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Abstract. The aim of the paper is to present a software architecture that allows 

developing applications for real-time parallel image processing. The challenge was that 

the algorithms for processing real-time low level operations on digital images can be 

developed and prototyped on both a cluster of desktop PCs and on a multi-core 

architecture of general purpose graphic processors units (GPGPU, by using a dedicated 

parallel processing platform model. The validation of this model shows how to use 

parallelizable patterns and how to optimize the load balancing between the workstations. 
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1. Introduction 

Real-time image and video processing systems involve processing vast amounts 

of image data in a timely manner for the purpose of extracting useful information, 

which could mean anything from obtaining an enhanced image to intelligent scene 

analysis. Digital images and video are essentially multidimensional signals and 

are thus quite data intensive, requiring a significant amount of computation and 

memory resources for their processing. The amount of data increases if color is 

also considered. Furthermore, the time dimension of digital video demands 

processing massive amounts of data per second. One of the keys to real-time 

algorithm development is the exploitation of the information available in each 

dimension. For digital images, only the spatial information can be exploited, but 

for digital videos, the temporal information between image frames in a sequence 

can be exploited in addition to the spatial information. 

The key to cope with this issue is the concept of parallel processing which deals 

with computations on large data sets. In fact, much of what goes into 

implementing an efficient image/video processing system centers on how well the 

implementation, both hardware and software, exploits different forms of 

parallelism in an algorithm, which can be data level parallelism - DLP or/and 

instruction level parallelism – ILP [1]. DLP manifests itself in the application of 

the same operation on different sets of data, while ILP manifests itself in 

scheduling the simultaneous execution of multiple independent operations in a 

pipeline fashion. 
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Usually, in a decision theoretic based pattern recognition system for industrial 

applications, the classification is performed in the feature space by a distance 

function criterion. In applications like visual servoing, vehicle navigation, 

industrial inspection, multimedia, medical engineering, etc., the main requirement 

for the video system is the real time execution of the algorithms. In order to obtain 

a very high image processing speed, the primary operators (pre-processing 

operators) are transferred from the central computer to the sensory level.  

There are two classes of digital primary image processing operators: local 

operators and global operators. The global operators require information from the 

complete image frame. They are not suitable for industrial video applications 

because they have two main disadvantages: long time execution and edge 

alteration. On the other hand, many functions like noise rejection, binary 

segmentation, edge extraction, erosion, dilation, area evaluation, and perimeter 

evaluation can be calculated with the aid of local bi-dimensional filters. 

Generally, software implementation of many image processing procedures is not 

compatible with on-line, real time operation requirements and with hard industrial 

environment conditions. Moreover, most of the required primary image 

processing procedures can be hardware implemented, using programmable 

devices. Thus, for an efficient industrial image processing system, the 

hardware/software co-design approach is highly recommended. 

Operations like noise rejection, edge detection, binary segmentation of image, are 

frequently encountered. Due to the development of the integrated circuits like 

FPGA and DSP, these primary image processing algorithms can be implemented 

together with the video camera like embedded system.  

Based on a multi-core architecture and high memory bandwidths, today’s graphic 

processors (GPU) offer a great support and speedup not only for dedicated 

multimedia and graphic applications but for a wide variety of general purpose 

software. Originally designed as accelerators for 2D and 3D graphic operations, 

GPUs offer extensive resources for massive parallelism and, even more, they 

show superior performance to the CPUs for certain classes of applications.  

Driven by the insatiable market demand for real time, high-definition 3D 

graphics, the programmable GPU has evolved into a highly parallel, 

multithreaded, multi-core processor with enormous computational power and very 

high memory bandwidth. The first performing professional application was 

introduced in 2006 by NVIDIA under the name Compute Unified Device 

Architecture (CUDA). This concept involves a general purpose parallel 

computing architecture (hardware and software) which allows efficient solving of 

a wide range of complex computational problems. The evolution in the GPU’s 

field was impressive.  
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Today, parallel GPUs have begun making computational inroads against the CPU, 

and a subfield of research, dubbed GPU Computing or GPGPU for General 

Purpose Computing on GPU, has found its way into fields as diverse as machine 

learning, oil exploration, scientific image processing, linear algebra, statistics, 3D 

reconstruction and many other. In the same time the complexity of a GPU has 

increased. A GPU has several streaming multiprocessors, each of which has 

multiple cores. For example, NVIDIA GeForce GTX 590 has dual GPUs, where 

each GPU has 16 streaming multiprocessors (SMs); each of these SMs has 32 

cores, which gives a total of 1024 cores in the overall GTX 590 graphics card [2]. 

