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Abstract. The paper presents two applications of fractal analysis techniques in order to 

develop new software instruments for cancer research.  Essentially the applications refer 

to two types of tumor growth models, the first in the case of avascular tumors, the second 

in the case of vascularized tumors. The fractal evaluation of the accuracy of tumoral 

growth models is discussed, with care to avoid the conflict between the real complexity of 

the biological process and a reductionist approach for simplest modeling. 
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1. Introduction 

Tumor growth is a most complex process, ultimately dependent on tumor cells 

proliferating and spreading in host tissues. A very important implication of the 

spatial and temporal symmetries of tumors is that certain universal quantities can 

be defined which allow the characterization of the tumor growth dynamics. 

Modeling and simulation of tumor growth in competition with the immune system 

is certainly one of the challenging frontiers of applied mathematical which could 

have a great impact both on the quality of life and development of mathematical 

sciences. The common feature of the above mathematical approach is that the 

equation model living matter and the ability of cells to organize their dynamics 

needs to be an essential feature of these mathematical models. 

Tumor evolution is a most complex process involving many different phenomena. 

Understanding the dynamics of cancer growth is one of the great challenges of 

modern science. Solid tumors develop initially as a single mass of cells. These 

divide more rapidly than the cells around them because of a proliferative 

advantage caused by mutation, and a number of genetic pathways responsible for 

these mutations have been identified over the last decade [1], [2]. 

Because there are three distinct stages (avascular, vascular, and metastatic) to 

cancer development, researchers often concentrate their efforts on answering 

specific questions on each of these stages. Nevertheless, when attempting to 

model any complex system it is wise to try and understand each of the 

components as well as possible before they are all put together. 
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The avascular stage of tumor growth is characterized by small tumors, which gain 

the nutrients and oxygen they need for survival and growth by diffusion from 

external blood vessels. Since there are no blood vessels within the tumor to supply 

the mass needed for such volume expansion, this must also enter through the 

tumor‟s periphery.  

An individual tumor cell has the potential, over successive divisions, to develop 

into a cluster of tumor cells. Further growth and proliferation lead to the 

development of an avascular tumor consisting of approximately 10
6
 cells, which 

feed on oxygen and other nutrients present in the local environment. 

Angiogenesis is the process, by which tumors induce blood vessels from the host 

tissue to sprout capillary tips, which migrate towards and ultimately penetrate the 

tumor, providing it with a circulating blood supply and, therefore, an almost 

limitless source of nutrients. 

The vascular growth phase, which follows angiogenesis, is marked by a rapid 

increase in cell proliferation and is usually accompanied by an increase in the 

pressure at the center of the tumor. This may be sufficient to occlude blood 

vessels and, thereby, to restrict drug delivery to the tumor. 

In the earliest stages of development, tumor growth seems to be regulated by 

direct diffusion of nutrients and wastes from and to surrounding tissue. When a 

tumor is very small, every cell receives nourishment by simple diffusion and the 

growth rate is exponential in time.  

However, this stage cannot be sustained because as a nutrient is consumed its 

concentration must decrease towards the center of the tumor. The concentration of 

a vital nutrient at the center will fall below a critical level. 

The main aim of this paper is to develop an accurate growth model for a better 

understanding of process dynamics and the developing of better techniques for the 

prediction of evolution in real instances of cancer. 

2. Related Works 

The process of nutrient consumption and diffusion inside tumors has been 

modeled since the mind 1960
s
. There have been several reviews ([3], [4]) of this 

area of tumor modeling published over the last few years. However, they all focus 

on different aspects to those we address.  

Most models fall into two categories: A. continuum mathematical models that use 

space averaging and thus consist of partial differential equations and B. discrete 

cell population models that consider processes on the single cell scale and 

introduce cell-cell interaction using cellular automata type computational 

machinery. 
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A. Continuum cell population models 

Mathematical models describing continuum cell populations and their 

development classically consider the interactions between the cell number density 

and one or more chemical species that provide nutrients influence the cell cycle 

events of a tumor cell population. Thus these models typically consist of reaction-

diffusion equations. One of the best parameterized of these models is due to [5]. 

Early models of nutrient-limited tumor growth calculated the nutrient 

concentration profiles as a function of tumor spheroid radius that was changing 

due to the rate of cell proliferation [6], [7]. The later models have incorporated 

differing degrees of complexity for cell movement. For example, cells can be 

considered to move in either a convective manner or actively in a diffusive 

manner, or in a diffusive/chemotactic manner.  

