOCANU

2
, Dan POPESCU

1

Abstract. The aim of the paper is to present a software architecture that allows

developing applications for real-time parallel image processing. The challenge was that

the algorithms for processing real-time low level operations on digital images can be

developed and prototyped on both a cluster of desktop PCs and on a multi-core

architecture of general purpose graphic processors units (GPGPU, by using a dedicated

parallel processing platform model. The validation of this model shows how to use

parallelizable patterns and how to optimize the load balancing between the workstations.

Key words: Biological system modeling, Biomedical informatics, Cancer, Fractals, Tumor growth,

Simulation

1. Introduction

Real-time image and video processing systems involve processing vast amounts

of image data in a timely manner for the purpose of extracting useful information,

which could mean anything from obtaining an enhanced image to intelligent scene

analysis. Digital images and video are essentially multidimensional signals and

are thus quite data intensive, requiring a significant amount of computation and

memory resources for their processing. The amount of data increases if color is

also considered. Furthermore, the time dimension of digital video demands

processing massive amounts of data per second. One of the keys to real-time

algorithm development is the exploitation of the information available in each

dimension. For digital images, only the spatial information can be exploited, but

for digital videos, the temporal information between image frames in a sequence

can be exploited in addition to the spatial information.

The key to cope with this issue is the concept of parallel processing which deals

with computations on large data sets. In fact, much of what goes into

implementing an efficient image/video processing system centers on how well the

implementation, both hardware and software, exploits different forms of

parallelism in an algorithm, which can be data level parallelism - DLP or/and

instruction level parallelism – ILP [1]. DLP manifests itself in the application of

the same operation on different sets of data, while ILP manifests itself in

scheduling the simultaneous execution of multiple independent operations in a

pipeline fashion.

1
Prof., Control Systems and Industrial Informatics Dept., Univ. “Politehnica” Bucharest, Romania.

2
Conf., Control Systems and Industrial Informatics Dept., Univ.“Politehnica” Bucharest, Romania.

14 Radu Dobrescu, Stefan Mocanu, Dan Popescu

Usually, in a decision theoretic based pattern recognition system for industrial

applications, the classification is performed in the feature space by a distance

function criterion. In applications like visual servoing, vehicle navigation,

industrial inspection, multimedia, medical engineering, etc., the main requirement

for the video system is the real time execution of the algorithms. In order to obtain

a very high image processing speed, the primary operators (pre-processing

operators) are transferred from the central computer to the sensory level.

There are two classes of digital primary image processing operators: local

operators and global operators. The global operators require information from the

complete image frame. They are not suitable for industrial video applications

because they have two main disadvantages: long time execution and edge

alteration. On the other hand, many functions like noise rejection, binary

segmentation, edge extraction, erosion, dilation, area evaluation, and perimeter

evaluation can be calculated with the aid of local bi-dimensional filters.

Generally, software implementation of many image processing procedures is not

compatible with on-line, real time operation requirements and with hard industrial

environment conditions. Moreover, most of the required primary image

processing procedures can be hardware implemented, using programmable

devices. Thus, for an efficient industrial image processing system, the

hardware/software co-design approach is highly recommended.

Operations like noise rejection, edge detection, binary segmentation of image, are

frequently encountered. Due to the development of the integrated circuits like

FPGA and DSP, these primary image processing algorithms can be implemented

together with the video camera like embedded system.

Based on a multi-core architecture and high memory bandwidths, today’s graphic

processors (GPU) offer a great support and speedup not only for dedicated

multimedia and graphic applications but for a wide variety of general purpose

software. Originally designed as accelerators for 2D and 3D graphic operations,

GPUs offer extensive resources for massive parallelism and, even more, they

show superior performance to the CPUs for certain classes of applications.

Driven by the insatiable market demand for real time, high-definition 3D

graphics, the programmable GPU has evolved into a highly parallel,

multithreaded, multi-core processor with enormous computational power and very

high memory bandwidth. The first performing professional application was

introduced in 2006 by NVIDIA under the name Compute Unified Device

Architecture (CUDA). This concept involves a general purpose parallel

computing architecture (hardware and software) which allows efficient solving of

a wide range of complex computational problems. The evolution in the GPU’s

field was impressive.