So GPUs now offer a compelling alternative to computer clusters for running 

large, distributed applications. However, the progress of GPU performance has 

slowed due to excessive power dissipation at GHz clock rates and diminishing 

returns in instruction-level parallelism [3]. Hence, application developers are 

increasingly shifting their algorithms to parallel computing architectures for 

practical processing times. In this aim, this paper proposes a different approach 

for creating a software architecture containing a set of abstract data types and 

associated pixel level operations executed in data parallel fashion. 

2. Performing real-time image processing on parallel platforms 

2.1. Definition of “real-time image processing” concept 

Considering the need for real-time image/video processing and how this need can 

be met by exploiting the inherent parallelism in an algorithm, it becomes 

important to discuss what exactly is meant by the term “real-time”. From the 

literature, it can be derived that there are three main interpretations of the concept 

of “real-time” when describing image processing systems and algorithms, namely 

real-time in the perceptual sense, real-time in the software engineering sense, and 

real-time in the signal processing sense [4]. 

Real-time in the perceptual sense is used mainly to describe the interaction 

between a human and a computer device for a near instantaneous response of the 

device to an input by a human user. Let also note that “real-time” implies the idea 

of a maximum tolerable delay based on human perception of delay, which is 

essentially some sort of application-dependent bounded response time. 

Real-time in software engineering sense refers to the case where missed real-time 

deadlines result in performance degradation rather than failure. Real-time in signal 

processing sense is based on the idea of completing processing in the time 

available between successive input samples. In the following the discussion is 

focused on the possibility to perform software implementation on a parallel 

processing platform of some primary image processing algorithms, corresponding 

to real-time in the software engineering sense.  
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2.2. Software operations involved in real time image processing 

Traditionally, image/video processing operations have been classified into three 

main levels, namely low, intermediate, and high, where each successive level 

differs in its input/output data relationship [5].  

Low-level operators take an image as their input and produce an image as their 

output, while intermediate-level operators take an image as their input and 

generate image attributes as their output, and finally high-level operators take 

image attributes as their inputs and interpret the attributes, usually producing 

some kind of knowledge-based control at their output.  

One can hope that with an adequate task scheduling and a well-designed cluster of 

processors one can perform in real time low-level operations.  

Low-level operations transform image data to image data. This means that such 

operators deal directly with image matrix data at the pixel level. Examples of such 

operations include color transformations, gamma correction, linear or nonlinear 

filtering, noise reduction, sharpness enhancement, frequency domain 

transformations, etc.  

The ultimate goal of such operations is to either enhance image data, possibly to 

emphasize certain key features, preparing them for viewing by humans, or extract 

features for processing at the intermediate-level. These operations can be further 

classified into point, neighborhood (local), and global operations [6]. Point 

operations are the simplest of the low-level operations since a given input pixel is 

transformed into an output pixel, where the transformation does not depend on 

any of the pixels surrounding the input pixel. Such operations include arithmetic 

operations, logical operations, table lookups, threshold operations, etc. The 

inherent DLP in such operations is obvious, as depicted in Fig. 1 (a), where the 

point operation on the pixel shown in black needs to be performed across all the 

pixels in the input image. Local neighborhood operations are more complex than 

point operations in that the transformation from an input pixel to an output pixel 

depends on a neighborhood of the input pixel. Such operations include two-

dimensional spatial convolution and filtering, smoothing, sharpening, image 

enhancement, etc.  