Most models consider tumor cell proliferation and death to be dependent on only 

one generic nutrient (most often oxygen). The equations describing the 

distribution of molecular species inside the tumor spheroid are classical 

transport/mass conservation equations. 

B. Discrete cell population models 

With the huge advances in biotechnology, large amounts of data on phenomena 

occurring on a single cell scale are now available. This, combined with in vitro 

experiments using tumor spheroids, sandwich culture, etc., and high power 

confocal microscopy that enables tracking of individual cells in space and time, 

has brought about the possibility of modeling single-cell-scale phenomena and 

then using the techniques of up scaling to obtain information about the large-scale 

phenomena of tumor growth.  

There are several up scaling techniques; the most popular ones are cellular 

automata [8], lattice Boltzmann methods [9], agent based [10], extended Potts 

[11] and the stochastic (Markov chain) approach [12]. 

The difficulty with automaton models is realistically modeling cell motion. The 

first step in setting up rules for cell motion is to partition the physical space into 

automaton cells. The simplest partition is to discretize into a regular lattice; 

rectangular lattices are usually chosen for simplicity.  

The second modeling decision is whether the lattice is fixed in time or varies as 

the elements move. It is far simpler to consider a fixed lattice, with each 

automaton cell corresponding to either a biological cell or vacant site, and cells 

able to move into a nearby lattice site containing a vacant site. In particular, while 

the rules of motion for fixed lattices can be formulated simply in terms of cells 

moving between lattice sites, if the lattice is free to move and the cells can grow. 



 

 

8 Loretta Ichim, Radu Dobrescu 

A recent three-dimensional cellular automata model, which does not use a regular 

lattice, is that of [13]. The model does not include nutrients or mechanical 

interaction between cells explicitly, but mimics the effect of both in a 

phenomenological way. The authors use random fixed lattice, with the space that 

belongs to a single lattice site consisting of points that are nearer to this site that 

any other lattice site.  

In this model, the proliferation is determined by the distance of the cell from the 

tumor boundary to mimic the effects of nutrient diffusion and consumption; only 

cell within a certain distance from the boundary can proliferate. Similarly, cells a 

certain distance from the boundary become necrotic. 

3. Modeling methods 

A. Application 1 – modeling avascular tumor growth 

1) General considerations 

Mathematical modeling is an ideal approach for teasing apart mechanisms of 

cancer invasion because it can simultaneously and quantitatively consider 

interactions between multiple factors. In general, simulations may need the use of 

dedicated computer devices, to solve systems, which include biological variables 

in the various transport phenomena related to biological system. The common 

feature of the above mathematical approach is that the equation model living 

matter and the ability of cells to organize their dynamics needs to be an essential 

feature of these mathematical models. 

The biology of tumor micro regions has been investigated experimentally using 

the multicell spheroid model [14], [15]. In experimental setting, the spheroids are 

usually initiated from aggregates consisting of several cells, but as their size 

increases, their growth kinetics become similar to those of tumor in vivo, such as 

micro metastases or pre-vascular primary tumors. The multicell spheroids develop 

layered structure with a central necrotic core surrounded by quiescent cells and a 

tin rim of proliferating cells. Steep gradients in oxygen, glucose and other 

metabolites are also observed in such spheroids. 

The goal of this application was to develop a two-dimensional model to simulate 

the avascular tumor growth based on nutrient consumption. In the same time we 

discuss the fractal analysis as a morphometric measure of the irregular structures 

typical for tumor growth. 

2) The model 

The basic principles included in the model are cell proliferation, quiescent and 

necrosis. Each cell has associated with the velocity, which indicates the direction 

and the distance the cell will move in one time step.  
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There are nine velocity channels in each lattice site: V0 = (0,0), V1 = (1,-1), 

V2 = (0,1), V3 = (0,-1), V4 = (-1,-1), V5 = (-1,0), V6 = (-1,1), V7 = (0,1), V8 = (1,1), 

were V0  is resting channel and V1, V2, V3, V4, V5, V6, V7 and V8 represent moving 

to right, up, left, down and diagonals, respectively. In each lattice site, we allow at 

most one cell (necrotic cells or tumor cells) with each velocity. 

Now in each lattice site one of following reactions can occur at each time step: 
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where C – tumor cells; N – necrotic cells. 

In order to address the formation of tumor micro regions, we present a two-

dimensional time-dependent mathematical model in which every tumor cell is 

treated as an individual entity characterized by its own geometry and individually 

controlled cell processes. This model allows one to follow fate of each individual 

cell and to investigate how changes occurring in individual cells can influence 

behavior of the whole tumor tissue. For simplicity, we introduce in our model 

only one external metabolic factor and take explicitly into account only the effect 

of nutrient consumption on cell growth and metabolism. 