 Real-Time Image Processing with Software Parallelization 15

Today, parallel GPUs have begun making computational inroads against the CPU,

and a subfield of research, dubbed GPU Computing or GPGPU for General

Purpose Computing on GPU, has found its way into fields as diverse as machine

learning, oil exploration, scientific image processing, linear algebra, statistics, 3D

reconstruction and many other. In the same time the complexity of a GPU has

increased. A GPU has several streaming multiprocessors, each of which has

multiple cores. For example, NVIDIA GeForce GTX 590 has dual GPUs, where

each GPU has 16 streaming multiprocessors (SMs); each of these SMs has 32

cores, which gives a total of 1024 cores in the overall GTX 590 graphics card [2].

So GPUs now offer a compelling alternative to computer clusters for running

large, distributed applications. However, the progress of GPU performance has

slowed due to excessive power dissipation at GHz clock rates and diminishing

returns in instruction-level parallelism [3]. Hence, application developers are

increasingly shifting their algorithms to parallel computing architectures for

practical processing times. In this aim, this paper proposes a different approach

for creating a software architecture containing a set of abstract data types and

associated pixel level operations executed in data parallel fashion.

2. Performing real-time image processing on parallel platforms

2.1. Definition of “real-time image processing” concept

Considering the need for real-time image/video processing and how this need can

be met by exploiting the inherent parallelism in an algorithm, it becomes

important to discuss what exactly is meant by the term “real-time”. From the

literature, it can be derived that there are three main interpretations of the concept

of “real-time” when describing image processing systems and algorithms, namely

real-time in the perceptual sense, real-time in the software engineering sense, and

real-time in the signal processing sense [4].

Real-time in the perceptual sense is used mainly to describe the interaction

between a human and a computer device for a near instantaneous response of the

device to an input by a human user. Let also note that “real-time” implies the idea

of a maximum tolerable delay based on human perception of delay, which is

essentially some sort of application-dependent bounded response time.

Real-time in software engineering sense refers to the case where missed real-time

deadlines result in performance degradation rather than failure. Real-time in signal

processing sense is based on the idea of completing processing in the time

available between successive input samples. In the following the discussion is

focused on the possibility to perform software implementation on a parallel

processing platform of some primary image processing algorithms, corresponding

to real-time in the software engineering sense.

16 Radu Dobrescu, Stefan Mocanu, Dan Popescu

2.2. Software operations involved in real time image processing

Traditionally, image/video processing operations have been classified into three

main levels, namely low, intermediate, and high, where each successive level

differs in its input/output data relationship [5].

Low-level operators take an image as their input and produce an image as their

output, while intermediate-level operators take an image as their input and

generate image attributes as their output, and finally high-level operators take

image attributes as their inputs and interpret the attributes, usually producing

some kind of knowledge-based control at their output.

One can hope that with an adequate task scheduling and a well-designed cluster of

processors one can perform in real time low-level operations.

Low-level operations transform image data to image data. This means that such

operators deal directly with image matrix data at the pixel level. Examples of such

operations include color transformations, gamma correction, linear or nonlinear

filtering, noise reduction, sharpness enhancement, frequency domain

transformations, etc.

The ultimate goal of such operations is to either enhance image data, possibly to

emphasize certain key features, preparing them for viewing by humans, or extract

features for processing at the intermediate-level. These operations can be further

classified into point, neighborhood (local), and global operations [6]. Point

operations are the simplest of the low-level operations since a given input pixel is

transformed into an output pixel, where the transformation does not depend on

any of the pixels surrounding the input pixel. Such operations include arithmetic

operations, logical operations, table lookups, threshold operations, etc. The

inherent DLP in such operations is obvious, as depicted in Fig. 1 (a), where the

point operation on the pixel shown in black needs to be performed across all the

pixels in the input image. Local neighborhood operations are more complex than

point operations in that the transformation from an input pixel to an output pixel

depends on a neighborhood of the input pixel. Such operations include two-

dimensional spatial convolution and filtering, smoothing, sharpening, image

enhancement, etc.

Since each output pixel is some function of the input pixel and its neighbors, these

operations require a large amount of computations. The inherent parallelism in

such operations is illustrated in Fig. 1 (b), where the local neighborhood operation

on the pixel shown in black needs to be performed across all the pixels in the

input image.

Finally, global operations build upon neighborhood operations in which a single

output pixel depends on every pixel in the input image see Fig. 1 (c).