Since each output pixel is some function of the input pixel and its neighbors, these 

operations require a large amount of computations. The inherent parallelism in 

such operations is illustrated in Fig. 1 (b), where the local neighborhood operation 

on the pixel shown in black needs to be performed across all the pixels in the 

input image. 

Finally, global operations build upon neighborhood operations in which a single 

output pixel depends on every pixel in the input image see Fig. 1 (c). 
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Fig.1. Parallelism in low-level image/video processing: a) point b) neighborhood c) global. 

All low-level operations involve nested looping through all the pixels in an input 

image with the innermost loop applying a point, neighborhood, or global operator 

to obtain the pixels forming an output image. For this reason low-level operations 

are excellent candidates for exploiting DLP. 

The higher degree operations are difficult to implement for real time execution. 

Intermediate-level operations transform image data to a slightly more abstract 

form of information by extracting certain attributes or features of interest from an 

image. This means that such operations also deal with the image at the pixel level, 

but a key difference is that the transformations involved cause a reduction in the 

amount of data from input to output. The goal by carrying out these operations 

(which include segmenting an image into regions/objects of interest, extracting 

edges, lines, contours, or other image attributes of interest such as statistical 

features) is to reduce the amount of data to form a set of features suitable for 

further high-level processing. Some intermediate-level operations are also data 

intensive with a regular processing structure, thus making them suitable 

candidates for exploiting DLP. 

High-level operations interpret the abstract data from the intermediate-level, 

performing high level knowledge-based scene analysis on a reduced amount of 

data. These types of operations (for example recognition of objects) are usually 

characterized by control or branch-intensive operations. Thus, they are less data 

intensive and more inherently sequential rather than parallel. Due to their irregular 

structure and low-bandwidth requirements, such operations are suitable candidates 

for exploiting ILP, although their data-intensive portions usually include some 

form of matrix–vector operations that are suitable for exploiting DLP. 

3. Principles of parallel platforms architecture design 

3.1. Hardware Architecture Design 

As discussed in the previous section, practical image/video processing systems 

include a diverse set of operations from structured, high-bandwidth, data-

intensive, low-level and intermediate-level operations such as filtering and feature 

extraction, to irregular, low-bandwidth, control-intensive, high-level operations 

such as classification. Since the most resource demanding operations in terms of 

required computations and memory bandwidth involve low-level and intermediate 
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level operations, considerable research has been devoted to developing hardware 

architectural features for eliminating bottlenecks within the image/video 

processing chain, freeing up more time for performing high-level interpretation 

operations. While the major focus has been on speeding up low-level and 

intermediate level operations, there have also been architectural developments to 

speed up high-level operations. 

From the literature, one can see there are three major architectural features that are 

essential to any image/video processing system, namely single instruction 

multiple data (SIMD), very long instruction word (VLIW), and an efficient 

memory subsystem. The concept of SIMD processing is a key architectural 

feature found in one way or another in most modern real-time image/video 

processing systems. It embodies broadcasting a single instruction to multiple 

processors, which simultaneously execute the instruction on different portions of 

data in parallel, thus allowing more computations to be performed in a shorter 

time.  

While SIMD can be used for exploiting DLP, VLIW can be used for exploiting 

instruction level parallelism (ILP) and thus for speeding up high-level operations. 

VLIW furnishes the ability to execute multiple instructions within one processor 

clock cycle, all running in parallel, hence allowing software-oriented pipelining of 

instructions by the programmer. Besides the fact that for VLIW to work properly 

there must be no dependencies among the data being operated on, the ability to 

execute more than one instruction per clock cycle is essential for image/video 

processing applications that require operations in the order of Giga operations per 

second. 

An efficient memory subsystem is considered a crucial component of a real-time 

image/video processing system, especially for low-level and intermediate-level 

operations that require massive amounts of data transfer bandwidth as well as 

high-performance computation power. Concepts such as direct memory access 

(DMA) and internal versus external memory are important. DMA allows 

transferring of data within a system without burdening the processing unit with 

data transfers, so it is a well-known tool for hiding memory access latencies, 

especially for image data. 