Starting from the simplified discrete nutrient equation: 

 )(22 NCfN   (4) 

where NNf )( , if 3/1N  and 1)( Nf  otherwise, 2  is the second 

numerical difference, C is 1 or 0, depending on whether a cell occupies that lattice 

site or not and 2  is parameter of order 0.1, a scenario of a quasi-random invasion 

process is proposed next. Consider a nnnn  square lattice, with possible values 

16nn , 32nn , 64nn  or 128nn . The relative nutrient  nnN /  is the 

invading variable, called invader. Denote ),( ji  a place in the lattice, representing 

a cell and consider in (4) the approximation 3.02  , as specified in [16]. 
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The discrete invader equation (4) can be rewritten, for the cell ),( ji , as: 

 ))((),(3.0)()1(2)2( kNfjiCkNkNkN ijijijij   where: (5) 

k is the discrete time, ijN  is the invader in the cell ),( ji , )())(( kNkNf ijij  , if 

3/1)( kNij , 1))(( kNf ij  otherwise, 1),( jiC  if the cell ),( ji  is occupied by 

the tumour and 0),( jiC  otherwise.  

The dynamic model (5) is piecewise linear, with the right hand term depending on 

the values of f and C. For an occupied cell with 3/1)( kNij , the system (5) is 

linear and free, with the characteristic polynomial: 

 7.02)( 2

1    (6) 

and the eigenvalues 312,1  , with 11  .  

For 3/1)( kNij , the system (5) is forced with a constant term equal to 3.0  in the 

right hand side and has the characteristic polynomial: 

 01

22

2 12)(    (7) 

with the roots 12,1  .  

Assuming that the nutrient starts from the normal value n , i.e. for initial conditions 

in (5) 3/11)1()0(  ijij NN , the relative nutrient grows monotonically. 

In this modeling approach, the invasion process has no enemy or partner, so the 

process is not a game. The invasion starts from the center of the lattice, with an 

initial kernel of invaded cells, and at each moment k, if the invader numerical 

gradient reaches, in some already invaded cell, a given limit, then an unoccupied – 

i.e. not belonging to the tumor - or “empty” adjacent cell will be randomly invaded. 

Denote slope a given lower bound for the invader numerical gradient enabling the 

invasion of a neighbor cell. The condition for an event occurrence, i.e. the 

invasion condition from the cell ),( ji  to one of its neighbors ),( jjii  is: 

 if { 1),( jiC }{ slopekNkN ijij  )1()2( } then 

{generate )1,0(),( rand ji } ({jump to )),(rand,,(),( jijiRulejjii  }, 
(8) 

mechanism for quasi-random number generation. 

For the cell ),( ji  in the nnnn  lattice, with 1),( jiC , the pair ),( jjii  can be 

chosen according to the mentioned Rule, so that: 
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3) Modeling the invasion control as an inhibitor action 

The invasion process is undesired, on one side, and unstable on the other side so it 

is reasonable to try to limit the unwanted invasion by means of an inhibitor, which 

may play the role either of an immune response, as a feedback control, or of a 

treatment. A natural way to build a model of the controlled invasion process is by 

adding a correction variable in the right-hand side of equation (5). Denote )(kM ij  

the current inhibitor for the relative nutrient in a cell ),( ji . The controlled relative 

nutrient dynamics is given by: 

 )())((),(3.0)()1(2)2( kMkNfjiCkNkNkN ijijijijij   (10) 

The state variables and the control in the model (10) are defined as: 

 )()(1 kNkx ij , )1()(2  kNkx ij , )()( kMku ij . (11) 

The corresponding state realization of the controlled model (10) is: 

 
)())((),(3.0)(2)()1(

)()1(

1212
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kukxfjiCkxkxkx
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


 (12) 

Denote Tkxkxk ])()([)( 21x  the state of the system (12) at the moment k and 

observe that, similarly to the free model (5), the controlled models (10) and (12) 

are piecewise-linear. In an occupied cell ),( ji , i.e. for 1),( jiC , if 1))(( 1 kxf , 

the dynamics (12) with output )()( kNky ij  can be written in the compact form: 

 )()()()),(3.0()()1( kdukkykukxk T  xcbAx   (13) 

with 
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The characteristic polynomial of the matrix A is  AI  det)(2  specified in (7). 