 Real-Time Image Processing with Software Parallelization 17

Fig.1. Parallelism in low-level image/video processing: a) point b) neighborhood c) global.

All low-level operations involve nested looping through all the pixels in an input

image with the innermost loop applying a point, neighborhood, or global operator

to obtain the pixels forming an output image. For this reason low-level operations

are excellent candidates for exploiting DLP.

The higher degree operations are difficult to implement for real time execution.

Intermediate-level operations transform image data to a slightly more abstract

form of information by extracting certain attributes or features of interest from an

image. This means that such operations also deal with the image at the pixel level,

but a key difference is that the transformations involved cause a reduction in the

amount of data from input to output. The goal by carrying out these operations

(which include segmenting an image into regions/objects of interest, extracting

edges, lines, contours, or other image attributes of interest such as statistical

features) is to reduce the amount of data to form a set of features suitable for

further high-level processing. Some intermediate-level operations are also data

intensive with a regular processing structure, thus making them suitable

candidates for exploiting DLP.

High-level operations interpret the abstract data from the intermediate-level,

performing high level knowledge-based scene analysis on a reduced amount of

data. These types of operations (for example recognition of objects) are usually

characterized by control or branch-intensive operations. Thus, they are less data

intensive and more inherently sequential rather than parallel. Due to their irregular

structure and low-bandwidth requirements, such operations are suitable candidates

for exploiting ILP, although their data-intensive portions usually include some

form of matrix–vector operations that are suitable for exploiting DLP.

3. Principles of parallel platforms architecture design

3.1. Hardware Architecture Design

As discussed in the previous section, practical image/video processing systems

include a diverse set of operations from structured, high-bandwidth, data-

intensive, low-level and intermediate-level operations such as filtering and feature

extraction, to irregular, low-bandwidth, control-intensive, high-level operations

such as classification. Since the most resource demanding operations in terms of

required computations and memory bandwidth involve low-level and intermediate

18 Radu Dobrescu, Stefan Mocanu, Dan Popescu

level operations, considerable research has been devoted to developing hardware

architectural features for eliminating bottlenecks within the image/video

processing chain, freeing up more time for performing high-level interpretation

operations. While the major focus has been on speeding up low-level and

intermediate level operations, there have also been architectural developments to

speed up high-level operations.

From the literature, one can see there are three major architectural features that are

essential to any image/video processing system, namely single instruction

multiple data (SIMD), very long instruction word (VLIW), and an efficient

memory subsystem. The concept of SIMD processing is a key architectural

feature found in one way or another in most modern real-time image/video

processing systems. It embodies broadcasting a single instruction to multiple

processors, which simultaneously execute the instruction on different portions of

data in parallel, thus allowing more computations to be performed in a shorter

time.

While SIMD can be used for exploiting DLP, VLIW can be used for exploiting

instruction level parallelism (ILP) and thus for speeding up high-level operations.

VLIW furnishes the ability to execute multiple instructions within one processor

clock cycle, all running in parallel, hence allowing software-oriented pipelining of

instructions by the programmer. Besides the fact that for VLIW to work properly

there must be no dependencies among the data being operated on, the ability to

execute more than one instruction per clock cycle is essential for image/video

processing applications that require operations in the order of Giga operations per

second.

An efficient memory subsystem is considered a crucial component of a real-time

image/video processing system, especially for low-level and intermediate-level

operations that require massive amounts of data transfer bandwidth as well as

high-performance computation power. Concepts such as direct memory access

(DMA) and internal versus external memory are important. DMA allows

transferring of data within a system without burdening the processing unit with

data transfers, so it is a well-known tool for hiding memory access latencies,

especially for image data.

According to the algorithmic process complexity, there are different possible

hardware implementation platforms that one can consider for the real-time

implementation. For the selection of an appropriate hardware platform one must

precise what are the important features of an image/video processing hardware

platform and its advantages and disadvantages in order to be best suited for the

real-time application under consideration.

There are two types of General Purpose Processors (GPP) on the market today,

 Real-Time Image Processing with Software Parallelization 19

one geared toward non embedded applications such as desktop PCs and the other

geared toward embedded applications. Desktop GPPs are extremely high-

performance processors with highly parallel architectures, containing features that

help to exploit ILP in control-intensive, high-level image/video operations. GPPs

have been outfitted with the multilevel cache feature. This feature provides the

potential of having low latency memory accesses for frequently used data.