According to the algorithmic process complexity, there are different possible 

hardware implementation platforms that one can consider for the real-time 

implementation. For the selection of an appropriate hardware platform one must 

precise what are the important features of an image/video processing hardware 

platform and its advantages and disadvantages in order to be best suited for the 

real-time application under consideration. 

There are two types of General Purpose Processors (GPP) on the market today, 
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one geared toward non embedded applications such as desktop PCs and the other 

geared toward embedded applications. Desktop GPPs are extremely high-

performance processors with highly parallel architectures, containing features that 

help to exploit ILP in control-intensive, high-level image/video operations. GPPs 

have been outfitted with the multilevel cache feature. This feature provides the 

potential of having low latency memory accesses for frequently used data. 

However, desktop GPPs are characterized by their large size, requiring a separate 

chip set for proper operation and communication with external memory and 

peripherals. 

On the embedded front, there are also several GPPs available on the market today 

with high-performance general-purpose processing capability suitable for 

exploiting ILP coupled with low power consumption and SIMD-type extensions 

for moderately accelerating multimedia operations, enabling the exploitation of 

DLP for low-level and intermediate-level image/video processing operations.  

Both embedded and desktop GPPs are supported by mature development tools 

and efficient compilers, allowing quick development cycles. While GPPs are quite 

powerful, they are neither created nor specialized to accelerate massively data 

parallel computations. 

3.2. Software Architecture Design 

While translating source code from a research development environment to a real-

time environment is an involved task, it would be beneficial if the entire software 

system is well thought out ahead of time. Considering that real-time image/video 

processing systems usually consist of thousands of lines of code, proper design 

principles should be practiced from the start in order to ensure maintainability, 

extensibility, and flexibility in response to changes in the hardware or the 

algorithm.  

One key method of dealing with this problem is to make the software design 

modular from the start, which involves abstracting out algorithmic details and 

creating standard interfaces or application programming interfaces (APIs) to 

provide easy switching among different specific implementations of an algorithm. 

Also beneficial is to create a hierarchical, layered architecture where standard 

interfaces exist between the upper layers and the hardware layer to allow ease in 

switching out different types of hardware so that if a hardware component is 

changed, only minor modifications to the upper layers will be needed. 

It is important to mention also that in a real-time image/video processing system, 

certain tasks or procedures have strict real time deadlines, while other tasks have 

firm or soft real-time deadlines. In order to be able to manage the deadlines and 

ensure a smoothly running system, it is useful to utilize a real time operating 
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system. Real-time operating systems allow the assignment of different levels of 

priorities to different tasks. With such an assignment capability, it becomes 

possible to assign higher priorities to hard real-time deadline tasks and lower 

priorities to other firm or soft real-time tasks. For portable embedded devices such 

as digital cameras, a real-time operating system can be used to free the upper layer 

application from managing the timing and scheduling of tasks, and handling file 

input/output operations. Therefore, a real-time operating system is an important 

key component of the software of any practical real-time image/video processing 

system since it can be used to guarantee meeting real-time deadlines and thus 

ensuring deterministic behavior to a certain extent. 

4. Structural organization of the platform and jobs scheduling 

4.1. Parallel platform model 

The proposed model for the platform consists of P processor units. Each processor 

pi has capacity ci > 0, i = 1,2,…, P. The capacity of a processor is defined as its 

speed relative to a reference processor with unit-capacity. We assume for the 

general case that c1≤c2 ≤… ≤cP.. The total capacity C of the system is defined as 





P

i

icC
1

. A system is called homogeneous when c1=c2…=cP. The platform is 

conceived as a distributed system. Each machine is equipped with a single 

processor. In other words, we do not consider interconnections of multiprocessors. 