The linear system ),,,( dT
cbA  with the input )(3.0)(~ kuku  , ,2,1,0k , is 

controllable so, according to the classical control theory, the closed loop evolution 

can become asymptotically stable by a feedback control )(
~

)(~ kku T
xf , with 

21

21 ]
~~

[
~  Rf ffT  chosen so that the characteristic polynomial 

)]
~

(det[ T
fbAI   equals some desired polynomial: 
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 ))(()( 201001

2

0   , R10, , (15) 

with 10 i , 2,1i . 

The proposed control problem for the system (12) is slightly different: the objective 

is to bring, in each cell, the relative nutrient to )(lim1 kNk  , for which the 

nutrient equals the “normal” value  nn  and also to admit that there might appear 

a delay in the inhibitor action.  

The speed of the transition to the desired nutrient value is imposed by the stable 

roots of a given polynomial 0  (15). 

B. Application 2 – modeling vascular tumor networks 

1) General considerations 

In the first stages of vascularization, the new vessels are not fully formed. In 

addition, the rate of vascularization may vary significantly between tumors. 

 

Fig. 1. Fractal structure of tumor vessel networks. 

Taking into account that tumor size in the vascular phase of tumor growth is 

directly dependent on the level of vascularization, it was decided to study tumors 

of comparable sizes (approximately 4 mm in diameter).  

Therefore, in tumors the fractal dimension (Fd) was measured for all observed 

vessels taken together. 

In figure 1, we present the real networks and the models based on them – adapted 

from [17].  

Fractal dimensions were estimated by the box-counting technique [18] where the 

fractal dimension is given by the gradient of the graph of „log (box size)‟ against 

„log (number of boxes required to cover the image)‟. 
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2) The model 

The computer model of the vascular network starts with a square lattice, invasion 

percolation is implemented by first assigning uniformly distributed random values 

to each point on the lattice. An arbitrary start point is selected as the left bottom 

corner and invades the weakest point the grid at adjacent to the current network 

after each time point; this growth is iterated until the required occupancy is reached.  

The network is then pruned by removing regions with zero flow (dead ends) to 

provide the „backbone‟, blood vessels are then assumed to connect all adjacent 

lattice sites on this backbone. Selecting the occupancy enables the level of 

geometrical heterogeneity to be controlled as measured by the fractal dimension. 

This model helped to explain why tumor vascular resistance is higher than 

observed in normal vasculature. A foreseeable limitation of this system is fractal 

scaling only applies over a narrow range of length scales and it is not known if the 

scaling extends to larger vessels. 

4. Experimental Results 

For all applications, the models were implemented using Java Development 

Toolkit and the algorithms for computing fractal dimensions were implemented in 

Microsoft Visual C++ 6.0 software. 

A. Application 1 

1) Simulation results 

The simulations conducted on a 100×100 square lattice with central site initially 

defined to contain one cancerous cell. This simulation has been greatly simplified 

by neglecting some effects such as: interaction of healthy cells with cancerous cells, 

the effect of nutrients concentrations and limited volume space for tumor and it 

seems the addition of these effects is not problematic in this simulation (Fig. 2). 

 

Fig. 2. In vitro growth model versus simulation in two dimensions. 
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Finally, we shall compare the simulated patterns with an in vitro model of tumor 

growth [19] for validation our computational model. In figure 2 we show two 

sections of tumor growth: left panel (a) – in vitro model and right panel (b) – 

simulated pattern. This image is very similar to the patterns exhibited in our 

simulation. At the beginning, we assume that similarities between these in vitro 

growth model and simulated patterns suggest that some of the functional 

properties of cancer cells are similar to those built into our model. 

The size of the lattice is chosen sufficiently large such that the boundaries do not 

influence the tumor growth within the considered time interval. Our model 

estimated fast expansion of tumor cells during the first third of the whole period 

and significant reduction in tumor growth after developing necrotic cell area. 

Finally, the tumor enters into a phase of growth saturation. The percentage of 

proliferating tumor cells is equal to 100% during this time, except of the scattered 

single points that reflect short periods of time, when the newly created daughter 

cells did not yet enter in the new cell cycle. A subpopulation of quiescent cells 

becomes more noticeable at the time when the first necrotic cells arise. After 

subpopulation of necrotic cells arisen the tumor growth is characterized by a fast 

exponential expansion. The percentage of proliferating cells starts to decrease 

with the increasing subpopulations of quiescent and necrotic cells. Three hundred 

and sixty images were automatically generated for each model of tumor growth, 

and their fractal dimensions were estimated using box-counting method. 

2) Computing fractal dimensions 

To measure the fractal dimension and roughness of the tumor boundary we select 

only the cells at the boundary of the tumors. 