However, desktop GPPs are characterized by their large size, requiring a separate

chip set for proper operation and communication with external memory and

peripherals.

On the embedded front, there are also several GPPs available on the market today

with high-performance general-purpose processing capability suitable for

exploiting ILP coupled with low power consumption and SIMD-type extensions

for moderately accelerating multimedia operations, enabling the exploitation of

DLP for low-level and intermediate-level image/video processing operations.

Both embedded and desktop GPPs are supported by mature development tools

and efficient compilers, allowing quick development cycles. While GPPs are quite

powerful, they are neither created nor specialized to accelerate massively data

parallel computations.

3.2. Software Architecture Design

While translating source code from a research development environment to a real-

time environment is an involved task, it would be beneficial if the entire software

system is well thought out ahead of time. Considering that real-time image/video

processing systems usually consist of thousands of lines of code, proper design

principles should be practiced from the start in order to ensure maintainability,

extensibility, and flexibility in response to changes in the hardware or the

algorithm.

One key method of dealing with this problem is to make the software design

modular from the start, which involves abstracting out algorithmic details and

creating standard interfaces or application programming interfaces (APIs) to

provide easy switching among different specific implementations of an algorithm.

Also beneficial is to create a hierarchical, layered architecture where standard

interfaces exist between the upper layers and the hardware layer to allow ease in

switching out different types of hardware so that if a hardware component is

changed, only minor modifications to the upper layers will be needed.

It is important to mention also that in a real-time image/video processing system,

certain tasks or procedures have strict real time deadlines, while other tasks have

firm or soft real-time deadlines. In order to be able to manage the deadlines and

ensure a smoothly running system, it is useful to utilize a real time operating

20 Radu Dobrescu, Stefan Mocanu, Dan Popescu

system. Real-time operating systems allow the assignment of different levels of

priorities to different tasks. With such an assignment capability, it becomes

possible to assign higher priorities to hard real-time deadline tasks and lower

priorities to other firm or soft real-time tasks. For portable embedded devices such

as digital cameras, a real-time operating system can be used to free the upper layer

application from managing the timing and scheduling of tasks, and handling file

input/output operations. Therefore, a real-time operating system is an important

key component of the software of any practical real-time image/video processing

system since it can be used to guarantee meeting real-time deadlines and thus

ensuring deterministic behavior to a certain extent.

4. Structural organization of the platform and jobs scheduling

4.1. Parallel platform model

The proposed model for the platform consists of P processor units. Each processor

pi has capacity ci > 0, i = 1,2,…, P. The capacity of a processor is defined as its

speed relative to a reference processor with unit-capacity. We assume for the

general case that c1≤c2 ≤… ≤cP.. The total capacity C of the system is defined as





P

i

icC
1

. A system is called homogeneous when c1=c2…=cP. The platform is

conceived as a distributed system. Each machine is equipped with a single

processor. In other words, we do not consider interconnections of multiprocessors.

The main difference with multiprocessor systems is that in a distributed system,

information about the system state is spread across the different processors. In

many cases, migrating a job from one processor to another is very costly in terms

of network bandwidth and service delay, and that the reason that we have

considered for the beginning only the case of data parallelism for a homogenous

system. The intention was to test the general case of image processing with both

data and task parallelism, by developing a scheduling policy with two components

[7]. The global scheduling policy decides to which processor an arriving job must

be sent, and when to migrate some jobs. At each processor, the local scheduling

policy decides when the processor serves which of the jobs present in its queue.

Jobs arrive at the system according to one or more interarrival-time processes.

These processes determine the time between the arrivals of two consecutive jobs.

The arrival time of job j is denoted by Aj. Once a job j is completed, it leaves the

system at its departure time Dj.

The response time Rj of job j is defined as Rj = Dj – Aj. The service time Sj of job j

is its response time on a unit-capacity processor serving no other jobs; by

definition, the response time of a job with service time s on a processor with

capacity c’ is s/c’.