The main difference with multiprocessor systems is that in a distributed system, 

information about the system state is spread across the different processors. In 

many cases, migrating a job from one processor to another is very costly in terms 

of network bandwidth and service delay, and that the reason that we have 

considered for the beginning only the case of data parallelism for a homogenous 

system. The intention was to test the general case of image processing with both 

data and task parallelism, by developing a scheduling policy with two components 

[7]. The global scheduling policy decides to which processor an arriving job must 

be sent, and when to migrate some jobs. At each processor, the local scheduling 

policy decides when the processor serves which of the jobs present in its queue.  

Jobs arrive at the system according to one or more interarrival-time processes. 

These processes determine the time between the arrivals of two consecutive jobs. 

The arrival time of job j is denoted by Aj. Once a job j is completed, it leaves the 

system at its departure time Dj.  

The response time Rj of job j is defined as Rj = Dj – Aj. The service time Sj of job j 

is its response time on a unit-capacity processor serving no other jobs; by 

definition, the response time of a job with service time s on a processor with 

capacity c’ is s/c’.  
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We define the job set J(t) at time t as the set of jobs present in the system at time t:  

}|{)( jj DtAjtJ   

For each job jJ(t), we define the remaining work )(tW r

j  at time t as the time it 

would take to serve the job to completion on a unit-capacity processor. The 

service rate )(tr

j  of job j at time t (Aj≤ t<Dj) is defined as:

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j of job j at time t (Aj ≤ t < Dj) is defined 

as: Ctt r

j

s

j /)()(   . So, )(ts

j is the fraction of the total system capacity C used 

to serve job j, but only if we assume that )(tW r

j  is always a piecewise-linear, 
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One can define an upper bound on the sum of the obtained job shares of any set of 

jobs {1, … , J} as:  

 



),min(

1

1

max )(
PJ

i

icCt  (1) 

Since equation (1) imposes upper bonds on the total share, the maximum 

obtainable total share at time t is defined as: 

 



),)(min(

1

1)(
PtJ

p

p

T cctm  (2) 

In a similar manner, for a group g of processors (g = 1, 2, … , G), the maximum 

obtainable group share at time t is defined as: 

 




),)(min(

1

1)(

PtJ

p

p

G
g

cctm  (3) 

4.2. Share-scheduling policy for parallel processing  

Let consider the above mentioned model of a parallel processing platform with P 

processors, and assume that each job j has a weight wjp on processor p, 

representing the fraction of time job j spends on processor p. We consider also 

that job j can switch between processors such that it appears to be served by more 

than one processor at the same time, at total service rate of p

P

p

jpcw
1

and the 
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following conditions are respected: 

j allfor  1 ; p allfor  1; p j, allfor  ,10  
p

jp

j

jpjp www  

Under these assumptions, the proposed policy defined as job-priority 

multiprocessor sharing (JPMPS) can be applied without difference for both 

multiprocessors and distributed systems with free job migration.  

In [8] is proven that under JPMPS, jobs 1, . . . , J (J ≥ 1) can be given service rates 
J

J

JJ   ...21 , J > 0, if and only if, for j = 1, . . . , J, 

� 



),min(
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Pk

p

p

j

k

J

k c  (4) 

When we compare this result to the definition of m
T
(t) in (2) and m

G
(t) in (3) it is 

obvious that, under JPMPS, the set of jobs present in the system can always be 

provided with a share of m
T
(t) and also all jobs of group g can be provided with 

m
G
(t). 

The objective of share scheduling is to provide groups with their feasible group 

shares. For each group one can define a constant share, the required group share 
G

gr , as the fraction of the total system capacity c that group g is entitled to, with 

1
g

G

gr . The required group shares are assumed to be constant over time and to 

be known in advance to the system. When the required group shares of two 

groups are the same, the system should treat them equally, and when one exceeds 

the other, the system should give preferential treatment to the group with the G

gr . 

The required group share plays an important role in the definition of the feasible 

group share, because the feasible group share depends only on the required group 

share, the number of jobs present of the group and the average processor capacity.  