 
Fig. 3. Plot of the fractal dimensions of the tumor boundary as a function of time steps. 

We define boundary cells as those that have at least one normal neighbor. Fractal 

dimensions were calculated using a box-counting algorithm [18]. See the figure 3 

where the fractal dimensions of the patterns are plotted against the total number of 

time steps. We noticed that the invasive growth is afterwards slowed down while 

the tumor pattern became progressively more compact. This makes us suppose 

that it could be diagnosed in a precocious way the cancer, being based on the 

quantification of the fractal dimension. 
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A. Application 2 

1) Simulation results 

We have developed a computer model based on invasion percolation growth 

process to simulate the geometrical complexity of a tumor vascular network. We 

used the fractal dimension as a quantitative estimator of the spatial complexity of 

the two-dimensional vascular network. Below are some examples of invasion 

percolation clusters in different sizes, with different boundary conditions (Fig. 4).  

 

Fig. 4. Examples of invasion percolation clusters in different sizes and with different conditions:  

(A) a 100×100 cluster with periodic boundary conditions and Fd = 1.9135;  

(B) a 100×100 cluster with free boundary conditions and Fd = 1.9313;  

(C) a 200×200 cluster with periodic boundary conditions and Fd = 1.9369;  

(D) a 200×200 cluster with free boundary conditions and Fd = 1.9434. 

2) Computing fractal dimensions 

All images were automatically generated and their fractal dimensions were 

estimated. The following table (table 1) includes the average fractal dimension of 

each type of cluster. The average is over 10 runs with different random seeds. All 

of the data are expressed as average fractal dimension ± standard deviation.  

Table 1. The average and standard deviation for Fd in different lattice and boundary conditions 

Boundary 

Condition 
Lattice 

Average Fractal 

Dimension 

Free 100100 1.92 ± 0.02 

Periodic 100100 1.93 ± 0.02 

Free 200200 1.94 ± 0.01 

Periodic 200200 1.935±0.02 
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5. Conclusions 

We see the role of mathematical modeling in cancer biology as twofold.  

Models can help our intuition, provide a framework for thinking about the 

problem, and make predictions.  

If a model is well parameterized then these predictions can be quantitative 

predictions can be significant. 

1. The proposed abstract invasion model inherits the lattice structure from 

model, but considers only the second-order discrete-time invader equation [20]. 

The simulated evolution of the free invasion process depends strongly on the 

choice of the limit slope.  

On the other side, experiments performed with constant slope value have revealed 

a rather weak evolution variation if the initial conditions are chosen below or 

above the limit 1/3, respectively, for which the characteristic polynomial changes 

from (6) to (7).  

In the proposed controlled model, the correction agent is a growth inhibitor and 

the controlled evolution may reach a stationary state, provided that the inhibition 

is efficient, with the price of an increased complexity.  

The discrete-time approach ensures that for both free and controlled models, the 

numerical simulation is non-blocking and the Zeno phenomenon is avoided.  

In future research, the simple free invasion model can be developed with different 

transition mechanisms, implemented, in (8), by the function Rule.  

Also, simulation of invasion processes in which two or several initial kernels fuse 

gradually, forming a single bigger tumor, may present interest. 

Finally, one can extend the research from this discrete abstraction to a general 

network, thus renouncing to the constraints of a regular lattice. 

2. These results confirm that its whole architecture plays a primary role in 

the quantitative evaluation of the vascular network.  

Therefore, we consider that at the moment to validate our model is necessary 

systematic comparison between the computer simulations and the real data.  

However, both normal and tumor vasculature can more properly be considered 

fractal objects because of their irregular shape (spatial conformation), self-similar 

structure, non-integer dimension and dependence on the scale of observation 

(scaling effect). 

There are many directions in which this work will be taken in the future.  



 

  

 Fractal evaluation of tumor growth models 17 

In the first research line, we are planning to investigate the transport of diffusible 

substances in tumors, a key process in the growth and treatment of solid tumors. 

For example, adequate oxygen supply is critical for tumor growth but also for 

successful radiation therapy.  

The scale-invariant behavior of vascular networks leads to important insights 

about the transport characteristics of tumors.  

The inherent limitations to oxygen transport in tumor tissues having percolation-

like vascular networks can be generalized to include most other substances that 

are delivered to target cells by similar convective and diffusive processes.  

Such substances include both nutrients (e.g., glucose) and therapeutic agents (e.g., 

drugs).  

The next line can be, for example, to extend model of invasion percolation in 

three-dimensional lattice. 
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