 Real-Time Image Processing with Software Parallelization 21

We define the job set J(t) at time t as the set of jobs present in the system at time t:

}|{)(jj DtAjtJ 

For each job jJ(t), we define the remaining work)(tW r

j at time t as the time it

would take to serve the job to completion on a unit-capacity processor. The

service rate)(tr

j of job j at time t (Aj≤ t<Dj) is defined as:





 d

dW
t

r

j

t

r

j

)(
lim)(


 .

The obtained share)(ts

j of job j at time t (Aj ≤ t < Dj) is defined

as: Ctt r

j

s

j /)()(  . So,)(ts

j is the fraction of the total system capacity C used

to serve job j, but only if we assume that)(tW r

j is always a piecewise-linear,

continuous function of t. Considering jj

r

j SAW )(and 0)(j

r

j DW we have

CSdttdtt j

D

A

r

j

D

A

s

j

j

j

j

j

/)()(   .

One can define an upper bound on the sum of the obtained job shares of any set of

jobs {1, … , J} as:

 



),min(

1

1

max)(
PJ

i

icCt (1)

Since equation (1) imposes upper bonds on the total share, the maximum

obtainable total share at time t is defined as:

 



),)(min(

1

1)(
PtJ

p

p

T cctm (2)

In a similar manner, for a group g of processors (g = 1, 2, … , G), the maximum

obtainable group share at time t is defined as:

 




),)(min(

1

1)(

PtJ

p

p

G
g

cctm (3)

4.2. Share-scheduling policy for parallel processing

Let consider the above mentioned model of a parallel processing platform with P

processors, and assume that each job j has a weight wjp on processor p,

representing the fraction of time job j spends on processor p. We consider also

that job j can switch between processors such that it appears to be served by more

than one processor at the same time, at total service rate of p

P

p

jpcw
1

and the

22 Radu Dobrescu, Stefan Mocanu, Dan Popescu

following conditions are respected:

j allfor 1 ; p allfor 1; p j, allfor ,10  
p

jp

j

jpjp www

Under these assumptions, the proposed policy defined as job-priority

multiprocessor sharing (JPMPS) can be applied without difference for both

multiprocessors and distributed systems with free job migration.

In [8] is proven that under JPMPS, jobs 1, . . . , J (J ≥ 1) can be given service rates
J

J

JJ   ...21 , J > 0, if and only if, for j = 1, . . . , J,

� 



),min(

11

Pk

p

p

j

k

J

k c (4)

When we compare this result to the definition of m
T
(t) in (2) and m

G
(t) in (3) it is

obvious that, under JPMPS, the set of jobs present in the system can always be

provided with a share of m
T
(t) and also all jobs of group g can be provided with

m
G
(t).

The objective of share scheduling is to provide groups with their feasible group

shares. For each group one can define a constant share, the required group share
G

gr , as the fraction of the total system capacity c that group g is entitled to, with

1
g

G

gr . The required group shares are assumed to be constant over time and to

be known in advance to the system. When the required group shares of two

groups are the same, the system should treat them equally, and when one exceeds

the other, the system should give preferential treatment to the group with the G

gr .

The required group share plays an important role in the definition of the feasible

group share, because the feasible group share depends only on the required group

share, the number of jobs present of the group and the average processor capacity.

We state the following three requirements for the definition of the feasible group

share)(tf G

g , g = 1, . . .,G:

 1.)()(0 tmtf G

g

G

g 

 2.)(tf G

g depends only on),...,1(,,,)(PicPrtJ i

G

gg 

 3. if PtJ g )(then
G

g

G

g rtf )(

The first requirement means that we should not promise to a group more than the

maximum we can provide.

 Real-Time Image Processing with Software Parallelization 23

The second requirement means that the feasible group share only depends on the

number of jobs of the group and not on the coincidental presence of jobs of other

groups (i.e. groups are promised a share of the system that does not depend on the

activity of other groups).

The third requirement states that when the number of jobs in a group exceeds a

threshold, the feasible group share equals the required group share. This threshold may

be different for different groups, provided they have different required group shares.

From requirements 2 and 3, it follows that:

  
g

1)(and ,)(tfrtf G

g

G

g

G

g (5)

This means one can never promise more than the total system capacity to all

groups together.