We state the following three requirements for the definition of the feasible group 

share )(tf G

g , g = 1, . . .,G: 

 1. )()(0 tmtf G

g

G

g   

 2. )(tf G

g depends only on ),...,1(,,,)( PicPrtJ i

G

gg   

 3. if PtJ g )( then 
G

g

G

g rtf )(  

The first requirement means that we should not promise to a group more than the 

maximum we can provide.  
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The second requirement means that the feasible group share only depends on the 

number of jobs of the group and not on the coincidental presence of jobs of other 

groups (i.e. groups are promised a share of the system that does not depend on the 

activity of other groups).  

The third requirement states that when the number of jobs in a group exceeds a 

threshold, the feasible group share equals the required group share. This threshold may 

be different for different groups, provided they have different required group shares.  

From requirements 2 and 3, it follows that: 

  
g

1)( and ,)( tfrtf G

g

G

g

G

g  (5) 

This means one can never promise more than the total system capacity to all 

groups together. 

5. Real time image processing applications based on CUDA platforms 

Parallel processing applications have specific processing requirements compared 

to sequential programming. Due to its complex architecture, the GPU meets most 

of them. While the CPU addresses the requests of a general purpose processor 

dealing with a large number of instructions and arbitrary operations (e.g. 

scheduling, transfers or computing), the GPU was conceived to execute just a few 

instructions, but really fast. The GPU was designed as a number of separate 

processing units that apply in parallel the same instruction set on different data 

points. Considering these facts and trying to explore the full performance of the 

GPU, an increased number of researching communities have focused their 

attention on the concept of general purpose computing, also known as “GPGPU”. 

GPUs became attractive essentially because they offer extensive resources for 

massive parallelism, high memory bandwidth and a general purpose instruction 

set including support for both, single and double – precision floating point.  

Recognizing the value of GPUs for GPGPU, vendors have designed specific 

hardware and software support for developers to use the highly parallel GPU 

architecture with-out the need to proceed through the entire graphics pipeline. The 

NVIDIA’s solution is the CUDA platform. 

CUDA stands for Compute Unified Device Architecture and is a parallel 

computing architecture which comes with a free software environment allowing 

developers to use C, C++, FORTRAN, OpenCL or DirectCompute as a high or 

low – level programming language. Actually, CUDA language can be seen as an 

extension to C based on a few easy to learn abstractions for parallel programming 

and math-coprocessor offload. The challenge is to develop application software 

that transparently scales its parallelism in order to leverage the increasing number 
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of processor cores just as 3D graphics scale their parallelism to many core GPUs. 

 CUDA’s parallel programming model was designed to overcome this challenge 

while maintaining a low learning curve for programmers familiar with standard 

programming languages. The minimal set of language extensions involves at least 

three key abstractions: a hierarchy of thread groups, barrier synchronization and 

shared memory.  

While developing parallel applications CUDA programmers should consider the 

CPU and the GPU as a single entity. The actual system consists of a host (the 

traditional CPU) and one or more devices that are massively parallel processors 

equipped with a large number of arithmetic execution units (such as GPU). 

Therefore, a CUDA program is a collection of code sequences executed either by 

a host or a device. Usually, the code sequences that exhibit little or no data 

parallelism are implemented in host code, while those that exhibit rich amount of 

data parallelism are implemented in device code.  

CUDA platform configuration allows simultaneous computation on both CPU and 

GPU without contention for memory resources. CUDA enabled GPUs have 

hundreds of cores able to run thousands of computing threads. CUDA architecture 

is built around a matrix of multithreaded Streaming Multiprocessors (SMs). Any 

SM may have up 8 scalar processors (SP) cores, a multithreaded instruction unit 

and shared memory. To manage parallel threads, NVIDIA implements SIMT 

(single-instruction, multiple-thread). The SM maps each thread to one SP core and 

the SIMT unit schedules threads in groups of 32. These groups are also known as 

warps. The SIMT unit selects a warp (that is ready to execute) and it launches the 

instruction to the active threads of the warp. A warp executes one instruction at a 

time, therefore all 32 threads of a warp must agree on their execution path to 

optimize the execution. Even if all threads from the same warp start together, at 

the same program address, they can branch and execute independently. If threads 

within a warp diverge because of a conditional branch, the warp serially executes 

each branch path, disabling threads that are not in the path. When all paths 

complete, the threads converge back to the same execution path. This situation 

may occur only within a warp; different warps will always be executed 

independently. Considering that a single instruction controls multiple processing 

elements, SIMT and SIMD (Single Instruction, Multiple Data) architectures are 

similar. Although, a key difference is that SIMT enables programmers to write 

thread-level parallel code for independent threads, as well as data-parallel code for 

coordinated threads. The SIMT behavior seems to be the key to substantial 

performance improvements in CUDA architecture, the same way the cached lines 

are the key to performance in traditional code. The programmer can ignore the 

SIMT behavior for an easier design process, but he should consider it in order to 

achieve top performance. 



 

  

 Real-Time Image Processing with Software Parallelization 25 

CUDA provides a hierarchy of thread groups, barrier synchronization and shared 

memory, three key abstractions that are able to offer a clear parallel structure to 

conventional C code. Multiple levels of threads, memory, and synchronization 

provide fine-grained data and thread parallelism, all these nested within coarse-

grained data and task parallelism. These abstractions guide the programmer to 

partition the problem into coarse sub-problems that can be independently solved 

in parallel. The sub-problems can be split into smaller entities that will be the 

subject of parallel cooperative computing.  

This means that threads are not always independent, sometimes they must 

cooperate in order to complete the task. Each of the threads that execute a function 

(usually defined by the programmer and known as a kernel) has a unique threadID 

accessible within the kernel. The kernels can be parallelized, hence they will be 

executed n times in parallel by n different CUDA threads, as opposed to “only 

once” like regular C functions. The programmer organizes these threads into a 

hierarchy of grids of thread blocks [9]. A thread block is a set of concurrent 

threads that can cooperate through barrier synchronization and shared access to a 

memory space. Blocks can be executed in any order, in parallel or in series. 

Furthermore, a set of blocks may be executed independently in which case they 

are seen as a grid. 

As we previously pointed out, threads within a block can cooperate by sharing 

data through shared memory. To synchronize their execution and to coordinate 

memory access, the SM implements the CUDA__syncthreads() barrier. Mainly, 

this function acts as a barrier at which all threads within a block must wait before 

any of them is allowed to proceed. This guarantees that no thread can proceed 

until all participating threads have reached this point. Since threads in a block may 

share local memory and synchronize via barriers, they will reside on the same 

SM. The number of thread blocks can exceed the number of processors within a 

SM, thus it virtualizes the processing elements and gives the programmer the 

flexibility to parallelize at whatever granularity is most convenient. This allows 

intuitive problem decompositions, as the number of blocks can be dictated by the 

size of the data being processed rather than by the number of processors in the 

GPU. Therefore, the scheduling policy analyzed in Section 4 can be applied 

successfully for CUDA based applications. 

6. Conclusion 

This paper shows how to use parallelizable patterns, obtained for typical low level 

image processing operations, on the basis of a parallel processing platform model. 

Given the experimental results we are confident in that the proposed software 

architecture forms a powerful basis for automatic parallelization and optimization 

of a wide range of image processing applications. 
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The scheduling solution can be used for both multiprocessors (GPUs) and 

distributed (clusters) computing for real-time video processing. It is true that 

distributed computing has mainly been applied to applications in which data could 

be processed in non-real-time, but one can perform visual communication, if 

real-time constraints that give additional requirements to data processing in 

distributed computing are considered. 

GPU-based developments in the field of real-time image/video processing are 

fairly new, but can be observed in typical examples including stereo depth map 

computation and subpixel motion estimation. The power of the GPU allowed the 

use of advanced features, including multiresolution matching, adaptive 

windowing, and cross-checking. 

Regarding the potential of the parallel platform model for image processing, in the 

near future we will focus our attention on the improvement of the scheduling 

component, by using processor units with different processing capacities and also 

other service policy for the queue of jobs, trying to improve the performances by 

supporting the execution of a sequence of algorithms on the same block and by 

dynamical reconstruction of the post processed image. 
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