5. Real time image processing applications based on CUDA platforms

Parallel processing applications have specific processing requirements compared

to sequential programming. Due to its complex architecture, the GPU meets most

of them. While the CPU addresses the requests of a general purpose processor

dealing with a large number of instructions and arbitrary operations (e.g.

scheduling, transfers or computing), the GPU was conceived to execute just a few

instructions, but really fast. The GPU was designed as a number of separate

processing units that apply in parallel the same instruction set on different data

points. Considering these facts and trying to explore the full performance of the

GPU, an increased number of researching communities have focused their

attention on the concept of general purpose computing, also known as “GPGPU”.

GPUs became attractive essentially because they offer extensive resources for

massive parallelism, high memory bandwidth and a general purpose instruction

set including support for both, single and double – precision floating point.

Recognizing the value of GPUs for GPGPU, vendors have designed specific

hardware and software support for developers to use the highly parallel GPU

architecture with-out the need to proceed through the entire graphics pipeline. The

NVIDIA’s solution is the CUDA platform.

CUDA stands for Compute Unified Device Architecture and is a parallel

computing architecture which comes with a free software environment allowing

developers to use C, C++, FORTRAN, OpenCL or DirectCompute as a high or

low – level programming language. Actually, CUDA language can be seen as an

extension to C based on a few easy to learn abstractions for parallel programming

and math-coprocessor offload. The challenge is to develop application software

that transparently scales its parallelism in order to leverage the increasing number

24 Radu Dobrescu, Stefan Mocanu, Dan Popescu

of processor cores just as 3D graphics scale their parallelism to many core GPUs.

 CUDA’s parallel programming model was designed to overcome this challenge

while maintaining a low learning curve for programmers familiar with standard

programming languages. The minimal set of language extensions involves at least

three key abstractions: a hierarchy of thread groups, barrier synchronization and

shared memory.

While developing parallel applications CUDA programmers should consider the

CPU and the GPU as a single entity. The actual system consists of a host (the

traditional CPU) and one or more devices that are massively parallel processors

equipped with a large number of arithmetic execution units (such as GPU).

Therefore, a CUDA program is a collection of code sequences executed either by

a host or a device. Usually, the code sequences that exhibit little or no data

parallelism are implemented in host code, while those that exhibit rich amount of

data parallelism are implemented in device code.

CUDA platform configuration allows simultaneous computation on both CPU and

GPU without contention for memory resources. CUDA enabled GPUs have

hundreds of cores able to run thousands of computing threads. CUDA architecture

is built around a matrix of multithreaded Streaming Multiprocessors (SMs). Any

SM may have up 8 scalar processors (SP) cores, a multithreaded instruction unit

and shared memory. To manage parallel threads, NVIDIA implements SIMT

(single-instruction, multiple-thread). The SM maps each thread to one SP core and

the SIMT unit schedules threads in groups of 32. These groups are also known as

warps. The SIMT unit selects a warp (that is ready to execute) and it launches the

instruction to the active threads of the warp. A warp executes one instruction at a

time, therefore all 32 threads of a warp must agree on their execution path to

optimize the execution. Even if all threads from the same warp start together, at

the same program address, they can branch and execute independently. If threads

within a warp diverge because of a conditional branch, the warp serially executes

each branch path, disabling threads that are not in the path. When all paths

complete, the threads converge back to the same execution path. This situation

may occur only within a warp; different warps will always be executed

independently. Considering that a single instruction controls multiple processing

elements, SIMT and SIMD (Single Instruction, Multiple Data) architectures are

similar. Although, a key difference is that SIMT enables programmers to write

thread-level parallel code for independent threads, as well as data-parallel code for

coordinated threads. The SIMT behavior seems to be the key to substantial

performance improvements in CUDA architecture, the same way the cached lines

are the key to performance in traditional code. The programmer can ignore the

SIMT behavior for an easier design process, but he should consider it in order to

achieve top performance.

 Real-Time Image Processing with Software Parallelization 25

CUDA provides a hierarchy of thread groups, barrier synchronization and shared

memory, three key abstractions that are able to offer a clear parallel structure to

conventional C code. Multiple levels of threads, memory, and synchronization

provide fine-grained data and thread parallelism, all these nested within coarse-

grained data and task parallelism. These abstractions guide the programmer to

partition the problem into coarse sub-problems that can be independently solved

in parallel. The sub-problems can be split into smaller entities that will be the

subject of parallel cooperative computing.

This means that threads are not always independent, sometimes they must

cooperate in order to complete the task. Each of the threads that execute a function

(usually defined by the programmer and known as a kernel) has a unique threadID

accessible within the kernel. The kernels can be parallelized, hence they will be

executed n times in parallel by n different CUDA threads, as opposed to “only

once” like regular C functions. The programmer organizes these threads into a

hierarchy of grids of thread blocks [9]. A thread block is a set of concurrent

threads that can cooperate through barrier synchronization and shared access to a

memory space. Blocks can be executed in any order, in parallel or in series.

Furthermore, a set of blocks may be executed independently in which case they

are seen as a grid.

As we previously pointed out, threads within a block can cooperate by sharing

data through shared memory. To synchronize their execution and to coordinate

memory access, the SM implements the CUDA__syncthreads() barrier. Mainly,

this function acts as a barrier at which all threads within a block must wait before

any of them is allowed to proceed. This guarantees that no thread can proceed

until all participating threads have reached this point. Since threads in a block may

share local memory and synchronize via barriers, they will reside on the same

SM. The number of thread blocks can exceed the number of processors within a

SM, thus it virtualizes the processing elements and gives the programmer the

flexibility to parallelize at whatever granularity is most convenient. This allows

intuitive problem decompositions, as the number of blocks can be dictated by the

size of the data being processed rather than by the number of processors in the

GPU. Therefore, the scheduling policy analyzed in Section 4 can be applied

successfully for CUDA based applications.

6. Conclusion

This paper shows how to use parallelizable patterns, obtained for typical low level

image processing operations, on the basis of a parallel processing platform model.

Given the experimental results we are confident in that the proposed software

architecture forms a powerful basis for automatic parallelization and optimization

of a wide range of image processing applications.

26 Radu Dobrescu, Stefan Mocanu, Dan Popescu

The scheduling solution can be used for both multiprocessors (GPUs) and

distributed (clusters) computing for real-time video processing. It is true that

distributed computing has mainly been applied to applications in which data could

be processed in non-real-time, but one can perform visual communication, if

real-time constraints that give additional requirements to data processing in

distributed computing are considered.

GPU-based developments in the field of real-time image/video processing are

fairly new, but can be observed in typical examples including stereo depth map

computation and subpixel motion estimation. The power of the GPU allowed the

use of advanced features, including multiresolution matching, adaptive

windowing, and cross-checking.

Regarding the potential of the parallel platform model for image processing, in the

near future we will focus our attention on the improvement of the scheduling

component, by using processor units with different processing capacities and also

other service policy for the queue of jobs, trying to improve the performances by

supporting the execution of a sequence of algorithms on the same block and by

dynamical reconstruction of the post processed image.

R E F E R E N C E S

[1] H. Hunter, J. A. Moreno. New Look at Exploiting Data Parallelism in Embedded Systems,

Proceedings of the International Conference on Compilers, Architectures, and Synthesis for

Embedded Systems, pp. 159–169, 2003.

[2] NVidia, http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-590/specifications,

2014.

[3] S. Mittal, J. S. Vetter. A Survey of Methods for Analyzing and Improving GPU Energy

Efficiency. ACM Computing Surveys, Vol. 47, Iss. 2, pp. 19.1-19.23, 2015.

[4] A. Bovik, Handbook of Image & Video Processing, Elsevier, 2005.

[5] S. Kyo, S. Okazaki, and T. Arai, An Integrated Memory Array Processor Architecture for

Embedded Image Recognition Systems, Proc. Int. Symp. on Computer Architecture, pp. 134-145, 2005.

[6] C. Soviany. Embedding Data and Task Parallelism in Image Processing Applications,

Ph.D. Dissertation, Delft University of Technology, 2003.

[7] R. Dobrescu, D. Popescu, M. Nicolae, H. Humaila, Real time dependable communication

infrastructure for a collaborative groupware system, Proc. of the 1
st
 Int. Conf. MEQAPS’09, vol.1,

pp. 207-212, 2009.

[8] J.F.C.M, de Jongh, Share scheduling in distributed systems, PhD Thesis, Technische

Universiteit Delft, 2002.

[9] Dobrescu, M. Dobrescu, S. Mocanu, S. Taralunga, Client-Server Architecture for Parallel

Image Processing, WSEAS Transactions on Signal Processing, Issue 9, vol. 2, pp. 1181-1188, 2006.

